Titelei 1..18
Total Page:16
File Type:pdf, Size:1020Kb
521 Subject Index A – Characteristics 479 AC Techniques Alkaline Manganese Batteries 464 – Bode Plot 285 – Characteristics 467 – Conductivity 14f. Amperometric Titrations 491 – Electron transfer Processes 284 – Biamperometric (“dead-stop”) methods –,– Influence of mass transport 287 492 – Equivalent Circuit for an electrode Anions 6 –,– Diffusion Limited Reaction 282 Anodic Stripping Voltammetry (ASV) 501 –,– Electron transfer Limited 284 – Differential pulse ASV 500 –,– Mixed Control 286 Anolyte 6 – Impedance in the presence of Anode 6, 9, 158 adsorption 289ff – Dimensionally stable 405 – Measurement of film coverage 291 Anthraquinone Process 420 – Nyquist Plot 284f. Applications of high-temperature melts in – Randles Circuit 284 electrochemical processes 394 – Warburg Impedance 282f. – Extraction of uranium Activity Coefficient 46ff. – Deposition of specialised metal alloys – Dependence on concentration 48ff. Apollo Cell 472 – In concentrated solutions 51 Asymmetry Effect 46 – Measurement 139f. Asymmetry Parameter 164, 166ff. – Of neutral molecules 60 Asymmetry Potential 150f. Adiponitrile or Monsanto Process 424 Atomic Force Microscopy (AFM) Adsorption see Scanning Probe Methods – Dependence of current on 212 Avogadro constant 2, 7 – Enthalpies 211 – Influence on current-voltage curves B 293 Bands – Isotherms 208 – Metal Electronic 134 –,– Langmuir 208f. – Conduction 134 –,– Temkin 209 – Valence 135 – Of dipoles 210 Batteries – Of ions 208 – Air batteries 484 – Of intermediates in electrochemical –,– Aluminium-air batteries 484 reactions 212 –,– Zinc-air batteries 484 Air batteries 484 –,– Secondary types 485 – Aluminium-air batteries 484 – Costs of energy storage in 449 – Zinc-air batteries 484 –,– Table of Values 459 –,– Secondary types 485 – Current-voltage characteristics of 446 Alkaline Fuel Cells (AFC) 473ff. – Discharge Characteristics in 447 – Apollo Cell 472 – Efficiency of batteries 486 Electrochemistry. Carl H. Hamann, Andrew Hamnett, Wolf Vielstich Copyright ª 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31069-2 522 Subject Index – Energy Density in 446 – Self discharge 444 –,– Tables of values 459 – Specific Capacity of 444 – Open-circuit voltage of 444 Bias – For electric vehicles 472 – In semiconductor electrochemistry – Primary 138 –,– Alkaline Manganese 464 Bioelectrochemistry 241ff –,– Characteristics 466 – Long-range electron transfer and –,– Leclanche´ Cell 442ff. biological systems –,– Characteristics 441 – Biochemistry of glucose oxidase as a –,– Discharge characteristic of 447 typical enzyme –,– Self-discharge in 444 – Coupling of electron-transfer enzymes –,– Lithium Primary Batteries 444 to electrodes –,– Lithium-melt batteries – Use of mediators (Sohio Battery) 466 – Use of electrode surface modifiers –,– Li/SOCl2 466 – Use of bio-mimetic molecules –,– Characteristics 466 Bipolar Cell Designs 399 –,– Zinc-Mercury Oxide 465 Bode Plot 285 –,– Characteristics 467 Bohr Magneton 305 – Power density of 446 Buffer solutions 64ff. –,– Tables of Values 459 Butler-Volmer Equation 166ff., 184, 186 – Secondary –,– Current Yield in 449 C –,– Cycle Number 453 Capacitance measurements 294 –,– Energy Yield in 452 Cations 6 –,– Lead-acid 441ff. Cathode 6f., 158 –,– Discharge characteristic of 447 Cathodic Stripping Voltammetry 501 –,– Gassing in 449 Catholyte 6 –,– Lifetime 452 Cell 3ff. –,– Maintenance 451 – Concentration 86, 105ff. –,– Self-discharge in 444 –,– With transference 108 –,– Sulphation 449 –,– Without transference 108 –,– Lithium Secondary Batteries 457ff. – Conventions 86, 95 –,– Characteristics 451 – Conventional Design –,– Charge-discharge cycle in 459 –,– Bipolar 399 –,– Energy and Power density in 458 –,– Diaphragm 405ff. –,– Non-aqueous Solvents in 457 –,– Electrolysis 417, 420 –,– Sulphur-based systems 458 –,– Membrane 399 –,– Nickel-Cadmium 450 –,– Monopolar 399 –,– Characteristics 451 – Modern Designs –,– Gassing in 453 –,– Fixed-bed reactors 425 –,– Nickel Iron 450 –,– Fluidised-bed reactors 427 –,– Nickel-Metal Hydride 453 –,– Porous Layer electrodes 425 –,– Characteristics 462 –,– Zero-gap principle 400f., 425 –,– Nickel-Zinc 453 – Reactions 4 –,– Characteristics 463 – Voltage 5, 157ff. –,– Dendrite formation in 455 –,– Calculation 88 –,– Silver-Zinc 452 –,– Measurement 84 –,– Characteristics 463 –,– Pressure Dependence 91 –,– Sodium-Sulphur 458 –,– Temperature Dependence 90 –,– Sodium b-alumina in 456 – Weston 101 –,– Sodium-Nickel Chloride (ZEBRA Chlor-alkali process 404ff. Battery) 456 – Amalgam Cell for 406 –,– Zinc-Bromine 455 – Comparison of cells for 410 –,– Zinc-Chlorine 455 – Diaphragm Cell for 405 Subject Index 523 – Dimensionally Stable Anodes (DSA) –,– Gold 264 404 –,– Platinum 262ff. – Electrode Reactions in 404 – Diagnostic Criteria 275 – Membrane Process for 409 – Fast scan voltammetry 276 – using oxygen cathode 410ff – Measurement of Film Coverage 292 Chlorate Preparation – Of solution redox couples 261ff. – Conditions 418 –, 9,10-diphenylanthracene 273 Chronopotentiometry 502 –,– Formaldehyde 267 – Chemical stripping chronocoulometry –,– Formic Acid 267 502 –,– Methanol 267 – stripping chronocoulometry 504 – Theory of 267ff. Conductivity 18ff. –,– Fast electron transfer 227 – Extrinsic (in semiconductors) 135 –,– Slow electron transfer 269 – Intrinsic (in semiconductors) 136 –,– Matsuda Number 271 Conductivity Cell 14, 19 –,– Multiple Potential Sweeps 273 – Extrapolation to high frequency 16 – Cell constant 19 D Conductivity Titrations 73f. Daniell Cell 105 Convection Debye-Huuckel€ – Forced 255 – Limiting Law 50, 73, 139 – Laminar 192 – Region 29 – Transport by 192 – Theory of Dilute electrolytes 38ff. – Turbulent 248ff. Debye-Onsager Equation 44 –,– In the measurement of fast electron Debye Screening Length 43 transfer 247 Decomposition Correction for iR-drop 277 – Potential Difference 5 Corrosion 225ff. Dendrite formation 219 – Acid 226 Desalination see Electrodialysis – Inhibition through film formation Detoxification of water 235, 240 230 – Direct oxidation methods 432 –,– Electrophoretic Protection 230 – Indirect Oxidation methods 432 – Oxygen 227 Diffuse Double Layer 116f. – Protection 228 Diffusion –,– Cathodic 229 – Fick’s First Law 106, 188 Coulomb’s Law 1 – Fick’s Second Law 190 Coulometer – Nernst diffusion layer 192 – Silver 8 – Potentials 106ff. – Combustion-Gas 8 –,– Elimination 111 Coulometry in electroanalytical chemistry – Overpotential 187ff. 503 – Spherical 200f. – potentiostatic coulometry 503 – Surface 214f. – galvanostatic coulometry 504 Dipole Cryolite 417 – water 2, 33 Current-Potential Characteristic 161 Direct Methanol Fuel Cells 481 – In melts 393 Dissociation constant of weak electrolytes – In solid electrolytes 385 63, 142 – In solid-polymer electrolytes 388 – Effect on overpotential 204 – Of batteries 446 – Measurement of rate of 207 Current-time behaviour 189 Dissociation Field Effect 63, 124 – At a micro-electrode 202 Donnan Potential see Membrane Potential Cyclic Voltammetry 260ff. Double Layer – Correction for resistive (iR) effects – Capacity 121ff. 277ff. – Structure 121 – Cyclic voltammograms 261 –,– On semiconductor electrodes 136 524 Subject Index E Electrochemical Quartz-crystal Electric Field 3, 13 Microgravimetry (EQCM) 504 – At metal-electrode electrolyte interface Electrochemical Reaction Order 173f. 123f. Electrochemical Sensors 505ff. – At semiconductor electrolyte interface – Conductivity measurement 505 136f. – Gas Sensors 511 Electrocapillarity 124 –,– Amperometric Sensors 513 Electrocatalysis –,– Clark Cell 513 – Bifunctional catalysts 401 –,– Indirect cells 515 – Carbon monoxide oxidation 358ff –,– Table of types 516 –,– Langmuir-Hinshelwood mechanism –,– Conductimetric sensors 511 361 –,– Potentiometric sensors 511 – Ethanol oxidation 364ff –,– Lambda-Sonde Principle 512 – Exchange current in 342ff. – Ion-sensitive electrodes 506 –,– Activation overpotential 403 –,– Glass membrane electrodes 506 – Future Trends in 428 –,– Sodium Electrode 507 –,– Polymeric Catalysts with pendant –,– Solid andliquid-membrane electrodes active groups 428 508 –,– Under-potential deposited layers 428 –,– Potassium-sensitive electrodes 508 – Hydrogen oxidation 341ff –,– Ion-selective Field Effect Transistors –,– Heyrovsky reaction 342 (ISFET) 510 –,– Volmer-Tafel reaction 342 –,– Interference effects in 507 – Hydrophobic Layer in 402 –,– Nikolski equation 507 – Methanol oxidation 348ff – pH measurement 505 –,– parallel pathways 350 – Redox electrodes 506 –,– reaction products 352 Electrochemical Separation Processes –,– effect of adsorbed anions 354 – Electrodialysis 433 –,– catalyst promotors 356 – Electrophoresis 434 – Morphology of catalysts 401 – Procedures in the Nuclear Industry – NEMCA effect 429 435 – Oxygen reduction 397 –,– PUREX process 434 Electrochemical Engineering 399 – Treatment of waste water 435 Electrochemical Machining and polishing Electrochemical Series 93 223 – In non-aqueous Solvents 102 Electrochemical Mass Spectroscopy Electrocrystallisation 213ff. – Basis of technique 309 Electrode 3 – Differential Electrochemical Mass – Counter 160f., 234ff. Spectroscopy (DEMS) 313ff – Micro- and ultra-micro 201ff. –,– Dual thin layer flow cell 319 – Potentials 77ff. –,– Rotating electrodes 317ff –,– Standard 96 – Experimental Problems 310 –,– Measurement 141 – Ex-situ Measurements 311 –,– Mixed 225 –,– Electrochemical Thermal Desorption – Reactions 4f., 8 MS (ECTDMS) 311 – Reference 93ff., 160f. – Fragmentation Pattern 310 – Redox 82 – Transfer Factor 310 – Rotating-disc 195ff. Electrochemical polymerisation