521

Subject Index

A – Characteristics 479 AC Techniques Alkaline Manganese Batteries 464 – Bode Plot 285 – Characteristics 467 – Conductivity 14f. Amperometric Titrations 491 – Electron transfer Processes 284 – Biamperometric (“dead-stop”) methods –,– Influence of mass transport 287 492 – Equivalent Circuit for an Anions 6 –,– Diffusion Limited Reaction 282 Anodic Stripping Voltammetry (ASV) 501 –,– Electron transfer Limited 284 – Differential pulse ASV 500 –,– Mixed Control 286 Anolyte 6 – Impedance in the presence of 6, 9, 158 adsorption 289ff – Dimensionally stable 405 – Measurement of film coverage 291 Anthraquinone Process 420 – Nyquist Plot 284f. Applications of high-temperature melts in – Randles Circuit 284 electrochemical processes 394 – Warburg Impedance 282f. – Extraction of uranium Activity Coefficient 46ff. – Deposition of specialised metal alloys – Dependence on concentration 48ff. Apollo Cell 472 – In concentrated solutions 51 Asymmetry Effect 46 – Measurement 139f. Asymmetry Parameter 164, 166ff. – Of neutral molecules 60 Asymmetry Potential 150f. Adiponitrile or Monsanto Process 424 Atomic Force Microscopy (AFM) Adsorption see Scanning Probe Methods – Dependence of current on 212 Avogadro constant 2, 7 – Enthalpies 211 – Influence on current-voltage curves B 293 Bands – Isotherms 208 – Metal Electronic 134 –,– Langmuir 208f. – Conduction 134 –,– Temkin 209 – Valence 135 – Of dipoles 210 Batteries – Of 208 – Air batteries 484 – Of intermediates in electrochemical –,– Aluminium-air batteries 484 reactions 212 –,– -air batteries 484 Air batteries 484 –,– Secondary types 485 – Aluminium-air batteries 484 – Costs of energy storage in 449 – Zinc-air batteries 484 –,– Table of Values 459 –,– Secondary types 485 – Current-voltage characteristics of 446 Alkaline Fuel Cells (AFC) 473ff. – Discharge Characteristics in 447 – Apollo Cell 472 – Efficiency of batteries 486

Electrochemistry. Carl H. Hamann, Andrew Hamnett, Wolf Vielstich Copyright ª 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31069-2 522 Subject Index

– Energy Density in 446 – Self discharge 444 –,– Tables of values 459 – Specific Capacity of 444 – Open-circuit voltage of 444 Bias – For electric vehicles 472 – In semiconductor electrochemistry – Primary 138 –,– Alkaline Manganese 464 Bioelectrochemistry 241ff –,– Characteristics 466 – Long-range electron transfer and –,– Leclanche´ Cell 442ff. biological systems –,– Characteristics 441 – Biochemistry of glucose oxidase as a –,– Discharge characteristic of 447 typical enzyme –,– Self-discharge in 444 – Coupling of electron-transfer enzymes –,– Lithium Primary Batteries 444 to –,– Lithium-melt batteries – Use of mediators (Sohio Battery) 466 – Use of electrode surface modifiers

–,– Li/SOCl2 466 – Use of bio-mimetic molecules –,– Characteristics 466 Bipolar Cell Designs 399 –,– Zinc-Mercury Oxide 465 Bode Plot 285 –,– Characteristics 467 Bohr Magneton 305 – Power density of 446 Buffer solutions 64ff. –,– Tables of Values 459 Butler-Volmer Equation 166ff., 184, 186 – Secondary –,– Current Yield in 449 C –,– Cycle Number 453 Capacitance measurements 294 –,– Energy Yield in 452 Cations 6 –,– Lead-acid 441ff. 6f., 158 –,– Discharge characteristic of 447 Cathodic Stripping Voltammetry 501 –,– Gassing in 449 Catholyte 6 –,– Lifetime 452 Cell 3ff. –,– Maintenance 451 – Concentration 86, 105ff. –,– Self-discharge in 444 –,– With transference 108 –,– Sulphation 449 –,– Without transference 108 –,– Lithium Secondary Batteries 457ff. – Conventions 86, 95 –,– Characteristics 451 – Conventional Design –,– Charge-discharge cycle in 459 –,– Bipolar 399 –,– Energy and Power density in 458 –,– Diaphragm 405ff. –,– Non-aqueous Solvents in 457 –,– Electrolysis 417, 420 –,– Sulphur-based systems 458 –,– Membrane 399 –,– Nickel-Cadmium 450 –,– Monopolar 399 –,– Characteristics 451 – Modern Designs –,– Gassing in 453 –,– Fixed-bed reactors 425 –,– Nickel Iron 450 –,– Fluidised-bed reactors 427 –,– Nickel-Metal Hydride 453 –,– Porous Layer electrodes 425 –,– Characteristics 462 –,– Zero-gap principle 400f., 425 –,– Nickel-Zinc 453 – Reactions 4 –,– Characteristics 463 – Voltage 5, 157ff. –,– Dendrite formation in 455 –,– Calculation 88 –,– Silver-Zinc 452 –,– Measurement 84 –,– Characteristics 463 –,– Pressure Dependence 91 –,– Sodium-Sulphur 458 –,– Temperature Dependence 90 –,– Sodium b-alumina in 456 – Weston 101 –,– Sodium-Nickel Chloride (ZEBRA Chlor-alkali process 404ff. Battery) 456 – Amalgam Cell for 406 –,– Zinc-Bromine 455 – Comparison of cells for 410 –,– Zinc-Chlorine 455 – Diaphragm Cell for 405 Subject Index 523

– Dimensionally Stable (DSA) –,– Gold 264 404 –,– Platinum 262ff. – Electrode Reactions in 404 – Diagnostic Criteria 275 – Membrane Process for 409 – Fast scan voltammetry 276 – using oxygen cathode 410ff – Measurement of Film Coverage 292 Chlorate Preparation – Of solution redox couples 261ff. – Conditions 418 –, 9,10-diphenylanthracene 273 Chronopotentiometry 502 –,– Formaldehyde 267 – Chemical stripping chronocoulometry –,– Formic Acid 267 502 –,– Methanol 267 – stripping chronocoulometry 504 – Theory of 267ff. Conductivity 18ff. –,– Fast electron transfer 227 – Extrinsic (in semiconductors) 135 –,– Slow electron transfer 269 – Intrinsic (in semiconductors) 136 –,– Matsuda Number 271 Conductivity Cell 14, 19 –,– Multiple Potential Sweeps 273 – Extrapolation to high frequency 16 – Cell constant 19 D Conductivity Titrations 73f. 105 Convection Debye-Huuckel€ – Forced 255 – Limiting Law 50, 73, 139 – Laminar 192 – Region 29 – Transport by 192 – Theory of Dilute 38ff. – Turbulent 248ff. Debye-Onsager Equation 44 –,– In the measurement of fast electron Debye Screening Length 43 transfer 247 Decomposition Correction for iR-drop 277 – Potential Difference 5 Corrosion 225ff. Dendrite formation 219 – Acid 226 Desalination see Electrodialysis – Inhibition through film formation Detoxification of water 235, 240 230 – Direct oxidation methods 432 –,– Electrophoretic Protection 230 – Indirect Oxidation methods 432 – Oxygen 227 Diffuse Double Layer 116f. – Protection 228 Diffusion –,– Cathodic 229 – Fick’s First Law 106, 188 Coulomb’s Law 1 – Fick’s Second Law 190 Coulometer – Nernst diffusion layer 192 – Silver 8 – Potentials 106ff. – Combustion-Gas 8 –,– Elimination 111 Coulometry in electroanalytical chemistry – Overpotential 187ff. 503 – Spherical 200f. – potentiostatic coulometry 503 – Surface 214f. – galvanostatic coulometry 504 Dipole Cryolite 417 – water 2, 33 Current-Potential Characteristic 161 Direct Methanol Fuel Cells 481 – In melts 393 Dissociation constant of weak electrolytes – In solid electrolytes 385 63, 142 – In solid-polymer electrolytes 388 – Effect on overpotential 204 – Of batteries 446 – Measurement of rate of 207 Current-time behaviour 189 Dissociation Field Effect 63, 124 – At a micro-electrode 202 Donnan Potential see Membrane Potential Cyclic Voltammetry 260ff. Double Layer – Correction for resistive (iR) effects – Capacity 121ff. 277ff. – Structure 121 – Cyclic voltammograms 261 –,– On semiconductor electrodes 136 524 Subject Index

E Electrochemical Quartz-crystal Electric Field 3, 13 Microgravimetry (EQCM) 504 – At metal-electrode interface Electrochemical Reaction Order 173f. 123f. Electrochemical Sensors 505ff. – At semiconductor electrolyte interface – Conductivity measurement 505 136f. – Gas Sensors 511 Electrocapillarity 124 –,– Amperometric Sensors 513 Electrocatalysis –,– 513 – Bifunctional catalysts 401 –,– Indirect cells 515 – Carbon monoxide oxidation 358ff –,– Table of types 516 –,– Langmuir-Hinshelwood mechanism –,– Conductimetric sensors 511 361 –,– Potentiometric sensors 511 – Ethanol oxidation 364ff –,– Lambda-Sonde Principle 512 – Exchange current in 342ff. – -sensitive electrodes 506 –,– Activation overpotential 403 –,– Glass membrane electrodes 506 – Future Trends in 428 –,– Sodium Electrode 507 –,– Polymeric Catalysts with pendant –,– Solid andliquid-membrane electrodes active groups 428 508 –,– Under-potential deposited layers 428 –,– Potassium-sensitive electrodes 508 – Hydrogen oxidation 341ff –,– Ion-selective Field Effect Transistors –,– Heyrovsky reaction 342 (ISFET) 510 –,– Volmer-Tafel reaction 342 –,– Interference effects in 507 – Hydrophobic Layer in 402 –,– Nikolski equation 507 – Methanol oxidation 348ff – pH measurement 505 –,– parallel pathways 350 – Redox electrodes 506 –,– reaction products 352 Electrochemical Separation Processes –,– effect of adsorbed anions 354 – Electrodialysis 433 –,– catalyst promotors 356 – Electrophoresis 434 – Morphology of catalysts 401 – Procedures in the Nuclear Industry – NEMCA effect 429 435 – Oxygen reduction 397 –,– PUREX process 434 Electrochemical Engineering 399 – Treatment of waste water 435 Electrochemical Machining and polishing Electrochemical Series 93 223 – In non-aqueous Solvents 102 Electrochemical Mass Spectroscopy Electrocrystallisation 213ff. – Basis of technique 309 Electrode 3 – Differential Electrochemical Mass – Counter 160f., 234ff. Spectroscopy (DEMS) 313ff – Micro- and ultra-micro 201ff. –,– Dual thin layer flow cell 319 – Potentials 77ff. –,– Rotating electrodes 317ff –,– Standard 96 – Experimental Problems 310 –,– Measurement 141 – Ex-situ Measurements 311 –,– Mixed 225 –,– Electrochemical Thermal Desorption – Reactions 4f., 8 MS (ECTDMS) 311 – Reference 93ff., 160f. – Fragmentation Pattern 310 – Redox 82 – Transfer Factor 310 – Rotating-disc 195ff. Electrochemical polymerisation of – Working 160f. heterocyclic compounds 373 Electro-dialysis 433 – Electronic structure of polymer films – Preparation of free acids from salts 433 – The polymerisation mechanism for Electroflotation 432 poly-pyrrole Electrogravimetry 494 – Polarons in poly-pyrrole and related – Electrochemical Quartz-crystal polymers Microgravimetry 504 Electrochemical Potential 80 Electrolysis 3f., 353, 413ff. Subject Index 525

– Chlor-alkali process 404ff. –, 1,2-dihydrophthalic acid 423 – Water decomposition 408 –,– m-Aniline Sulphonic Acid 423 Electrolyte 1ff. –,– Piperidine 423 – Double Layer 103ff. – Organometallic – Strong 21, 23ff. –,– Tetra-ethyl lead 423 – Weak 26 – Overview of processes 422 –,– Dissociation Field Effect 63 – Oxidation processes –,– Dissociation constant 73 –,– Gluconic Acid 423 Electrokinetic effects Electro-oxidation of alcohols on – Dorn Effect 128 Ni(III)-oxide 373 – Electro-osmotic Effect 128 Electrophoretic Effect 38ff., 63 – Electrophoresis 128f. Enthalpy – Streaming Potential 130 – of activation in electron transfer Electrolytic Conductivity, see Ionic reactions 166 Conductivity – of activation in solid-state ionic Electromotive Force conduction 383 – (emf) 4, 6 – of formation 89 – Calculation 88 Enthalpy of solvation of ions 56 – Concentrations Cell 86f. Entropy – Galvanic Cells 77f. – of activation in electron transfer – Measurement 86 reactions 184 – Pressure Dependence 91 – of activation in solid-state ionic – Temperature dependence 91 conduction 383 Electron-Spin Resonance – of dissolution 2 – Concentration limit 307 – of formation 89, 144 – Electrochemical Cells for 306 Error Function 189ff. – Hyperfine Structure 306 Exchange Current density 165, 166ff. – Spin Traps in 308 – Concentration Dependence 169ff. Electron Transfer – Dependence on re-organisation energy – Elementary Theory 162ff. 182 – Quantum mechanical Treatment 179ff. – Dependence on adsorption enthalpy – Successive Electron Transfer Processes 212 170 – Numerical Values 170 – Temperature dependence 184 Extensions to the Debye-Huuckel€ theory of – With coupled chemical equilibria 173ff. ionic interactions 58ff Electronic – Ion-pair effects – Charge 1f. – Monte Carlo calculations – Conductivity 3 – Molecular dynamic calculations Electro-organic chemistry – Effects of changes in the solvent activity - – Chlorination 414 Hitchcock equation – Direct Processes 346, 369 – Robinson-Stokes equation –,– Oxidation 369 –,– Reduction 371 F –,– Adiponitrile Process 372 Faraday 7f. – Electrochemical Polymerisation 373 Faraday constant 7 – Indirect Processes 346, 367 Faraday’s Laws 7 –,– Fenton’s Reaction 368 Fermi-Dirac Distribution 134 Electro-organic Synthesis Fermi Level 134 – Adiponitrile or Monsanto Process Fick’s Laws of Diffusion 106 424 Field-effect transistor 510 – Halogenation Films on surfaces –,– Perfluorobutyric acid 423 – Measurement by charge passed 292ff. –,– Perfluorooctanoic acid 423 – Measurement by capacitance 294 – Hydrogenation Processes – Microbalance methods for 320 526 Subject Index

– Radiotracer Methods for 319 – Three-phase boundary in 469 – Scanning Probe methods for 321 Gas Sensors 510 – Studies with in situ Infra-Red – Amperometric Sensors 513 Spectroscopy 300 –,– Clark Cell 513 – Studies with Thermal Desorption MS –,– Indirect cells 515 311 –,– Table of types 516 Fixed-bed reactors 426 – Conductimetric sensors 511 Flade potential 221 – Potentiometric sensors 511 Fluidised-bed reactors 426 –,– Lambda-Sonde Principle 512 Free Energy Gouuy-Chapman€ Theory 117ff. – Of Activation in electron transfer 168 Grove Cell 469 – Of formation 144 Guggenheim’s Equation 60 Frumkin effect 377 Fuel Cells 468ff. H – Alkaline Fuel Cells (AFC) 473 Harmonic Oscillator 297 –,– Apollo Cell 472 Harned Cell 143, 147f. –,– Characteristics 478 Haugaard Layer 149f. – Direct Methanol (DMFC) HCl-electrolysis with oxygen cathode 413, 481ff 414 – Efficiencies 482 Helmholtz Double Layer 116ff. – For electric vehicles 379 Henderson Equation 109f. – Hydrazine fuel Cells 481 Hitchcock’s Equation 60 – Gas-diffusion Electrodes in 469 Hydration 2 – Grove Cell 469 – Ionic 32f., 55f. – Molten Carbonate Fuel Cells (MCFC) – Proton 34 476, 480 Hydrazine fuel Cells 481 –,– Characteristics 480 Hydrogen Economy 420ff. –,– Current-voltage Studies 393 Hydrogen Electrode –,– Internal Reforming in 477 – Reaction mechanisms for 342 – Phosphoric Acid Fuel Cells (PAFC) –,– Effect of pH 344 473, 475f., 479f. –,– Heyrovsky Reaction 342 –,– Characteristics 480 –,– Influence of adsorbates on i-V curves – Reformation in 472 342 – Solid-Oxide Fuel Cells (SOFC) –,– On solid-polymer electrolytes 388 473, 477, 485 –,– Tafel Reaction 341 –,– Characteristics 480 –,– Volmer Reaction 342 – Solid Polymer Fuel Cells (SPFC) or –,– Volmer-Tafel Mechanism 342 Polymer Electrolyte Membrane FC Hydrogen Peroxide Preparation (PEMFC) 473, 474 – Conditions 419 –,– Characteristics 479 Hypochlorite Preparation – Conditions 419 G Galvani Potential difference 78ff. I 4ff., 439ff. Ilkovic Equation 497 – Active components 440 Industrial Electrochemical Processes 397ff. – Fuel Cells 439, 468ff. – Cell Designs – Gas-diffusion Electrodes in 469 –,– Classical 399 – Primary Batteries 449, 464ff. – Chlor-alkali Process 404ff. – Secondary Batteries 450ff. – Energy Yield 397 Galvanoplastic modelling 224 – Inorganic Chemical Preparation 418 Galvanostat 252 –,– Chlorate 418 Galvanostatic Electrolysis 191 –,– Hydrogen Peroxide 419 Gas-diffusion electrodes 469ff. –,– Hypochlorite 418 – PTFE binders in 470 –,– Perchlorate 418 Subject Index 527

–,– Peroxodisulphate 419 – In melts 392 – Metal Extraction and Purification 414ff. –,– Current-voltage studies in 393 – Specific Energy Usage 398 –,– Numerical Values 393 – Water Electrolysis 420ff. – In solids 381 Infra-Red Spectroscopy –,– Numerical data 383 – Electrochemically Modulated IR –,– Measurement 382 Spectroscopy (EMIRS) 299 –,– Solid-polymer Electrolytes (SPE) 387 – External Reflection Cell 298 –,– Superionic conductors 383 – Force Constant 297 – Law of Independent Migration of Ions – Fourier Transform IR Spectroscopy 300 26f. – Harmonic Oscillator 297 – Limiting Ionic conductivities 28, 31 – Internal Reflection Cell 298 – Molar Conductivity 22, 26f. – Normal Modes 297 – Numerical Values 19f. – Selection Rules 297 – Proton Conductivity 31, 34 – Subtractively Normalised Fourier Ionic Migration 125 Transform IR Spectroscopy Ionic Mobility 27,38 (SNIFTIRS) 300 Ionic Product of Water 64, 71 – Surface-Enhanced Infrared Adsorption Ionic Strength 39, 41, 47, 50 Spectroscopy (SEIRAS) 304 Isoelectric Point 129 – Thin-Layer Cell 298 – Transparent Windows 298 K Inorganic Preparative Electrochemistry 418 Kohlrausch’s Law 23 – Chlorate 418 Kolbe reaction 372 – Hydrogen Peroxide 419 – Hypochlorite 418 L – Perchlorate 418 Lead-acid Battery 441ff. – Peroxodisulphate 419 – Characteristics 462 Interface – Discharge characteristic of 444 – Metal/Electrolyte 15, 116 – Gassing in 449 – Semiconductor/electrolyte 137 – Lifetime 442 Ions 1ff. – Maintenance 442 Ion-Selective Field Effect Transistor – Self-discharge in 444 (ISFET) 510 – Sulphation 449 Ion-sensitive electrodes 506 Leclanche´ Cell 442 – Glass membrane electrodes 506 – Characteristics 466 –,– Sodium Electrode 507 – Discharge characteristic of 447 –,– Solid andliquid-membrane electrodes – Self-discharge in 444 508 Limiting Current Region 188 –,– Potassium-sensitive electrodes 508 Liquid Junction 105 – Ion-selective Field Effect Transistors – Potentials 105 (ISFET) 510 –,– Henderson Equation 109 – Interference effects in 507 –,– Elimination 111 – Nikolski equation 507 Lippmann Equation 125 Ionic Atmosphere 39 Lithium Primary Batteries – Radius 42 – Lithium-melt batteries (Sohio Battery) Ionic Charges 1f. 466

Ionic Conductivity 3, 18 – Li/SOCl2 466 – Effect of AC frequency –,– Characteristics 451 –,– Debye-Falkenhagen Effect 46 Lithium Secondary Batteries 457ff – Effect of strong electric field – Characteristics 451 –,– Wien effect 46 – Characteristics of Li-Ion batteries 459, 464 – Equivalent Conductivity 22f., 25ff. – Charge-discharge cycle in 459, 460 – Hydroxide Conductivity 34 – Energy and Power density in 458 – In non-aqueous solutions 66 – Non-aqueous Solvents in 457 528 Subject Index

– Sulphur-based systems 458 – Decomposition of formaldehye on gold Luggin Capillary 161 431 – Oxidation of CO on Pt/ZrO2 429f. M Nernst Diffusion Layer 187ff., 192f. Madelung Constant 2 Nernst Equation 81ff. Mass Spectroscopy see Electrochemical – For Redox Electrodes 82 Mass Spectroscopy – For Gas Electrodes 83 Masstransport through migration 199 Nernst-Einstein Equation 106 Matsuda Number 271f. Nernst Glower 384 Mechanisms of electrochemical reactions Nernst-Planck Equation 199 through Tafel slope analysis 175ff Nickel-Cadmium Batteries 450 – Oldham-Ryland approach – Characteristics 451 – Effect of adsorption isotherm - Nickel Iron Batteries 450 Temkin isotherm analysis – Characteristics 451 Membrane Electrode Assembly (MEA) Nickel-Metal Hydride Batteries 453 425, 474, 482, 488 – Characteristics 462 Membrane Potentials 112ff. Nickel-Zinc Batteries 453 Metal Deposition 213ff. – Characteristics 463 Metal Dissolution 220ff. – Dendrite formation in 455 Metal Extraction and purification Non-aqueous Solutions 66ff. – Copper purification 415 Nuclear Reprocessing 434 – Electrolysis of molten salts 417 Nyquist Plot 284 –,– Aluminium Extraction and purification 414 O – Extraction from aqueous solution Optical Techniques for Electrode Study 415 – Ellipsometry 329 – Zinc extraction 415 – Infra-Red see Infra-Red Spectroscopy Metal Powders – Optical Absorption Spectroscopy – Electrochemical Preparation 222 328 Microbalance methods 320 – Optical Reflectance Spectroscopy Micro-electrodes 201ff 329 Molality 41ff., 55, 61 Oscillations in Electrochemical Systems Molecular Orbitals 375ff – Highest Occupied (HOMO) 367 – Bifurcation 377 – Lowest Unoccupied (LUMO) 367 – Current oscillations 377 Mole fraction 48 – Negative Differential Resistance (NDR) Molecular dynamics approach to the 377 calculation of liquids 54 Ostwald Dilution Law 61f. Molten Carbonate Fuel Cells (MCFC) 476ff. Overpotential 159 – Characteristics 480 – Adsorption 212 – Current-voltage Studies 393 – Activation 403 – Internal Reforming in 476 – Concentration 185 Monopolar Cell designs 399 – Diffusion 159, 187ff. Monsanto Process 424 – Electron-transfer 159 Monte Carlo calculations of liquids 54 – Measurement 160 Multi-electron transfer Processes 170 – Reaction 159, 204ff. – With coupled chemical equilibria 173 Oxygen Electrode – Reaction mechanisms for 346 N –,– In molten carbonate electrolytes 393 Nano Structures 325ff –,– In solid-polymer electrolytes 388 – Preparation 326 –,– On stabilised zirconia 384 NEMCA effect 429 –,– Parallel pathways 346 – Decomposition offormaldehyde atsilver –,– Use of Rotating Ring-disc Electrode 429 for 347 Subject Index 529

P – Half-wave potential 501 Pairwise distribution function 52 – Ilkovic Equation 497 – For liquid argon – Pulse polarography 498ff. – For water – Sensitivity in 498 Passivation 220 Potential-pH diagrams 227 Perchlorate Preparation Potential step method 253ff – Conditions 419 Potential-time behaviour 191 Permittivity see Relative Permittivity Potentiometric Titrations 155 – of free space 1 Potentiostat 230 Peroxodisulphate Preparation Pourbaix diagrams 228 – Conditions 419 PUREX process 436 pH Purification of water 431ff. – Bates-Guggenheim Convention 147 – Electrodialysis 433 – Buffer solutions 64 – Electroflotation 432 – Conventional Scale 64 – Metal deposition 432 – Definition 64 – Oxidation of organic impurities 432 – In non-aqueous solutions 70 – Influence on kinetics of the Hydrogen Q Electrode 344 Quantum Mechanical Tunnelling Effect – Measurement 145 162, 179 –,– Glass Electrode 148ff. – Potential-pH diagrams 227 R – Of zero-zeta potential 129 Radiotracer Measurements 319 Phosphoric Acid Fuel Cells (PAFC) Randles Circuit 284 473, 475, 479f. Reaction Co-ordinate 163 – Characteristics 475 Reaction Mechanisms in Electrochemistry Photoelectrochemical cells for solar-energy 339ff. conversion 236ff – Electro-organic Chemistry 366ff. – Dye-sensitisation and photoelectro- – The Hydrogen Electrode 341ff. chemical cells – The Oxygen Electrode 346ff. – Multiple p-n junction photoelectro- Reactivation 222 chemical devices Relative permittivity 1 Photoelectrochemistry 234f. – of water 2 Photogalvanic Cells 235f. – of non-aqueous solvents 67f. Platinisation 17f. Relaxation Effect 38 Prandtl Layer 193 Reference Electrodes 93 Point of zero charge 122, 125 – In non-aqueous solvents 102 – Measurement – Normal Hydrogen Electrode 94 –,– Ac techniques 294 – Of the second kind 98 –,– Electrocapillarity 124 –,– Calomel 100 –,– in situ FTIR 124 –,– Lead Sulphate 101 –,– Piezo-effect 127 –,– Mercury Sulphate 101 Poisson Equation 137 –,– Mercury Oxide 101 – Poisson-Boltzmann Equation 41 –,– Silver-silver chloride 99 Polarisable electrodes 115 –,– Thalamid 151 Polarography 494ff. Reformation in Fuel Cells feeds 472 – AC Polarography 499 – Internal Reforming 475 – Anodic Stripping Voltammetry (ASV) Reorganisation Energy 179, 182ff. 501 Reprocessing 435 –,– Differential pulse ASV 500 Residual Current 91 – Cathodic Stripping Voltammetry Resistivity 10 501 Reynolds Number 257 – DC Polarography 494ff. Room-temperature melts based on the – Differential Polarography 499 imidazolium cation 395 530 Subject Index

– Electroplating of ultra-pure aluminium Solid-Polymer Electrolytes 386ff. – Use of room-temperature melts in – Current-voltage curves with 388 batteries – Dow Membrane 387 Rotating-disc Electrode 193ff. – In chlor-alkali process 412 – Frumkin-Tedoradze equation – Nafion 387ff. (also known as Koutecky-Levich Solid-Polymer Fuel Cells (SPFC) 473 equation) 196ff – Characteristics 479 – Levich (limiting current) equation Solid-State Chemistry 194ff – Defects 382 – Ring-Disc electrode 193, 255f. –,– Interstitials 382 – ring-ring electrode 256 –,– Vacancies 382 Solubility Product 72, 141 S Solvation 32f., 55f., 59 112 – Enthalpy of Solvation 72 Scanning Probe Methods Space Charge Layer – Atomic Force Microscopy (AFM) 324 – In ionic membranes 114 – Rastered Kelvin Microscopy 325 – In semiconductor electrodes 138 – Scanning Electrochemical Microscopy Space-time Yield 399ff., 425 (SECM) 325 Specific Energy Usage 399 – Scanning Tunnelling Microscopy Spectro-electrochemical Methods (STM) 324 295ff. Schematic representation of cells and cell – Infra-Red Studies 297ff. conventions 86 – Electron-spin Resonance 305ff Screw dislocation on surface 214 SPE-electrolysis 425 – Crystal Growth in the presence of Spherical diffusion 200 218 Stabilised zirconia 384 – Dendrite formation 219 Step site on surface 214 Semiconductor Electrodes 133ff. Stokes’ Law 13, 18, 32 – Current flows on 231ff. Studies of ionic solvation 55ff –,– Effect of potential 233 – Inner and outer solvation sheaths –,– Photoeffects in 233 Supercapacitor 487ff Silver Iodide 382ff. – double-layer capacitor 489 Silver-Zinc Battery 452 Surface – Characteristics 461 – Defects 213ff. Sodium -alumina 461 – Diffusion 214 Sodium-Sulphur Batteries 456 – Sodium -alumina in 429 T Sodium-Nickel Chloride (ZEBRA Battery) Tafel Equation 167f. 456 Temperature dependence of distribution Solar Energy Conversion 235 function for water 53 Solid-Oxide Fuel Cells (SOFC) Theoretical studies of the structure of the 473, 475, 479f. double layer 130ff – Characteristics 475 – Jellium model Solid polymer electrolyte membranes – Molecular dynamic approaches other than Nafion 388ff – Orientation of water molecules at the – Membranes with impregnated solid electrode surface or liquid electrolytes – Long-range water structure models – Sulphonated non-perfluoro-membranes and charge density effects on the – ORMISILS and related silane backbone electrode membranes – Car-Parinello calculations of dynamic – Polyetheretherketones and related electrolyte structure membranes – Lateral ionic mobility at the electrode – Polybenzimidazoles surface – Anionically conducting membranes Theory of liquids 52 Subject Index 531

Transport Number 28ff. V – Hittorf Method 29 Viscosity 13 – Moving Boundary Method 37 – of water 17 – Numerical Values 31 – kinematic 193 Turbulent flow 257ff Volcano effect 212 – determination of exchange current 260 Two-dimensional nucleation and growth of W films 216ff Walden’s Rule 36 – Role of active sites in film growth Warburg Impedance 282 – Avrami’s theorem 102 – Progressive Nucleation Wheatstone Bridge 17 – Instantaneous Nucleation X U X-ray Absorption Near-Edge Structure Underpotential Deposition 219ff. (XANES) 334 Units – Concentration 11 Z – Current 9,10 Zero-gap principle 401 – Length 10 ZEBRA Battery 456 – Mass 10 Zeta Potential 119 – Molality 11 – Point of zero zeta potential 129 – Resistance 9,10 Zinc-Bromine Batteries 455 –SI 10 Zinc-Chlorine Batteries 455 – Temperature 10 Zinc-Mercury Oxide Batteries 465 – Voltage 9,10 – Characteristics 465 Further Titles of Interest

Holze, R. Experimental Electrochemistry A Student’s Lab Course

2007 Softcover ISBN 3-527-31098-3

Bard, A. J., Faulkner, L. R. Electrochemical Methods Fundamentals and Applications

2001 Hardcover ISBN 0-471-04372-9