A Mathematical Analysis of Knotting and Linking in Leonardo Da Vinci's
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Visual Defects When Extending Two-Dimensional Invisible Lenses with Circular Symmetry Into the Third Dimension
Visual defects when extending two-dimensional invisible lenses with circular symmetry into the third dimension Aaron J. Danner1 and Tom´aˇsTyc2 1Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore 2Department of Theoretical Physics and Astrophysics, Masaryk University, Kotl´aˇrsk´a 2, 61137 Brno, Czech Republic E-mail: [email protected] November 26, 2015 Abstract. A common practice in the design of three-dimensional objects with transformation optics is to first design a two-dimensional object and then to simply extend the refractive index profile along the z-axis. For lenses that are transformations of free space, this technique works perfectly, but for many lenses that seem like they would work, this technique causes optical distortions. In this paper, we analyze two such cases, the invisible sphere and Eaton lens, and show photorealistically how serious such optical distortions might appear in practice. 1. Introduction Since the first invisible cloaks were introduced by Leonhardt [1] and Pendry [2], the excitement generated has led to a large number of investigations of both cloaking in general as well as other interesting transformation optics devices. The term "transformation optics" has now traditionally come to refer specifically to the act of changing the metric tensor in electromagnetic space, corresponding to a specific type of change in the refractive index profile in physical space (for example, a requirement that the tensors µ = ). Since this requirement can rarely be met in practice, various sacrifices to device performance must be made in order to achieve desired functionality. This includes, but is not limited to, sacrificing one polarization's performance to implement a device in dielectrics, or limiting performance of a device designed with transformation optics to only two dimensions, which can significantly ease design constraints. -
MODEL SELECTION in the SPACE of GAUSSIAN MODELS INVARIANT by SYMMETRY Piotr Graczyk, Hideyuki Ishi, Bartosz Kolodziejek, Helene Massam
MODEL SELECTION IN THE SPACE OF GAUSSIAN MODELS INVARIANT BY SYMMETRY Piotr Graczyk, Hideyuki Ishi, Bartosz Kolodziejek, Helene Massam To cite this version: Piotr Graczyk, Hideyuki Ishi, Bartosz Kolodziejek, Helene Massam. MODEL SELECTION IN THE SPACE OF GAUSSIAN MODELS INVARIANT BY SYMMETRY. 2020. hal-02564982 HAL Id: hal-02564982 https://hal.archives-ouvertes.fr/hal-02564982 Preprint submitted on 6 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Submitted to the Annals of Statistics MODEL SELECTION IN THE SPACE OF GAUSSIAN MODELS INVARIANT BY SYMMETRY BY PIOTR GRACZYK1,HIDEYUKI ISHI2 *,BARTOSZ KOŁODZIEJEK3† AND HÉLÈNE MASSAM4‡ 1Université d’Angers, France, [email protected] 2Osaka City University, Japan, [email protected] 3Warsaw University of Technology, Poland, [email protected] 4York University, Canada, [email protected] We consider multivariate centred Gaussian models for the random vari- able Z = (Z1;:::;Zp), invariant under the action of a subgroup of the group of permutations on f1; : : : ; pg. Using the representation theory of the sym- metric group on the field of reals, we derive the distribution of the maxi- mum likelihood estimate of the covariance parameter Σ and also the analytic expression of the normalizing constant of the Diaconis-Ylvisaker conjugate prior for the precision parameter K = Σ−1. -
De Divino Errore ‘De Divina Proportione’ Was Written by Luca Pacioli and Illustrated by Leonardo Da Vinci
De Divino Errore ‘De Divina Proportione’ was written by Luca Pacioli and illustrated by Leonardo da Vinci. It was one of the most widely read mathematical books. Unfortunately, a strongly emphasized statement in the book claims six summits of pyramids of the stellated icosidodecahedron lay in one plane. This is not so, and yet even extensively annotated editions of this book never noticed this error. Dutchmen Jos Janssens and Rinus Roelofs did so, 500 years later. Fig. 1: About this illustration of Leonardo da Vinci for the Milanese version of the ‘De Divina Proportione’, Pacioli erroneously wrote that the red and green dots lay in a plane. The book ‘De Divina Proportione’, or ‘On the Divine Ratio’, was written by the Franciscan Fra Luca Bartolomeo de Pacioli (1445-1517). His name is sometimes written Paciolo or Paccioli because Italian was not a uniform language in his days, when, moreover, Italy was not a country yet. Labeling Pacioli as a Tuscan, because of his birthplace of Borgo San Sepolcro, may be more correct, but he also studied in Venice and Rome, and spent much of his life in Perugia and Milan. In service of Duke and patron Ludovico Sforza, he would write his masterpiece, in 1497 (although it is more correct to say the work was written between 1496 and 1498, because it contains several parts). It was not his first opus, because in 1494 his ‘Summa de arithmetic, geometrica, proportioni et proportionalita’ had appeared; the ‘Summa’ and ‘Divina’ were not his only books, but surely the most famous ones. For hundreds of years the books were among the most widely read mathematical bestsellers, their fame being only surpassed by the ‘Elements’ of Euclid. -
Knot Masters Troop 90
Knot Masters Troop 90 1. Every Scout and Scouter joining Knot Masters will be given a test by a Knot Master and will be assigned the appropriate starting rank and rope. Ropes shall be worn on the left side of scout belt secured with an appropriate Knot Master knot. 2. When a Scout or Scouter proves he is ready for advancement by tying all the knots of the next rank as witnessed by a Scout or Scouter of that rank or higher, he shall trade in his old rope for a rope of the color of the next rank. KNOTTER (White Rope) 1. Overhand Knot Perhaps the most basic knot, useful as an end knot, the beginning of many knots, multiple knots make grips along a lifeline. It can be difficult to untie when wet. 2. Loop Knot The loop knot is simply the overhand knot tied on a bight. It has many uses, including isolation of an unreliable portion of rope. 3. Square Knot The square or reef knot is the most common knot for joining two ropes. It is easily tied and untied, and is secure and reliable except when joining ropes of different sizes. 4. Two Half Hitches Two half hitches are often used to join a rope end to a post, spar or ring. 5. Clove Hitch The clove hitch is a simple, convenient and secure method of fastening ropes to an object. 6. Taut-Line Hitch Used by Scouts for adjustable tent guy lines, the taut line hitch can be employed to attach a second rope, reinforcing a failing one 7. -
Simple Rules for Incorporating Design Art Into Penrose and Fractal Tiles
Bridges 2012: Mathematics, Music, Art, Architecture, Culture Simple Rules for Incorporating Design Art into Penrose and Fractal Tiles San Le SLFFEA.com [email protected] Abstract Incorporating designs into the tiles that form tessellations presents an interesting challenge for artists. Creating a viable M.C. Escher-like image that works esthetically as well as functionally requires resolving incongruencies at a tile’s edge while constrained by its shape. Escher was the most well known practitioner in this style of mathematical visualization, but there are significant mathematical objects to which he never applied his artistry including Penrose Tilings and fractals. In this paper, we show that the rules of creating a traditional tile extend to these objects as well. To illustrate the versatility of tiling art, images were created with multiple figures and negative space leading to patterns distinct from the work of others. 1 1 Introduction M.C. Escher was the most prominent artist working with tessellations and space filling. Forty years after his death, his creations are still foremost in people’s minds in the field of tiling art. One of the reasons Escher continues to hold such a monopoly in this specialty are the unique challenges that come with creating Escher type designs inside a tessellation[15]. When an image is drawn into a tile and extends to the tile’s edge, it introduces incongruencies which are resolved by continuously aligning and refining the image. This is particularly true when the image consists of the lizards, fish, angels, etc. which populated Escher’s tilings because they do not have the 4-fold rotational symmetry that would make it possible to arbitrarily rotate the image ± 90, 180 degrees and have all the pieces fit[9]. -
Electricity Demand Evolution Driven by Storm Motivated Population
aphy & N r at og u e ra G l Allen et al., J Geogr Nat Disast 2014, 4:2 f D o i s l a Journal of a s DOI: 10.4172/2167-0587.1000126 n t r e u r s o J ISSN: 2167-0587 Geography & Natural Disasters ResearchResearch Article Article OpenOpen Access Access Electricity Demand Evolution Driven by Storm Motivated Population Movement Melissa R Allen1,2, Steven J Fernandez1,2*, Joshua S Fu1,2 and Kimberly A Walker3 1University of Tennessee, Knoxville, Oak Ridge, USA 2Oak Ridge National Laboratory, Oak Ridge, USA 3Indiana University, Oak Ridge, USA Abstract Managing the risks to reliable delivery of energy to vulnerable populations posed by local effects of climate change on energy production and delivery is a challenge for communities worldwide. Climate effects such as sea level rise, increased frequency and intensity of natural disasters, force populations to move locations. These moves result in changing geographic patterns of demand for infrastructure services. Thus, infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Forecasting the location of these vulnerabilities by combining climate predictions and agent based population movement models shows promise for defining these future population distributions and changes in coastal infrastructure configurations. In this work, we created a prototype agent based population distribution model and developed a methodology to establish utility functions that provide insight about new infrastructure vulnerabilities that might result from these new electric power topologies. Combining climate and weather data, engineering algorithms and social theory, we use the new Department of Energy (DOE) Connected Infrastructure Dynamics Models (CIDM) to examine electricity demand response to increased temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. -
Solutions Matching Equations, Surface Graphs and Contour Graphs in This Section You Will Match Equations with Surface Graphs (Page 2) and Contour Graphs (Page 3)
Math 126 Functions of Two Variables and Their Graphs Solutions Matching equations, surface graphs and contour graphs In this section you will match equations with surface graphs (page 2) and contour graphs (page 3). Equations Things to look for: 1. Symmetry: What happens when you replace x by y, or x by −x, or y by −y? 2. Does it have circular symmetry - an x2 + y2 term in the equation? 3. Does it take negative values or is it always above the xy-plane? 4. Is it one of the surfaces you have seen in Chapter 12? If yes, can you name it before looking at the pictures on the next page? Here are the equations: 1. f(x; y) = jxj + jyj J III This should be symmetric above the four quadrants as replacing x by −x or y by −y does not change the function. There is no circular symmetry. 2. f(x; y) = x2 − y2 EV This one has hyperbolas as cross sections z = k. It has a saddle shape (hyperbolic paraboloid) from Section 12.6. 3. f(x; y) = x2 + y2 A IV This one has circular symmetry. Circular cross sections with z = k. Elliptic (circular) paraboloid from Section 12.6. p 4. f(x; y) = x2 + y2 B VII This one has circular symmetry. Circular cross sections with z = k. Upper half of the cone from Section 12.6. 5. f(x; y) = x − y2 F II Cross sections with z = k are parabolas. Symmetry with respect to the xz plane since replacing y by −y does not change the equation. -
Leonardo Universal
Leonardo Universal DE DIVINA PROPORTIONE Pacioli, legendary mathematician, introduced the linear perspective and the mixture of colors, representing the human body and its proportions and extrapolating this knowledge to architecture. Luca Pacioli demonstrating one of Euclid’s theorems (Jacobo de’Barbari, 1495) D e Divina Proportione is a holy expression commonly outstanding work and icon of the Italian Renaissance. used in the past to refer to what we nowadays call Leonardo, who was deeply interested in nature and art the golden section, which is the mathematic module mathematics, worked with Pacioli, the author of the through which any amount can be divided in two text, and was a determined spreader of perspectives uneven parts, so that the ratio between the smallest and proportions, including Phi in many of his works, part and the largest one is the same as that between such as The Last Supper, created at the same time as the largest and the full amount. It is divine for its the illustrations of the present manuscript, the Mona being unique, and triune, as it links three elements. Lisa, whose face hides a perfect golden rectangle and The fusion of art and science, and the completion of the Uomo Vitruviano, a deep study on the human 60 full-page illustrations by the preeminent genius figure where da Vinci proves that all the main body of the time, Leonardo da Vinci, make it the most parts were related to the golden ratio. Luca Pacioli credits that Leonardo da Vinci made the illustrations of the geometric bodies with quill, ink and watercolor. -
Leonardo Da Vinci's Study of Light and Optics: a Synthesis of Fields in The
Bitler Leonardo da Vinci’s Study of Light and Optics Leonardo da Vinci’s Study of Light and Optics: A Synthesis of Fields in The Last Supper Nicole Bitler Stanford University Leonardo da Vinci’s Milanese observations of optics and astronomy complicated his understanding of light. Though these complications forced him to reject “tidy” interpretations of light and optics, they ultimately allowed him to excel in the portrayal of reflection, shadow, and luminescence (Kemp, 2006). Leonardo da Vinci’s The Last Supper demonstrates this careful study of light and the relation of light to perspective. In the work, da Vinci delved into the complications of optics and reflections, and its renown guided the artistic study of light by subsequent masters. From da Vinci’s personal manuscripts, accounts from his contemporaries, and present-day art historians, the iterative relationship between Leonardo da Vinci’s study of light and study of optics becomes apparent, as well as how his study of the two fields manifested in his paintings. Upon commencement of courtly service in Milan, da Vinci immersed himself in a range of scholarly pursuits. Da Vinci’s artistic and mathematical interest in perspective led him to the study of optics. Initially, da Vinci “accepted the ancient (and specifically Platonic) idea that the eye functioned by emitting a special type of visual ray” (Kemp, 2006, p. 114). In his early musings on the topic, da Vinci reiterated this notion, stating in his notebooks that, “the eye transmits through the atmosphere its own image to all the objects that are in front of it and receives them into itself” (Suh, 2005, p. -
Applications of the Combinatorial Configurations for Optimization of Technological Systems V
ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL – 2016. Vol. 5. No. 2. 27–32 Applications of the combinatorial configurations for optimization of technological systems V. Riznyk Lviv Polytechnic National University, e-mail: [email protected] Received March 5.2016: accepted May 20.2016 Abstract. This paper involves techniques for improving mathematical methods of optimization of systems that the quality indices of engineering devices or systems with non- exist in the structural analysis, the theory of combinatorial uniform structure (e.g. arrays of sonar antenna arrays) with configurations, analysis of finite groups and fields, respect to performance reliability, transmission speed, resolving algebraic number theory and coding. Two aspects of the ability, and error protection, using novel designs based on matter the issue are examined useful in applications of combinatorial configurations such as classic cyclic difference sets and novel vector combinatorial configurations. These symmetrical and non-symmetrical models: optimization design techniques makes it possible to configure systems with of technology, and hypothetic unified “universal fewer elements than at present, while maintaining or improving informative field of harmony” [1]. on the other operating characteristics of the system. Several factors are responsible for distinguish of the objects depending THE ANALYSIS OF RECENT RESEARCHES an implicit function of symmetry and non-symmetry interaction AND PUBLICATIONS subject to the real space dimensionality. Considering the significance of circular symmetric field, while an asymmetric In [2] developed Verilog Analog Mixed-Signal subfields of the field, further a better understanding of the role simulation (Verilog-AMS) model of the comp-drive sensing of geometric structure in the behaviour of system objects is element of integrated capacitive micro- accelerometer. -
Rope Bondage 101
Rope Bondage 101 Overview Bondage and restraint is a common fantasy for many people. Some prefer the struggle and potential for escape, others enjoy feeling of capturing and holding another person in captivity. Rope bondage can be used as a utilitarian restraint used for further play, or as an end unto itself with complex patterns and forms, designed to beautifully captivate a willing participant. This workshop covers safety concerns surrounding rope bondage, rope materials & selection, basic knots, and simple restraint ties. What follows from this base is a comparison between Western and Eastern rope styles along with an example of a Japanese tie. The workshop winds down with some tips and tricks for improving your bondage skills and an overview of resources available in print and on the internet. This guide is written as instruction to the person applying the bondage, the term partner is used to indicate the person on whom the bondage is being applied. Bio I’m a fun‐loving rope geek and sex educator who has found a home in the Midwest United States kink community. When I’m not traveling to events, I contribute to the Iowa State University CUFFS group, and serve on the board of Minneapolis TNG group Min‐KY. Although I’m a relatively new member of the scene, I’ve presented at numerous events across the country, including Kinky Kollege, Shibaricon, Denver Bound, and Beyond Leather. As a presenter, I aim to provide a comfortable down‐to‐earth learning environment for all genders, orientations, and experience levels. My long list of presentations, events, and class materials can be found at http://www.kinkfriendly.org Lastly, I am not a medical professional. -
FOR IMMEDIATE RELEASE August 18, 2015
FOR IMMEDIATE RELEASE August 18, 2015 MEDIA CONTACT Emily Kowalski | (919) 664-6795 | [email protected] North Carolina Museum of Art Presents M. C. Escher, Leonardo da Vinci Exhibitions and Related Events Raleigh, N.C.—The North Carolina Museum of Art (NCMA) presents two exhibitions opening in October 2015: The Worlds of M. C. Escher: Nature, Science, and Imagination and Leonardo da Vinci’s Codex Leicester and the Creative Mind. The Worlds of M. C. Escher features over 130 works (some never before exhibited) and will be the most comprehensive Escher exhibition ever presented in the United States. The Codex Leicester is a 500-year-old notebook handwritten and illustrated by inventor, scientist, and artist Leonardo da Vinci—the only manuscript by Leonardo in North America—that offers a glimpse into one of the greatest minds in history. “This is going to be an exciting fall at the Museum—an incredibly rare opportunity for our visitors to see not only centuries-old writings and sketches by Leonardo da Vinci, but also the work of M. C. Escher, another observer of nature and a perfect modern counterpart to Leonardo,” says NCMA Director Lawrence J. Wheeler. “These exhibitions will thrill art lovers and science lovers alike, and we hope that all visitors leave with a piqued curiosity, an ignited imagination, and a desire to more closely observe the world around them.” The Worlds of M. C. Escher: Nature, Science, and Imagination October 17, 2015−January 17, 2016 Comprising over 130 woodcuts, lithographs, wood engravings, and mezzotints, as well as numerous drawings, watercolors, wood blocks, and lithographic stones never before exhibited, The Worlds of M.