CHANGE of BASIS and ALL of THAT 1. Introduction the Goal Of

Total Page:16

File Type:pdf, Size:1020Kb

CHANGE of BASIS and ALL of THAT 1. Introduction the Goal Of CHANGE OF BASIS AND ALL OF THAT LANCE D. DRAGER 1. Introduction The goal of these notes is to provide an apparatus for dealing with change of basis in vector spaces, matrices of linear transformations, and how the matrix changes when the basis changes. We hope this apparatus will make these computations easier to remember and work with. To introduce the basic idea, suppose that V is vector space and v1, v2,..., vn is an ordered list of vectors from V . If a vector x is a linear combination of v1, v2,..., vn, we have (1.1) x = c1v1 + c2v2 + ··· + cnvn for some scalars c1, c2, . , cn. The formula (1.1) can be written in matrix notation as c1 c2 (1.2) x = v v ... v . 1 2 n . . cn The object v1 v2 ... vn might seem a bit strange, since it is a row vector whose entries are vectors from V , rather than scalars. Nonetheless the matrix product in (1.2) makes sense. If you think about it, it makes sense to multiply a matrix of vectors with a (compatibly sized) matrix of scalars, since the entries in the product are linear combinations of vectors. It would not make sense to multiply two matrices of vectors together, unless you have some way to multiply two vectors and get another vector. You don’t have that in a general vector space. More generally than (1.1), suppose that we have vectors x1, x2,..., xm that are all linear combinations of v1, v2,..., vn. The we can write x1 = a11v1 + a21v2 + ··· + an1vn x2 = a12v1 + a22v2 + ··· + an2vn (1.3) . xm = a1mv1 + a2mv2 + ··· + anmvn for scalars aij. The indices tell you that aij occurs as the coefficient of vi in the expression of xj. This choice of the order of the indices makes things work out nicely later. These equations can be summarized as n X (1.4) xj = viaij, j = 1, 2, . , m, i=1 1 2 LANCE D. DRAGER where I’m writing the scalars aij to the right of the vector to make the equation easier to remember; it means the same thing as writing the scalars on the left. Using our previous idea, we can write (1.3) in matrix form as a11 a12 . a1m a21 a22 . a2m (1.5) x x ... x = v v ... v 1 2 m 1 2 n . .. . an1 an2 . anm To write (1.5) in briefer form, let X = x1 x2 ... xm , V = v1 v2 ... vn and let A be the n × m matrix a11 a12 . a1m a21 a22 . a2m A = . . .. . an1 an2 . anm Then we can write (1.5) as (1.6) X = VA. The object V is a row vector whose entries are vectors. For brevity, we’ll refer to this as “a row of vectors.” We’ll usually use upper case script letters for a row of vectors, with the corresponding lower case bold letters for the entries. Thus, if we say that U is a row of k vectors, you know that U = u1 u2 ... uk . You want to remember that the short form (1.6) is equivalent to (1.3) and and (1.4). It is also good to recall, from the usual definition of matrix multiplication, that (1.6) means (1.7) xj = V colj(A), where colj(A) is the column vector formed by the j-th column of A. The multiplication between rows of vectors and matrices of scalars has the fol- lowing properties, similar to matrix algebra with matrices of scalars. Theorem 1.1. Let V be a vector space and let U be a row of vectors from V . Let A and B denotes scalar matrices, with sizes appropriate to the operation being considered. Then we have the following. (1) UI = U, where I is the identity matrix of the right size. (2) (UA)B = U(AB), the “associative” law. (3) (sU)A = U(sA) = s(UA) for any scalar s. (4) U(A + B) = UA + UB, the distributive law. The proofs of these properties are the same as the proof of the corresponding statements for the algebra of scalar matrices. They’re not illuminating enough to write out here. The associative law will be particularly important in what follows. 2. Ordered Bases Let V be a vector space. An ordered basis of V is an ordered list of vectors, say v1, v2,..., vn, that span V and are linearly independent. We can think of this CHANGE OF BASIS AND ALL OF THAT 3 ordered list as a row of vectors, say V = v1 v2 ... vn . Since V is an ordered basis, we know that any vector v ∈ V can be written uniquely as v = c1v1 + c2v2 + ··· + cnvn c1 c2 = v v ... v 1 2 n . . cn = Vc, where c is the column vector c1 c2 c = . . . cn Thus, another way to state the properties of an ordered basis V is that for every vector v ∈ V there is a unique column vector c ∈ Rn such that v = Vc. This unique column vector is called the coordinate vector of v with respect to the basis V. We will use the notation [v] for this vector. Thus, the coordinate vector V [v] is defined to be the unique column vector such that V (2.1) v = V[v] . V The following proposition records some facts (obvious, we hope) about coordinate vectors. Proving this proposition for yourself would be an instructive exercise. Proposition 2.1. Let V be a vector space of dimension n and let V be an ordered basis of V . Then, the following statements hold. (1) [sv] = s[v] , for all v ∈ V and scalars s. V V (2) [v + w] = [v] + [w] for all vectors v, w ∈ V . V V V (3) v ↔ [v] is a one-to-one correspondence between V and n. V R More generally, if U is a row of m vectors in V , our discussion of (1.7) shows (2.2) U = VA ⇐⇒ col (A) = [u ] , j = 1, 2, . , m j j V Since the coordinates of a vector with respect to the basis V are unique, we get the following fact, which is stated as a proposition for later reference. Proposition 2.2. Let V be a vector space of dimension n, and let V be an ordered basis of V . Then, if U is a row of m vectors from V , there is a unique n×m matrix A so that U = VA. We can apply the machine we’ve built up to prove the following theorem. 4 LANCE D. DRAGER Theorem 2.3. Let V be a vector space of dimension n and let V be an ordered basis of V . Let U be a row of n vectors from V and let A be the n × n matrix such that U = VA. Then U is an ordered basis of V if and only if A is invertible. Proof. Since U contains n vectors, U is a basis if and only if its entries are linearly independent. To check this, we want to consider the equation (2.3) c1u1 + c2u2 + ··· + cnun = 0 If we let c be the column vector with entries cj, we have 0 = c1u1 + c2u2 + ··· + cnun = Uc = (VA)c = V(Ac) By Proposition 2.2, V(Ac) can be zero if and only if Ac = 0. Suppose that A is invertible. Then Ac = 0 implies that c = 0. Thus, all the ci’s in (2.3) must be zero, so u1, u2,..., un are linearly independent. Conversely, suppose that u1, u2,..., un are linearly independent. Let c be a vector such that Ac = 0. Then (2.3) holds. By linear independence, c must be 0. Thus, the equation Ac = 0 has only the trivial solution, and so A is invertible. 3. Change of Basis Suppose that we have two ordered bases U and V of an n-dimensional vector space V . From the last section, there is a unique matrix A so that U = VA. We will denote this matrix by SVU . Thus, the defining equation of SVU is (3.1) U = VSVU . Proposition 3.1. Let V be an n-dimensional vector space. Let U, V, and W be ordered bases of V . Then, we have the following. (1) SUU = I. (2) SUW = SUV SVW . −1 (3) SUV = [SVU ] . Proof. For the first statement, note that U = UI so, by uniqueness, SUU = I. For the second statement, recall the defining equations W = USUW , V = USUV , W = VSVW . Compute as follows W = VSVW = (USUV )SVW = U(SUV SVW ) and so, by uniqueness, SUW = SUV SVW . For the last statement, set W = U in the second statement. This yields SUV SVU = SUU = I, so SUV and SVU are inverses of each other. CHANGE OF BASIS AND ALL OF THAT 5 The matrices SUV tell you how to change coordinates from one basis to another, as detailed in the following Proposition. Proposition 3.2. Let V be a vector space of dimension n and let U and V be ordered bases of V . Then we have [v] = S [v] , U UV V for all vectors v ∈ V . Proof. The defining equations are v = U[v] , v = V[v] . U V Thus, we have v = V[v] V = (US )[v] UV V = U(S [v] ), UV V and so, by uniqueness, [v] = S [v] . U UV V Thus, SUV tells you how to compute the U-coordinates of a vector from the V-coordinates. Another way to look at this is the following diagram. (3.2) V 44 44 [·] 4 [·] V 44 U 44 44 Ô 4 n / n R SUV R In this diagram, [·] represents the operation of taking coordinates with respect to V V, and [·] represents taking coordinates with respect to U.
Recommended publications
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • 21. Orthonormal Bases
    21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else.
    [Show full text]
  • Bases for Infinite Dimensional Vector Spaces Math 513 Linear Algebra Supplement
    BASES FOR INFINITE DIMENSIONAL VECTOR SPACES MATH 513 LINEAR ALGEBRA SUPPLEMENT Professor Karen E. Smith We have proven that every finitely generated vector space has a basis. But what about vector spaces that are not finitely generated, such as the space of all continuous real valued functions on the interval [0; 1]? Does such a vector space have a basis? By definition, a basis for a vector space V is a linearly independent set which generates V . But we must be careful what we mean by linear combinations from an infinite set of vectors. The definition of a vector space gives us a rule for adding two vectors, but not for adding together infinitely many vectors. By successive additions, such as (v1 + v2) + v3, it makes sense to add any finite set of vectors, but in general, there is no way to ascribe meaning to an infinite sum of vectors in a vector space. Therefore, when we say that a vector space V is generated by or spanned by an infinite set of vectors fv1; v2;::: g, we mean that each vector v in V is a finite linear combination λi1 vi1 + ··· + λin vin of the vi's. Likewise, an infinite set of vectors fv1; v2;::: g is said to be linearly independent if the only finite linear combination of the vi's that is zero is the trivial linear combination. So a set fv1; v2; v3;:::; g is a basis for V if and only if every element of V can be be written in a unique way as a finite linear combination of elements from the set.
    [Show full text]
  • Determinants Math 122 Calculus III D Joyce, Fall 2012
    Determinants Math 122 Calculus III D Joyce, Fall 2012 What they are. A determinant is a value associated to a square array of numbers, that square array being called a square matrix. For example, here are determinants of a general 2 × 2 matrix and a general 3 × 3 matrix. a b = ad − bc: c d a b c d e f = aei + bfg + cdh − ceg − afh − bdi: g h i The determinant of a matrix A is usually denoted jAj or det (A). You can think of the rows of the determinant as being vectors. For the 3×3 matrix above, the vectors are u = (a; b; c), v = (d; e; f), and w = (g; h; i). Then the determinant is a value associated to n vectors in Rn. There's a general definition for n×n determinants. It's a particular signed sum of products of n entries in the matrix where each product is of one entry in each row and column. The two ways you can choose one entry in each row and column of the 2 × 2 matrix give you the two products ad and bc. There are six ways of chosing one entry in each row and column in a 3 × 3 matrix, and generally, there are n! ways in an n × n matrix. Thus, the determinant of a 4 × 4 matrix is the signed sum of 24, which is 4!, terms. In this general definition, half the terms are taken positively and half negatively. In class, we briefly saw how the signs are determined by permutations.
    [Show full text]
  • 28. Exterior Powers
    28. Exterior powers 28.1 Desiderata 28.2 Definitions, uniqueness, existence 28.3 Some elementary facts 28.4 Exterior powers Vif of maps 28.5 Exterior powers of free modules 28.6 Determinants revisited 28.7 Minors of matrices 28.8 Uniqueness in the structure theorem 28.9 Cartan's lemma 28.10 Cayley-Hamilton Theorem 28.11 Worked examples While many of the arguments here have analogues for tensor products, it is worthwhile to repeat these arguments with the relevant variations, both for practice, and to be sensitive to the differences. 1. Desiderata Again, we review missing items in our development of linear algebra. We are missing a development of determinants of matrices whose entries may be in commutative rings, rather than fields. We would like an intrinsic definition of determinants of endomorphisms, rather than one that depends upon a choice of coordinates, even if we eventually prove that the determinant is independent of the coordinates. We anticipate that Artin's axiomatization of determinants of matrices should be mirrored in much of what we do here. We want a direct and natural proof of the Cayley-Hamilton theorem. Linear algebra over fields is insufficient, since the introduction of the indeterminate x in the definition of the characteristic polynomial takes us outside the class of vector spaces over fields. We want to give a conceptual proof for the uniqueness part of the structure theorem for finitely-generated modules over principal ideal domains. Multi-linear algebra over fields is surely insufficient for this. 417 418 Exterior powers 2. Definitions, uniqueness, existence Let R be a commutative ring with 1.
    [Show full text]
  • Coordinatization
    MATH 355 Supplemental Notes Coordinatization Coordinatization In R3, we have the standard basis i, j and k. When we write a vector in coordinate form, say 3 v 2 , (1) “ »´ fi 5 — ffi – fl it is understood as v 3i 2j 5k. “ ´ ` The numbers 3, 2 and 5 are the coordinates of v relative to the standard basis ⇠ i, j, k . It has p´ q “p q always been understood that a coordinate representation such as that in (1) is with respect to the ordered basis ⇠. A little thought reveals that it need not be so. One could have chosen the same basis elements in a di↵erent order, as in the basis ⇠ i, k, j . We employ notation indicating the 1 “p q coordinates are with respect to the di↵erent basis ⇠1: 3 v 5 , to mean that v 3i 5k 2j, r s⇠1 “ » fi “ ` ´ 2 —´ ffi – fl reflecting the order in which the basis elements fall in ⇠1. Of course, one could employ similar notation even when the coordinates are expressed in terms of the standard basis, writing v for r s⇠ (1), but whenever we have coordinatization with respect to the standard basis of Rn in mind, we will consider the wrapper to be optional. r¨s⇠ Of course, there are many non-standard bases of Rn. In fact, any linearly independent collection of n vectors in Rn provides a basis. Say we take 1 1 1 4 ´ ´ » 0fi » 1fi » 1fi » 1fi u , u u u ´ . 1 “ 2 “ 3 “ 4 “ — 3ffi — 1ffi — 0ffi — 2ffi — ffi —´ ffi — ffi — ffi — 0ffi — 4ffi — 2ffi — 1ffi — ffi — ffi — ffi —´ ffi – fl – fl – fl – fl As per the discussion above, these vectors are being expressed relative to the standard basis of R4.
    [Show full text]
  • Review a Basis of a Vector Space 1
    Review • Vectors v1 , , v p are linearly dependent if x1 v1 + x2 v2 + + x pv p = 0, and not all the coefficients are zero. • The columns of A are linearly independent each column of A contains a pivot. 1 1 − 1 • Are the vectors 1 , 2 , 1 independent? 1 3 3 1 1 − 1 1 1 − 1 1 1 − 1 1 2 1 0 1 2 0 1 2 1 3 3 0 2 4 0 0 0 So: no, they are dependent! (Coeff’s x3 = 1 , x2 = − 2, x1 = 3) • Any set of 11 vectors in R10 is linearly dependent. A basis of a vector space Definition 1. A set of vectors { v1 , , v p } in V is a basis of V if • V = span{ v1 , , v p} , and • the vectors v1 , , v p are linearly independent. In other words, { v1 , , vp } in V is a basis of V if and only if every vector w in V can be uniquely expressed as w = c1 v1 + + cpvp. 1 0 0 Example 2. Let e = 0 , e = 1 , e = 0 . 1 2 3 0 0 1 3 Show that { e 1 , e 2 , e 3} is a basis of R . It is called the standard basis. Solution. 3 • Clearly, span{ e 1 , e 2 , e 3} = R . • { e 1 , e 2 , e 3} are independent, because 1 0 0 0 1 0 0 0 1 has a pivot in each column. Definition 3. V is said to have dimension p if it has a basis consisting of p vectors. Armin Straub 1 [email protected] This definition makes sense because if V has a basis of p vectors, then every basis of V has p vectors.
    [Show full text]
  • MATH 304 Linear Algebra Lecture 14: Basis and Coordinates. Change of Basis
    MATH 304 Linear Algebra Lecture 14: Basis and coordinates. Change of basis. Linear transformations. Basis and dimension Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis. Theorem Any vector space V has a basis. If V has a finite basis, then all bases for V are finite and have the same number of elements (called the dimension of V ). Example. Vectors e1 = (1, 0, 0,..., 0, 0), e2 = (0, 1, 0,..., 0, 0),. , en = (0, 0, 0,..., 0, 1) form a basis for Rn (called standard) since (x1, x2,..., xn) = x1e1 + x2e2 + ··· + xnen. Basis and coordinates If {v1, v2,..., vn} is a basis for a vector space V , then any vector v ∈ V has a unique representation v = x1v1 + x2v2 + ··· + xnvn, where xi ∈ R. The coefficients x1, x2,..., xn are called the coordinates of v with respect to the ordered basis v1, v2,..., vn. The mapping vector v 7→ its coordinates (x1, x2,..., xn) is a one-to-one correspondence between V and Rn. This correspondence respects linear operations in V and in Rn. Examples. • Coordinates of a vector n v = (x1, x2,..., xn) ∈ R relative to the standard basis e1 = (1, 0,..., 0, 0), e2 = (0, 1,..., 0, 0),. , en = (0, 0,..., 0, 1) are (x1, x2,..., xn). a b • Coordinates of a matrix ∈ M2,2(R) c d 1 0 0 0 0 1 relative to the basis , , , 0 0 1 0 0 0 0 0 are (a, c, b, d). 0 1 • Coordinates of a polynomial n−1 p(x) = a0 + a1x + ··· + an−1x ∈Pn relative to 2 n−1 the basis 1, x, x ,..., x are (a0, a1,..., an−1).
    [Show full text]
  • Vectors, Change of Basis and Matrix Representation: Onto-Semiotic Approach in the Analysis of Creating Meaning
    International Journal of Mathematical Education in Science and Technology ISSN: 0020-739X (Print) 1464-5211 (Online) Journal homepage: http://www.tandfonline.com/loi/tmes20 Vectors, change of basis and matrix representation: onto-semiotic approach in the analysis of creating meaning Mariana Montiel , Miguel R. Wilhelmi , Draga Vidakovic & Iwan Elstak To cite this article: Mariana Montiel , Miguel R. Wilhelmi , Draga Vidakovic & Iwan Elstak (2012) Vectors, change of basis and matrix representation: onto-semiotic approach in the analysis of creating meaning, International Journal of Mathematical Education in Science and Technology, 43:1, 11-32, DOI: 10.1080/0020739X.2011.582173 To link to this article: http://dx.doi.org/10.1080/0020739X.2011.582173 Published online: 01 Aug 2011. Submit your article to this journal Article views: 174 View related articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tmes20 Download by: [Universidad Pública de Navarra - Biblioteca] Date: 22 January 2017, At: 10:06 International Journal of Mathematical Education in Science and Technology, Vol. 43, No. 1, 15 January 2012, 11–32 Vectors, change of basis and matrix representation: onto-semiotic approach in the analysis of creating meaning Mariana Montiela*, Miguel R. Wilhelmib, Draga Vidakovica and Iwan Elstaka aDepartment of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA; bDepartment of Mathematics, Public University of Navarra, Pamplona 31006, Spain (Received 26 July 2010) In a previous study, the onto-semiotic approach was employed to analyse the mathematical notion of different coordinate systems, as well as some situations and university students’ actions related to these coordinate systems in the context of multivariate calculus.
    [Show full text]
  • Orthonormal Bases
    Math 108B Professor: Padraic Bartlett Lecture 3: Orthonormal Bases Week 3 UCSB 2014 In our last class, we introduced the concept of \changing bases," and talked about writ- ing vectors and linear transformations in other bases. In the homework and in class, we saw that in several situations this idea of \changing basis" could make a linear transformation much easier to work with; in several cases, we saw that linear transformations under a certain basis would become diagonal, which made tasks like raising them to large powers far easier than these problems would be in the standard basis. But how do we find these \nice" bases? What does it mean for a basis to be\nice?" In this set of lectures, we will study one potential answer to this question: the concept of an orthonormal basis. 1 Orthogonality To start, we should define the notion of orthogonality. First, recall/remember the defini- tion of the dot product: n Definition. Take two vectors (x1; : : : xn); (y1; : : : yn) 2 R . Their dot product is simply the sum x1y1 + x2y2 + : : : xnyn: Many of you have seen an alternate, geometric definition of the dot product: n Definition. Take two vectors (x1; : : : xn); (y1; : : : yn) 2 R . Their dot product is the product jj~xjj · jj~yjj cos(θ); where θ is the angle between ~x and ~y, and jj~xjj denotes the length of the vector ~x, i.e. the distance from (x1; : : : xn) to (0;::: 0). These two definitions are equivalent: 3 Theorem. Let ~x = (x1; x2; x3); ~y = (y1; y2; y3) be a pair of vectors in R .
    [Show full text]
  • Pl¨Ucker Basis Vectors
    Pluck¨ er Basis Vectors Roy Featherstone Department of Information Engineering The Australian National University Canberra, ACT 0200, Australia Email: [email protected] Abstract— 6-D vectors are routinely expressed in Pluck¨ er Pluck¨ er coordinate vector and the 6-D vector it represents; it coordinates; yet there is almost no mention in the literature of explains the relationship between a 6-D vector and the two the basis vectors that give rise to these coordinates. This paper 3-D vectors that define it; and it shows how to differentiate identifies the Pluck¨ er basis vectors, and uses them to explain the following: the relationship between a 6-D vector and its Pluck¨ er a 6-D vector in a moving Pluck¨ er coordinate system, using coordinates, the relationship between a 6-D vector and the pair of acceleration as an example. For the sake of a concrete expo- 3-D vectors used to define it, and the correct way to differentiate sition, this paper uses the notation and terminology of spatial a 6-D vector in a moving coordinate system. vectors; but the results apply generally to any 6-D vector that is expressed using Pluck¨ er coordinates. I. INTRODUCTION The rest of this paper is organized as follows. First, the 6-D vectors are used to describe the motions of rigid bodies Pluck¨ er basis vectors are described. Then the topic of dual and the forces acting upon them. They are therefore useful for coordinate systems is discussed. This is relevant to those 6-D describing the kinematics and dynamics of rigid-body systems vector formalisms in which force vectors are deemed to occupy in general, and robot mechanisms in particular.
    [Show full text]
  • Linear Transformations and Determinants Matrix Multiplication As a Linear Transformation
    Linear transformations and determinants Math 40, Introduction to Linear Algebra Monday, February 13, 2012 Matrix multiplication as a linear transformation Primary example of a = matrix linear transformation ⇒ multiplication Given an m n matrix A, × define T (x)=Ax for x Rn. ∈ Then T is a linear transformation. Astounding! Matrix multiplication defines a linear transformation. This new perspective gives a dynamic view of a matrix (it transforms vectors into other vectors) and is a key to building math models to physical systems that evolve over time (so-called dynamical systems). A linear transformation as matrix multiplication Theorem. Every linear transformation T : Rn Rm can be → represented by an m n matrix A so that x Rn, × ∀ ∈ T (x)=Ax. More astounding! Question Given T, how do we find A? Consider standard basis vectors for Rn: Transformation T is 1 0 0 0 completely determined by its . e1 = . ,...,en = . action on basis vectors. 0 0 0 1 Compute T (e1),T(e2),...,T(en). Standard matrix of a linear transformation Question Given T, how do we find A? Consider standard basis vectors for Rn: Transformation T is 1 0 0 0 completely determined by its . e1 = . ,...,en = . action on basis vectors. 0 0 0 1 Compute T (e1),T(e2),...,T(en). Then || | is called the T (e ) T (e ) T (e ) 1 2 ··· n standard matrix for T. || | denoted [T ] Standard matrix for an example Example x 3 2 x T : R R and T y = → y z 1 0 0 1 0 0 T 0 = T 1 = T 0 = 0 1 0 0 0 1 100 2 A = What is T 5 ? 010 − 12 2 2 100 2 A 5 = 5 = ⇒ − 010− 5 12 12 − Composition T : Rn Rm is a linear transformation with standard matrix A Suppose → S : Rm Rp is a linear transformation with standard matrix B.
    [Show full text]