Plant Name Plant Common Name Arthropod Arthropod Common Name Collection Date Location Type City, State County Collectors Collector Institution Severity Sample No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Invasion of an Inconspicuous Ambrosia Beetle and Fungus
1 Invasion of an inconspicuous ambrosia beetle and 2 fungus may alter wood decay in Southeastern North 3 America 4 5 Jiri Hulcr1,2, James Skelton1, Andrew J. Johnson1, You Li1, Michelle A. Jusino1,3 6 7 1 School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA 8 2 Entomology and Nematology Department, University of Florida, Gainesville, FL, USA 9 3 Department of Plant Pathology, University of Florida, Gainesville, FL, USA 10 11 Corresponding Author: 12 Jiri Hulcr1 13 UF/IFAS School of Forest Resources and Conservation, PO Box 110410, Gaiensville, FL, 14 32611, USA 15 Email address: [email protected] 16 17 Abstract 18 Background. Ambrosia beetles include well-known invasive pests, but most species established 19 in non-native areas do not cause any significant impact. Here we report the recent invasion and 20 rapid spread of Ambrosiodmus minor in the Southeastern US. 21 Methods: We used a combination of a multi-year survey, literature data on fungal symbionts 22 from the beetle mycangia and in vitro bioassays of fungal competition, and extensive field 23 observations of wood colonization patterns. 24 Results. In less than seven years, A. minor abundance has increased many-fold in Florida. The 25 beetle is associated with an aggressive wood-rot fungus Flavodon ambrosius. Joint colonization 26 of wood by A. minor and F. ambrosius results in extensive white rot (lignin removal). The 27 invasion of this symbiosis may impact an ecosystem function previously considered not 28 influenced by non-native ambrosia beetles: wood decay. We suggest monitoring of the impact of 29 this invasion on native wood-inhabiting organisms, biomass degradation and the carbon cycle 30 throughout the region. -
Outbreak of an Exotic Flatid, Metcalfa Pruinosa (Say) (Hemiptera
Journal of Asia-Pacific Entomology 14 (2011) 473–478 Contents lists available at ScienceDirect Journal of Asia-Pacific Entomology journal homepage: www.elsevier.com/locate/jape Short Communication Outbreak of an exotic flatid, Metcalfa pruinosa (Say) (Hemiptera: Flatidae), in the capital region of Korea Yeyeun Kim a, Minyoung Kim a, Ki-Jeong Hong b, Seunghwan Lee a,⁎ a Entomology Program, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-921, Republic of Korea b Pest Risk Assessment Division, National Plant Quarantine Service, 178 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, 430-015, Republic of Korea article info abstract Article history: The citrus flatid planthopper, Metcalfa pruinosa (Say, 1830) (Hemiptera: Flatidae), has a native distribution in Received 2 December 2010 eastern North America, It has recently invaded Italy in 1979 and has since spread to other European countries. Revised 1 June 2011 In 2009, Metcalfa pruinosa was discovered in Seoul and the Gyeonggi Province, Republic of Korea. This is the Accepted 4 June 2011 first record in the eastern part of Palaearctic. One year after its discovery, in July 2010, we found significant Available online 29 June 2011 populations and serious damage on many deciduous forest trees, ornamental trees, and agricultural crops in central regions of the Korean Peninsula. In this paper, we report the status of the outbreak and discuss the Keywords: Hemiptera biology, morphological characters, distribution, host plants, and the importance of M. pruinosa as a potential Flatidae insect pest in the Korean Peninsula. Metcalfa pruinosa © Korean Society of Applied Entomology, Taiwan Entomological Society and Malaysian Plant Protection Invasion Society, 2011. -
Ethnoentomological and Distributional Notes on Cerambycidae and Other Coleoptera of Guerrero and Puebla,Mexico
The Coleopterists Bulletin, 71(2): 301–314. 2017. ETHNOENTOMOLOGICAL AND DISTRIBUTIONAL NOTES ON CERAMBYCIDAE AND OTHER COLEOPTERA OF GUERRERO AND PUEBLA,MEXICO JONATHAN D. AMITH Research Affiliate, Department of Anthropology, Gettysburg College, Campus Box 2895, Gettysburg, PA 17325, U.S.A. and Research Associate, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, U.S.A. AND STEVEN W. LINGAFELTER Systematic Entomology Laboratory, Agriculture Research Service, United States Department of Agriculture, National Museum of Natural History, Smithsonian Institution,Washington, DC 20013-7012, U.S.A. Current address: 8920 South Bryerly Ct., Hereford, AZ 85615, U.S.A. ABSTRACT This article presents both ethnoentomological notes on Nahuatl and Mixtec language terms as they are applied to Cerambycidae (Coleoptera) and distributional records for species collected during three projects carried out in the states of Guerrero and Puebla, Mexico. Some comparative data from other Mesoamerican and Native American languages are discussed. Indigenous common names are mapped onto current taxonomic nomenclature, and an analysis is offered of the logical basis for Indigenous classification: the exclusion of some cerambycids and the inclusion of other beetles in the nominal native “cerambycid” category. New state distributional records for the Cerambycidae collected in this study are offered for Guerrero: Bebelis picta Pascoe, Callipogon senex Dupont, Neocompsa macrotricha Martins, Olenosus ser- rimanus Bates, Ornithia mexicana zapotensis Tippmann, Stenygra histrio Audinet-Serville, Strongylaspis championi Bates, Lissonotus flavocinctus puncticollis Bates, and Nothopleurus lobigenis Bates; and Puebla: Juiaparus mexicanus (Thomson), Ptychodes guttulatus Dillon and Dillon, and Steirastoma senex White. Key Words: linguistics, etymology, Nahuatl, Mixtec, longhorned beetle, wood-borer DOI.org/10.1649/0010-065X-71.2.301 The present article emerges from two language shapes. -
Arthropods of Elm Fork Preserve
Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux. -
Metcalfa Pruinosa (Metcalfa)
High Priority Organism: Metcalfa pruinosa (Metcalfa) This highly polyphagous insect feeds on a wide variety of woody and herbaceous plants. Mainly found in North America and Europe it has dispersed easily and establishes readily in new habitats. Assessment of risk Establishment in NZ Economic impact Market Access Entry pathway Host range (incl. kiwifruit) Treatment required Ease of establishment Plant health Area freedom required Ease of detection Crop productivity Movement control Ease of eradication Crop protection Quarantine requirements Key: High risk Moderate/unknown risk (?) Low risk Description & Life cycle Distribution The preferred common name for This North American species was accidentally introduced into Italy Melcalfa pruinosa is planthopper or in 1979 and rapidly spread throughout the country. It has frosted moth-bug. It is also known subsequently caused economic damage to orchards and vineyards as citrus flatid plant hopper, Citrus in some South-European countries. In 2003, a mass occurrence of planthopper, frosted lightening Metcalfa was discovered in Vienna, followed by new infestations hopper (USA), mealy lantern fly of several sites. (USA) and moth bug. Adults of Metcalfa are rather robust with large Possibly its presence in the southwestern USA is a result of human moth-like wings sometimes described as leaflike. Adult planthopper activities. It is apparently not very common in the northeast of the U.S. and has not been recorded from the Pacific Northwest or They are 5.5 to 8mm in length and 2 to 3 mm in width at the the northern prairies. It has been reported as widely distributed widest point. This species, along with certain other flatids, might be mistaken for a moth at first glance. -
Revisiting the Use of Self-Organizing Maps (SOM) to Predict to Risk of Invasion of Re-Emergent Pest Species
Revisiting the use of Self- Organizing Maps (SOM) to predict to risk of invasion of pre-emergent pest species Karl Suiter; Durham, North Carolina Godshen Pallipparambil; Center for Integrated Pest Management, NC State University 2019 Annual Meeting of the International Pest Risk Research Group Pest Prioritization Using Self Organizing Maps (SOM) Worner S, Gevrey M, Eschen R, Kenis M, Paini D, Singh S, Watts M, Suiter K (2013) Prioritizing the risk of plant pests by clustering methods; self-organising maps, k-means and hierarchical clustering. NeoBiota 18: 83-102. https://doi.org/10.3897/neobiota.18.4042 Susan Worner SOM Background Developed in 1982 by Teuvo Kohonen Neural network algorithm using unsupervised competitive learning Primarily used for organization and visualization of complex data 2-dimentional pictorial representation of complex data Uses SOM Toolbox, version 2.0 (http://www.cis.hut.fi/somtoolbox) Analysis and visualization performed using Matlab SOM Invasive Species Data CABI Crop Protection Compendium 238 geopolitical regions 103793 distribution records Data clean-up. Removed records labeled …. No information available; Unconfirmed record; No Information Listed; Last reported Introduced, not established; Introduced, estab. uncertain; Eradicated; Absent, unreliable record; Absent, no pest record; Absent, confirmed by survey; Absent, formerly present; Absent, intercepted only; Absent, invalid record; Absent, never occurred; Absent, reported not confirmed 98100 clean distribution records 5636 distinct pest species -
New Reports of Exotic and Native Ambrosia and Bark Beetle Species (Coleoptera: Curculionidae: Scolytinae) from Ohio
The Great Lakes Entomologist Volume 40 Numbers 3 & 4 - Fall/Winter 2007 Numbers 3 & Article 10 4 - Fall/Winter 2007 October 2007 New Reports of Exotic and Native Ambrosia and Bark Beetle Species (Coleoptera: Curculionidae: Scolytinae) From Ohio Danielle M. Lightle Ohio State University Kamal J.K. Gandhi University of Georgia Anthony I. Cognato Michigan State University Bryson J. Mosley Ohio State University David G. Nielsen Ohio State University See next page for additional authors Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Lightle, Danielle M.; Gandhi, Kamal J.K.; Cognato, Anthony I.; Mosley, Bryson J.; Nielsen, David G.; and Herms, Daniel A. 2007. "New Reports of Exotic and Native Ambrosia and Bark Beetle Species (Coleoptera: Curculionidae: Scolytinae) From Ohio," The Great Lakes Entomologist, vol 40 (2) Available at: https://scholar.valpo.edu/tgle/vol40/iss2/10 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. New Reports of Exotic and Native Ambrosia and Bark Beetle Species (Coleoptera: Curculionidae: Scolytinae) From Ohio Authors Danielle M. Lightle, Kamal J.K. Gandhi, Anthony I. Cognato, Bryson J. Mosley, David G. Nielsen, and Daniel A. Herms This peer-review article is available in The Great Lakes Entomologist: https://scholar.valpo.edu/tgle/vol40/iss2/10 Lightle et al.: New Reports of Exotic and Native Ambrosia and Bark Beetle Species 194 THE GREAT LAKES ENTOMOLOGIST Vol. -
Zootaxa, Coleoptera, Stizocera
Zootaxa 498: 1–11 (2004) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 498 Copyright © 2004 Magnolia Press ISSN 1175-5334 (online edition) New species of Stizocera (Coleoptera: Cerambycidae) from Bolivia STEVEN W. LINGAFELTER Systematic Entomology Lab, Plant Sciences Institute, Agriculture Research Service, USDA, National Museum of Natural History, Smithsonian Institution, MRC-168, Washington, DC 20013-7012 U. S. A. [email protected] Abstract Two species of Stizocera (Coleoptera: Cerambycidae: Cerambycinae: Elaphidiini) are described from Buena Vista, Ichilo Province, Santa Cruz Department, Bolivia: Stizocera delicata, new spe- cies and Stizocera ichilo, new species. Comparison of diagnostic features with the similar species Stizocera longicollis Zajciw, Stizocera rugicollis Guérin-Méneville, and Stizocera nigroapicalis Fuchs is presented. Key words: Longhorned beetles, descriptions, Buena Vista, Cerambycidae, Bolivia, Stizocera, Elaphidiini, new species, Santa Cruz Introduction Bolivia is an amazingly biodiverse country; extensive collecting near Buena Vista (Ichilo Province, Santa Cruz Department) in an area smaller than Manhattan Island, has produced over 700 species of Cerambycidae. No efforts have been made for canopy fogging or extensive Malaise trapping, so clearly the absolute number of Cerambycidae at this one site is undoubtedly higher. The longhorned beetle fauna of Bolivia is complex. Perhaps the most dominant element is the Amazonian fauna, which is widespread throughout northern Brazil and lowland Bolivia, however Bolivia possesses southern temperate and Peruvian faunal elements as well. Several widespread species that occur as far north as Mexico and Central America are also represented in Bolivia (Monné and Giesbert 1993; Hovore and Monné 2003). This paper is among the first to document the biodiversity dis- covered by the efforts of many individuals over the past five years, especially at the “Flora and Fauna Hotel” site southeast of Buena Vista. -
Attracted to Avocado, Lychee, and Essential Oil Lures
Diversity of Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae) Attracted to Avocado, Lychee, and Essential Oil Lures Paul E. Kendra1*, Jorge S. Sanchez1, Wayne S. Montgomery1, Jerome Niogret1, and Katherine E. Okins2 1USDA-ARS, Subtropical Horticulture Research Station, Miami, FL USA 2Florida Department of Agriculture and Consumer Services, DPI, CAPS, Gainesville, FL USA Field trapping studies conducted in Alachua and Marion Counties, Florida, for the redbay ambrosia beetle (Xyleborus glabratus) captured numerous non-target ambrosia beetles, providing information on species diversity and relative abundance. Traps (Lindgren funnels and sticky panels) baited with essential oil lures (manuka and phoebe) or freshly-cut bolts of avocado and lychee wood attracted 17 species of Scolytinae, including 5 species of Xyleborus. Xyleborus glabratus comprised 75% of the captures in a mixed pine-oak-swampbay forest with advanced stages of laurel wilt. The table below summarizes the species caught, representing four tribes within the Scolytinae subfamily, and their respective numbers captured over a three-month period (October-December 2009). Photos of most species are presented. Tribe Xyleborini Tribe Dryocoetini Tribe Corthylini Ambrosiodmus lecontei Hopkins 1 Coccotrypes distinctus (Motshulsky) 1 Subtribe Corthylina Ambrosiodmus obliquus (LeConte) 20 Corthylus papulans Eichhoff 1 Premnobius cavipennis Eichhoff 1 Monarthrum mali (Fitch) 1 Theoborus ricini (Eggers) 2 Xyleborus affinis (Eichhoff) 16 Tribe Cryphalini Subtribe Pityophthorina Xyleborus -
2-Nonanone Is a Critical Pheromone Component for Cerambycid Beetle Species Native to North and South America
Environmental Entomology, 50(3), 2021, 599–604 doi: 10.1093/ee/nvab022 Advance Access Publication Date: 16 March 2021 Research Downloaded from https://academic.oup.com/ee/article/50/3/599/6174092 by Mathematics Library, University of Illinois at Urbana-Champaign user on 24 June 2021 Chemical Ecology 2-Nonanone is a Critical Pheromone Component for Cerambycid Beetle Species Native to North and South America Weliton D. Silva,1,4, Lawrence M. Hanks,2, Judith A. Mongold-Diers,2 Anna C. Grommes,2 José Maurício S. Bento,1, and Jocelyn G. Millar3 1Department of Entomology and Acarology, University of São Paulo, Piracicaba, SP 13418900, Brazil, 2Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, 3Departments of Entomology and Chemistry, University of California, Riverside, CA 92521, and 4Corresponding author, e-mail: [email protected] Subject Editor: Dong H. Cha Received 5 October 2020; Editorial decision 9 February 2021 AADate Abstract AAMonth An increasing body of evidence indicates that cerambycid beetles native to different continents may share pheromone components, suggesting that these compounds arose as pheromone components early in the evolution AAYear of the family. Here, we describe the identification and field testing of the pheromone blends of two species in the subfamily Cerambycinae that share 2-nonanone as an important component of their male-produced aggregation- sex pheromones, the South American Stizocera consobrina Gounelle (tribe Elaphidiini) and the North American Heterachthes quadrimaculatus Haldeman (tribe Neoibidionini). Along with 2-nonanone, males of S. consobrina also produce 1-(1H-pyrrol-2-yl)-1,2-propanedione, whereas males of H. quadrimaculatus produce 10-methyldodecanol. -
New Fungus-Insect Symbiosis: Culturing, Molecular, and Histological Methods Determine Saprophytic Polyporales Mutualists of Ambrosiodmus Ambrosia Beetles
Faculty & Staff Scholarship 2015 New Fungus-Insect Symbiosis: Culturing, Molecular, and Histological Methods Determine Saprophytic Polyporales Mutualists of Ambrosiodmus Ambrosia Beetles Li You University of Florida David R. Simmons University of Florida Craig C. Bateman University of Florida Dylan P G Short West Virginia University Matthew T. Kasson West Virginia University See next page for additional authors Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications Digital Commons Citation You, Li; Simmons, David R.; Bateman, Craig C.; Short, Dylan P G; Kasson, Matthew T.; Rabagila, Robert J.; and Hulcr, Jiri, "New Fungus-Insect Symbiosis: Culturing, Molecular, and Histological Methods Determine Saprophytic Polyporales Mutualists of Ambrosiodmus Ambrosia Beetles" (2015). Faculty & Staff Scholarship. 2208. https://researchrepository.wvu.edu/faculty_publications/2208 This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty & Staff Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Authors Li You, David R. Simmons, Craig C. Bateman, Dylan P G Short, Matthew T. Kasson, Robert J. Rabagila, and Jiri Hulcr This article is available at The Research Repository @ WVU: https://researchrepository.wvu.edu/faculty_publications/ 2208 RESEARCH ARTICLE New Fungus-Insect Symbiosis: Culturing, Molecular, and Histological Methods Determine Saprophytic Polyporales -
The Genera of Elaphidiini Thomson 1864 (Coleoptera: Cerambycidae)
2 MEMOIRS OF THE ENTOMOLOGICAL SOCIETY OF WASHINGTON, No. 20 This work is dedicated to Dr. Byron Alexander with appreciation for his inspiring talent and dedication PUBLICATIONS COMMITTEE to teaching, research, and scientific illustration. of THE ENTOMOLOGICAL SOCIETY OF WASHINGTON 1998 Thomas J. Henry Wayne N. Mathis Gary L. Miller, Book Review Editor David R. Smith, Editor Printed by Allen Press, Inc. Lawrence, Kansas 66044 Date issued: 5 March 1998 MEMOIRS OF THE ENTOMOLOGICAL SOCIETY OF WASHINGTON, No. 20 LINGAFELTER: GENERA OF ELAPHIDIINI TABLE OF CONTENTS Micranejus . .. .. .. .. .. .. .. .. .. .. .. .. .. , . .. .. .. , Micranoplium . .. .. .. .. .. .. .. .. .. , . .. .. .. .. .. , Micropsy rassa .. .. .. .. .. .. .. .. .. .. .. , . .. .. .. , Abstract .. .. .. .. .. .. .. .. .. .. Miltesthus .. .. .. .. .. .. .. .. , . .. .. .. , Introduction .. .. .. .. .. .. .. .. .. .. .. .. .. .. ,. Minipsyrassa . .. .. .. .. .. ,. .. .. .. Taxonomic History . .. .. -. .. .. .. .. .. .. , . Miopteryx .. .. .. .. .. .. .. .. , . .. .. , . , . Disuibution and Diversity . .. .. .. .. .. .. .. .. ,. .. ... MorphaneJlus . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. Special Problems Associated with Monotypic Taxa .. .. .. .. .. .. ... .. .. .. .. .. ... .. , . ..,.. Neaneflus .. .. .. .. .. .. .. .. .. .. , . .. .. .. .. .. Biology and Natural History .. .. .. .. .. .. ... .. .. ... .. .. ... .. ... ... ..... .. ... .. .... .. ... .. .. .. .. .. ... Neomallocera .. .. .. .. .. .. .. ,. .. .. .. .. .. .. .. .. , . .. Materials and Methods ... .....