Energy on Demand: a Brief History of the Development of the Battery Citation: C

Total Page:16

File Type:pdf, Size:1020Kb

Energy on Demand: a Brief History of the Development of the Battery Citation: C Firenze University Press www.fupress.com/substantia Energy on demand: A brief history of the development of the battery Citation: C. L. Heth (2019) Energy on demand: A brief history of the devel- opment of the battery. Substantia 3(2) Suppl. 1: 73-82. doi: 10.13128/Sub- Christopher L. Heth stantia-280 Minot State University, 500 University Ave. W, Minot, ND 58707 Copyright: © 2019 C. L. Heth. This is E-mail: [email protected] an open access, peer-reviewed article published by Firenze University Press (http://www.fupress.com/substantia) Abstract. Portable, readily available electrical energy provided by batteries is ubiq- and distributed under the terms of the uitous in modern society and can easily be taken for granted. From the early Voltaic Creative Commons Attribution License, piles to modern lithium ion cells, batteries have been powering scientific and techno- which permits unrestricted use, distri- logical advancement for over two centuries. A survey of select notable developments bution, and reproduction in any medi- leading to modern batteries commercially available today are presented, with emphasis um, provided the original author and on early technologies and also including some of the advancements made within the source are credited. last few decades. A brief discussion of the chemistry utilized by battery technology is Data Availability Statement: All rel- also included. evant data are within the paper and its Supporting Information files. Keywords. Battery, electrochemical cell, Voltaic pile, Daniell cell. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION In the modern industrialized world, it can be difficult to imagine life without ready access to on-demand electricity. Massive electrical infrastruc- tures have been built allowing for safe, reliable, and constant delivery of elec- trical energy to households, businesses, and industrial complexes throughout much of the globe. By 1950, electric power consumption in the United States was reported at 291 billion kilowatt hours.1 By the mid 1990’s usage topped 3,000 billion kilowatt hours, and demand has continued to increase with consumption of 3,946 billion kilowatt hours reported for 2018, the bulk of which is split between residential (37%) and commercial (35%) usage.1 While this infrastructure effectively provides fixed access to electrical energy within relatively easy reach in homes, workplaces, and other loca- tions, batteries are used as a source of power for a myriad of devices. From cell phones to flashlights, wall clocks to children’s toys, more and more elec- tronic devices utilize battery power. Medical devices, whether implanted such as a pacemaker or external like an insulin pump, also require light- weight mobile power sources, as do fully electric automobiles on an even larger scale. With a ready supply of electrical energy ubiquitous in industrialized society, it can be easy to take this valuable resource for granted without con- sideration for the process by which the development of the battery occurred, Substantia. An International Journal of the History of Chemistry 3(2) Suppl. 1: 73-82, 2019 ISSN 1827-9643 (online) | DOI: 10.13128/Substantia-280 74 Christopher L. Heth or the technological advancements that followed. A com- In simple electrochemical cells (Figure 1), these plete and exhaustive accounting of all these advances processes occur at the surface of electronic conductors, would be an undertaking beyond the scope of this work termed electrodes. These electrodes may be composed of and may well be out-of-date prior to publication, as work a redox-active material or more electrochemically inert currently continues to design and produce smaller, light- materials such as platinum, mercury, gold, or graph- er, and longer lasting batteries for mobile electronics. As ite.5 Oxidation occurs at the anode, while the reduction such, this work will focus on the earliest battery devel- process occurs at the cathode. Between the electrodes is opments as well as the more significant general develop- an electrolyte, an ionic conductor necessary to reduce ments within the past several decades. polarization and allow current to flow. Wire or another electrically conducting material connects the two elec- trodes to a load, completing the circuit, allowing the THE ELECTROCHEMICAL CELL battery to discharge and work to be done. The overall system must remain charge-neutral in order to continue The term “battery” has several different meanings functioning. If a build up of charge occurs, polarization which may at first glance appear unrelated.2 The com- results and the electric current is reduced and ultimately mon thread within these varied definitions is the ref- stopped completely. erence to multiple parts working in concert, whether Batteries are often classified as either primary or artillery pieces, a pitcher and a catcher in baseball, or a secondary batteries. In both cases, chemical poten- collection of electrochemical cells. Benjamin Franklin tial energy is converted to electrical energy. For pri- is attributed with one of the first uses of the term “Elec- mary batteries, the chemical reactants are consumed trical Battery”, included in a letter describing his work in a process which is not easily reversible, resulting in with static electricity using Leyden jars to English natu- a battery which can only be discharged a single time. ralist Peter Collinson in 1749: Examples of primary batteries include common alka- line batteries, silver button cells and watch batteries, Upon this We made what we call’d an Electric Battery, and the homemade “lemon battery” consisting of piec- consisting of eleven Panes of large Sash Glass, arm’d with es of iron and copper stuck into the flesh of the acidic thin leaden Plates,…with Hooks of thick Leaden Wire one citrus fruit. from each Side standing upright, distant from each other; Secondary batteries also convert chemical potential and convenient Communications of Wire and Chain from the giving Side of one Pane to the receiving Side of the oth- energy to electrical energy, but do so through revers- er; that so the whole might be charg’d together, and with ible chemical process which render the resulting bat- the same Labour as one single Pane;…3 tery rechargeable. Application of electrical energy from an external source such as a generator or another bat- Over time, the term “battery” has come to refer to tery can regenerate the initial chemical reactants, restor- both a collection of connected electrochemical cells and ing the battery’s charge and allowing repeated charge/ a single working cell, and will be generally used without discharge cycles. Because of this ability to store energy, specificity throughout this work.4 these types of cells are also known as “storage batteries”. Batteries produce electrical energy through oxida- Common examples of storage batteries include lead-acid tion-reduction (redox) processes, wherein one substance loses electrons through oxidation while another sub- stance gains electrons through reduction. It is some- times convenient to examine the oxidation and reduc- tion processes independently as half reactions, an exam- ple of which is shown below. However, it is important to note that oxidation cannot occur without a correspond- ing reduction process also occurring and vice versa, although the two processes do not necessarily need to occur at the same physical location. Oxidation: Zn(s) → Zn2+(aq) + 2 e- Reduction: Cu2+(aq) + 2 e- → Cu(s) Overall: Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s) Figure 1. A simple electrochemical cell. Energy on demand: A brief history of the development of the battery 75 batteries used in most automobiles and lithium-ion bat- a “crown of cups”, a series of what would modernly be teries found in mobile consumer electronics. described as simple wet cells.14 Discharging Volta’s pile resulted in visible corrosion occurring on the zinc (or tin) discs, the result of oxida- THE VOLTAIC PILE tion of the anode. A slight corrosion was also sometimes noted on the silver (or copper) cathode discs, but not to Prior to 1800, studies of electricity were limited to the same extent as seen on the anode. At the time this what could be achieved through collection and discharge led him to believe the current was solely the result of the of static electricity.6–8 While arcs with rather large volt- anodic reaction. Considering it is now known that oxi- ages could be achieved, their application was limited by dation cannot occur without reduction, and with Volta the small current and extremely short duration of the and others noting problematic polarization resulting discharge.6 Despite this limitation, the study of electri- from bubbles of hydrogen gas adhering to the electrode cal phenomenon spanned from attempts to split water surfaces, it seems evident that the corresponding reduc- through electrolysis, to studies with frogs predating tion process in Volta’s pile was the reduction of hydro- Luigi Galvani’s well-known work, to Franklin’s famous gen from water, as seen in the overall electrochemical lightning experiments.9–13 reaction below. In March of 1800, Alessandro Volta (Figure 2), pro- 2+ - fessor of natural philosophy at the University of Pavia Zn(s) + 2H2O(l) → Zn (aq) + H2(g) + 2OH (aq) in Lombardy, Italy, in a correspondence to Joseph Banks, President of the Royal Society of London, It should be noted that the reduction process is often described a device which could provide a continuous incorrectly attributed to reduction of the cathode mate- supply of electrical power.8,14 This apparatus (Figure rial (half reactions seen below for silver and copper). 3), later known as the “Voltaic Pile” consisted of discs However, this would require ions of the cathode material of tin or zinc paired with discs of copper, brass, or sil- to be already present in order to occur. While it is pos- ver, with layers of water-soaked paper, fiber board, or sible some advantageous oxidized cathode material may leather between the disc pairs.
Recommended publications
  • Material - Safety - Data Sheet (MSDS) No.16 for Ansmann Zinc Carbon (Mercury Free Heavy Duty) Batteries Single Cells and Multi-Cell Battery Packs 1/6
    Material - Safety - Data Sheet (MSDS) No.16 for Ansmann Zinc Carbon (Mercury Free Heavy Duty) Batteries single cells and multi-cell battery packs 1/6 Date of issue: 2015 - 02 - 23 The information contained within is provided as a service to our customers and Revision no: 1 for their information only. The information and recommendations set forth herein Revision date: 2016 - 10 - 07 are made in good faith and are believed to be accurate at the date of preparation. Editor: Ansmann AG ANSMANN AG makes no warranty expressed or implied. 1. Product and Supplier Identification Product name: ANSMANN (Super) Heavy Duty Battery Designation: Zinc Manganese Dioxide Battery Models / types: R3 (AAA); R6 (AA); R14 (C); R20 (D); 6F22 (9V E-Block); 3R12; 4R25 Electrochemical system: MnO2 (Manganese Dioxide) (positive electrode) Zn (negative electrode) NH4Cl, ZnCl2 (electrolyte) Supplier: Germany ANSMANN AG Address: Industriestraße 10; 97959 Assamstadt; Germany Phone / Fax: + 49 (0) 6294 42040 / + 49 (0) 6294 420444 Home / email: ansmann.de / [email protected] USA ANSMANN USA Corporation Address: 1001 Lower Landing Rd. Ste 101; Blackwood, NJ08012; USA Phone / Facsimile: +1 973 4395244 1012 / +1 973 2062006 email: [email protected] United Kingdom ANSMANN UK LTD. Address: Units 11-12, RO24, Harlow Business Park, Harlow, Essex. CM19 5QB. UK Phone / Facsimile: +44 (0) 870 609 2233 / +44 (0) 870609 2234 email: [email protected] Hong Kong ANSMANN Energy Int. LTD. Address: Unit 3117-18, 31/F; Tower 1; Millenium City 1; No. 388 Kwun Tong Road; Kwun Tong, kowloon; Hong-Kong
    [Show full text]
  • Fuel Cell Energy Generators PLATINUM CATALYSTS USED in ALTERNATIVE ENERGY SOURCE
    Fuel Cell Energy Generators PLATINUM CATALYSTS USED IN ALTERNATIVE ENERGY SOURCE By D. S. Cameron Group Research Centre, Johnson Matthey and Co Limited The steam, in turn, is produced by burning Improvements in the preparation and fossil fuels (coal or hydrocarbons), or by utilisation of platinum metal catalysts nuclear fission. Unfortunately, the processes have now made megawatt scale fuel cell of converting fuel into heat, heat into steam, systems economically viable. The high and steam into electricity involve efficiency thermal efficiency and low pollution losses at every stage. The Carnot cycle characteristics of this novel power source shows that the thermal efficiency of any heat are likely to result in it forming an engine is limited to E where: increasing proportion of the generating capacity utilised for both peaking and intermediate applications. This paper T, and TI being the temperatures, in degrees briejly reviews the development of fuel kelvin, at which heat is supplied to, and cells; it also describes how they work, rejected by, the system. In practice, upper including the function of the catalyst, temperatures are limited to about 500'C and indicates the more important of the (773 K), lower temperatures are at least 30°C many factors which have to be considered (303 K), and efficiencies are limited to a when selecting a commercial system. maximum of 60 per cent. Indeed most modern large power stations are able to achieve only 38 to 40 per cent efficiency. Fuel cells have already achieved acceptance Fuel cells convert fuel directly into elec- as reliable, lightweight power sources for trical energy by an electrochemical route space applications, for example in the Apollo which is not limited by the Carnot cycle.
    [Show full text]
  • PSDS Zinc Air Batteries MF
    Primary Zinc-Air-Battery: Button Type Hearing Aid Batteries Product Safety Data Sheet This "Safety information" is provide as a service to our customers Disclaimer: (EU) These batteries are no "substances" nor "preparations"according to Regulation (EC) No 1907/2006 EC. Instead they have to be regarded as "articles", no substances are intended to be released during handling. Therefore there is no obligation to supply a MSDS according to Regulation (EC) 190'7/2006, Article 31. This PSDS is intended to be unsolicited information without any further legal commitment. The details presented are in accordance with our present knowledge and experiences. They are no contractual assurances of product attributes. (U.S.A.) Material Safety Data Sheets (MSDS) are a sub-requirement of the Occupational Safety and Health Administration (OSHA) Hazard Communication Standard, 29 CFR Subpart 1910.1200. This Hazard Communication Standard does not apply to various subcategories including anything defined by OSHA as an "article". OSHA has defined "article" as a manufactured item other than a fluid or particle; (i) which is formed to a specific shape or design during manufacture; ii) which has end use function(s) dependent in whole or in part upon its shape or design during end use; and (iii) which under normal conditions of use does not release more than very small quantities, e.g. minute or trace amounts of a hazardous chemical, and does not pose a physical hazard or health risk to employees. This sheet is provided as technical information only. The information contained in this Product Safety Data Sheet has been established to the best of RENATA SA's knowledge and belief.
    [Show full text]
  • Elements of Electrochemistry
    Page 1 of 8 Chem 201 Winter 2006 ELEM ENTS OF ELEC TROCHEMIS TRY I. Introduction A. A number of analytical techniques are based upon oxidation-reduction reactions. B. Examples of these techniques would include: 1. Determinations of Keq and oxidation-reduction midpoint potentials. 2. Determination of analytes by oxidation-reductions titrations. 3. Ion-specific electrodes (e.g., pH electrodes, etc.) 4. Gas-sensing probes. 5. Electrogravimetric analysis: oxidizing or reducing analytes to a known product and weighing the amount produced 6. Coulometric analysis: measuring the quantity of electrons required to reduce/oxidize an analyte II. Terminology A. Reduction: the gaining of electrons B. Oxidation: the loss of electrons C. Reducing agent (reductant): species that donates electrons to reduce another reagent. (The reducing agent get oxidized.) D. Oxidizing agent (oxidant): species that accepts electrons to oxidize another species. (The oxidizing agent gets reduced.) E. Oxidation-reduction reaction (redox reaction): a reaction in which electrons are transferred from one reactant to another. 1. For example, the reduction of cerium(IV) by iron(II): Ce4+ + Fe2+ ! Ce3+ + Fe3+ a. The reduction half-reaction is given by: Ce4+ + e- ! Ce3+ b. The oxidation half-reaction is given by: Fe2+ ! e- + Fe3+ 2. The half-reactions are the overall reaction broken down into oxidation and reduction steps. 3. Half-reactions cannot occur independently, but are used conceptually to simplify understanding and balancing the equations. III. Rules for Balancing Oxidation-Reduction Reactions A. Write out half-reaction "skeletons." Page 2 of 8 Chem 201 Winter 2006 + - B. Balance the half-reactions by adding H , OH or H2O as needed, maintaining electrical neutrality.
    [Show full text]
  • All-Carbon Electrodes for Flexible Solar Cells
    applied sciences Article All-Carbon Electrodes for Flexible Solar Cells Zexia Zhang 1,2,3 ID , Ruitao Lv 1,2,*, Yi Jia 4, Xin Gan 1,5 ID , Hongwei Zhu 1,2 and Feiyu Kang 1,5,* 1 State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; [email protected] (Z.Z.); [email protected] (X.G.); [email protected] (H.Z.) 2 Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 3 School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830046, Xinjiang Province, China 4 Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China; [email protected] 5 Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, China * Correspondences: [email protected] (R.L.); [email protected] (F.K.) Received: 16 December 2017; Accepted: 20 January 2018; Published: 23 January 2018 Abstract: Transparent electrodes based on carbon nanomaterials have recently emerged as new alternatives to indium tin oxide (ITO) or noble metal in organic photovoltaics (OPVs) due to their attractive advantages, such as long-term stability, environmental friendliness, high conductivity, and low cost. However, it is still a challenge to apply all-carbon electrodes in OPVs. Here, we report our efforts to develop all-carbon electrodes in organic solar cells fabricated with different carbon-based materials, including carbon nanotubes (CNTs) and graphene films synthesized by chemical vapor deposition (CVD). Flexible and semitransparent solar cells with all-carbon electrodes are successfully fabricated.
    [Show full text]
  • A Review of Cathode and Anode Materials for Lithium-Ion Batteries
    A Review of Cathode and Anode Materials for Lithium-Ion Batteries Yemeserach Mekonnen Aditya Sundararajan Arif I. Sarwat IEEE Student Member IEEE Student Member IEEE Member Department of Electrical & Department of Electrical & Department of Electrical & Computer Engineering Computer Engineering Computer Engineering Florida International University Florida International University Florida International University Email: [email protected] Email: [email protected] Email: [email protected] Abstract—Lithium ion batteries are one of the most technologies such as plug-in HEVs. For greater application use, commercially sought after energy storages today. Their batteries are usually expensive and heavy. Li-ion and Li- based application widely spans from Electric Vehicle (EV) to portable batteries show promising advantages in creating smaller, devices. Their lightness and high energy density makes them lighter and cheaper battery storage for such high-end commercially viable. More research is being conducted to better applications [18]. As a result, these batteries are widely used in select the materials for the anode and cathode parts of Lithium (Li) ion cell. This paper presents a comprehensive review of the common consumer electronics and account for higher sale existing and potential developments in the materials used for the worldwide [2]. Lithium, as the most electropositive element making of the best cathodes, anodes and electrolytes for the Li- and the lightest metal, is a unique element for the design of ion batteries such that maximum efficiency can be tapped. higher density energy storage systems. The discovery of Observed challenges in selecting the right set of materials is also different inorganic compounds that react with alkali metals in a described in detail.
    [Show full text]
  • Alessandro Volta and the Discovery of the Battery
    1 Primary Source 12.2 VOLTA AND THE DISCOVERY OF THE BATTERY1 Alessandro Volta (1745–1827) was born in the Duchy of Milan in a town called Como. He was raised as a Catholic and remained so throughout his life. Volta became a professor of physics in Como, and soon took a significant interest in electricity. First, he began to work with the chemistry of gases, during which he discovered methane gas. He then studied electrical capacitance, as well as derived new ways of studying both electrical potential and charge. Most famously, Volta discovered what he termed a Voltaic pile, which was the first electrical battery that could continuously provide electrical current to a circuit. Needless to say, Volta’s discovery had a major impact in science and technology. In light of his contribution to the study of electrical capacitance and discovery of the battery, the electrical potential difference, voltage, and the unit of electric potential, the volt, were named in honor of him. The following passage is excerpted from an essay, written in French, “On the Electricity Excited by the Mere Contact of Conducting Substances of Different Kinds,” which Volta sent in 1800 to the President of the Royal Society in London, Joseph Banks, in hope of its publication. The essay, described how to construct a battery, a source of steady electrical current, which paved the way toward the “electric age.” At this time, Volta was working as a professor at the University of Pavia. For the excerpt online, click here. The chief of these results, and which comprehends nearly all the others, is the construction of an apparatus which resembles in its effects viz.
    [Show full text]
  • Batteries Information Received from EU, Canada, Japan, Indonesia, USA and Other Stakeholders (BAJ, IPEN, NRDC, ZMWG)
    Batteries Information received from EU, Canada, Japan, Indonesia, USA and other stakeholders (BAJ, IPEN, NRDC, ZMWG) 1. Category of mercury-added product Batteries 2. Further description of the product Mercury-containing button cells 3. Information on the use of the Currently, there are three types of button cell batteries that contain mercury: zinc air, silver oxide and alkaline. product These batteries contain mercury in small amounts (typically 0.1-2%) and the purpose of mercury in the cell is to prevent the build-up of hydrogen gas. The mercury acts as a barrier to the production of hydrogen and as such prevents the cell swelling and becoming damaged. Figure 1 – Cross Section of Zinc Anode Button Cell and Zinc Air Button Cell (European Commission, 2014) Range of mercury content/consumption per unit product - 0.1 – 2 weight-% (button cells with intentionally added mercury) - 0.0005 weight-% (button cells without intentionally added mercury) Button batteries are used for powering high drain devices such as watches, calculators, and hearing aids. 4. Information on the availability of EU mercury-free (or less-mercury) Main alternatives: Mercury-free zinc air batteries alternatives Mercury free versions are commercially available for all applications of the main types of button cells (lithium, silver, oxide, alkaline and zinc air). The most frequently used types make use of zinc air technology (European Commission, 2014). Since October 2015, mercury-containing button cell batteries have been prohibited in the EU following the expiry of the exemption granted under the Batteries Directive. 1 Canada Alternatives: mercury-free silver oxide batteries, mercury-free zinc air batteries, lithium batteries Mercury-free alternatives have been available from major battery manufacturers since the late 1990s and early 2000s (e.g.
    [Show full text]
  • Galvanic Cell Notation • Half-Cell Notation • Types of Electrodes • Cell
    Galvanic Cell Notation ¾Inactive (inert) electrodes – not involved in the electrode half-reaction (inert solid conductors; • Half-cell notation serve as a contact between the – Different phases are separated by vertical lines solution and the external el. circuit) 3+ 2+ – Species in the same phase are separated by Example: Pt electrode in Fe /Fe soln. commas Fe3+ + e- → Fe2+ (as reduction) • Types of electrodes Notation: Fe3+, Fe2+Pt(s) ¾Active electrodes – involved in the electrode ¾Electrodes involving metals and their half-reaction (most metal electrodes) slightly soluble salts Example: Zn2+/Zn metal electrode Example: Ag/AgCl electrode Zn(s) → Zn2+ + 2e- (as oxidation) AgCl(s) + e- → Ag(s) + Cl- (as reduction) Notation: Zn(s)Zn2+ Notation: Cl-AgCl(s)Ag(s) ¾Electrodes involving gases – a gas is bubbled Example: A combination of the Zn(s)Zn2+ and over an inert electrode Fe3+, Fe2+Pt(s) half-cells leads to: Example: H2 gas over Pt electrode + - H2(g) → 2H + 2e (as oxidation) + Notation: Pt(s)H2(g)H • Cell notation – The anode half-cell is written on the left of the cathode half-cell Zn(s) → Zn2+ + 2e- (anode, oxidation) + – The electrodes appear on the far left (anode) and Fe3+ + e- → Fe2+ (×2) (cathode, reduction) far right (cathode) of the notation Zn(s) + 2Fe3+ → Zn2+ + 2Fe2+ – Salt bridges are represented by double vertical lines ⇒ Zn(s)Zn2+ || Fe3+, Fe2+Pt(s) 1 + Example: A combination of the Pt(s)H2(g)H Example: Write the cell reaction and the cell and Cl-AgCl(s)Ag(s) half-cells leads to: notation for a cell consisting of a graphite cathode - 2+ Note: The immersed in an acidic solution of MnO4 and Mn 4+ reactants in the and a graphite anode immersed in a solution of Sn 2+ overall reaction are and Sn .
    [Show full text]
  • A3 Lemon Batteries and Other Batteries – Electricity from Chemical Energy Answer Sheet
    A3 Lemon batteries and other batteries – Electricity from chemical energy Answer sheet A3 Lemon batteries and other batteries – Electricity from chemical energy Note: This answer sheet will go into the analyses for the individual subexperiments only if experi- ence shows that there could be particular difficulties. 1 How well does the “fruit and vegetable battery” work? 1.6 Questions What do you think: Does the electricity really come from the lemon, or what is the real source? Answer: A reasonable answer would be: I can decide that only if I test different fruits and vegetables. If the effect is the same for different fruits and vegetables, the electricity must come from the metals that are inserted into the fruit or vegetable as electrodes, or perhaps also from a common property of the fruits or vegetables. 2 The “lemon battery”: What role does each element play? 2.5 Analysis Check your results. List the three metals used in the experiment in a logical order according to the measured voltages. Start with copper at the left as the noble metal. What does the voltage value of a battery basically seem to depend on? Note: It depends on the different (!) metals that are used. 2.6 Questions a) What does the experiment have to do with the electrochemical voltage series of metals? Answer: The greater the difference between the two electrode metals in the electro- chemical voltage series, that is, the less noble the metal of the one electrode is com- pared to the other electrode, the better the corresponding battery will work.
    [Show full text]
  • Lemon Battery 1-408-294-8324 Lab Related Activity: Simplicity of Electricity Thetech.Org
    201 S. Market St. San Jose CA. 95113 Lemon Battery 1-408-294-8324 Lab Related Activity: Simplicity of Electricity thetech.org This activity is meant to extend your students’ knowledge of the topics covered in our Simplicity of Electricity lab. Through this activity, your students will create a simplified version of the batteries used in everyday electronics. Grade Levels: 4-8 (this activity is meant to be done in groups of 4-5 students) Estimated Time: 30-45 minutes Student Outcomes: 1. Students will be able to create a simple battery to power a light bulb. Next Generation Science Standards Common Core ELA Standards Physical Sciences: Grades 4-5: Writing W.7; W.8 Grade 4: 4-PS3-2, 4-PS3-4; Grade 5: 5-PS1-3 Grade 4: Speaking and Listening 4.SL.1b-d Engineering and Design: Grade 5: Speaking and Listening 5.SL.1b-d Grades 3-5: 3-5-ETS1-3; Grades 6-8: MS-ETS1-1-4 Grades 6-8: Writing W.7; Speaking and Listening SL.1b-e California State Science Standards Physical Sciences: Grade 4: 4.1.g; Grade 5: 5.1.c; Grade 8: 8.7.c Investigation and Experimentation: Grade 4: 4.6.a, c, d; Grade 5: 5.6.b, c, i; Grade 6: 6.7.a, d, e; Grade 7: 7.7.c- e; Grade 8: 8.9.a Vocabulary: Familiarity with these terms and concepts will enhance students’ experience in the activity. Conductor: a material that allows electricity to flow through it easily. Insulator: a material that does not allow electricity to flow through it easily Electricity: (from Greek, meaning “amber”) phenomena resulting from the presence and flow of electric charge; includes: lightning, static electricity, electromagnetic field, and electromagnetic induction.
    [Show full text]
  • Lithium Batteries
    Batteries General planning of the „Lithium Batteries” lab for the European Master 2007/8 Warsaw University of Technology, Departament of Inorganic Chemistry and Solid State Technology, Dr Marek Marcinek Objectives: Students will: follow the development of primary and secondary lithium batteries become familiar with different types of batteries explore the applications of batteries study the major components of lithium (ion) cells learn which batteries can be recycled realize the economic and environmental advantages of using rechargeable batteries Needs: Room with avialiables 2 desks and 2 computers or Multimedia Projector Potentiostat/galvanostat with galvanic cycle mode. Suplementary materials needed for: Building the simple battery (included Volta cell) Daniell cell Leclanche Cell Commercially available variety of Li-bat (also disassembled in a controlled mode) BDS software Safety issues: Safety rules Read directions carefully before you begin any experiments. Clear an area to work. Wash your hands thoroughly after experimenting Do always wear eye protection Keep all chemicals away from your eyes and mouth Do not eat and drink in your experiment area Put all pieces of equipment away when finished using them General First aid information Indicate the person who should IMMIDIATELLY inform the teacher and ask the other person to help you out if needed. Eyes: rinse immediately with water. Remove contact lenses if wearing any. Flush eyes with water for 15 min Swallowed: Rinse mouth Drink glass full of water or milk. DO NOT INDUCE VOMITING SKIN: Flush skin thoroughly with water. In all cases, get immediate medical attention if an emergency exists. Bring the chemical container with you. 1 Materials given to students/preparation: Exemplary 5 scientific papers (or any material found related to the Battery Performance, Design, Safety, Application) for individual preparation.
    [Show full text]