TOOLS AND RESOURCES Building customizable auto-luminescent luciferase-based reporters in plants Arjun Khakhar1,2, Colby G Starker1,2, James C Chamness1,2, Nayoung Lee3, Sydney Stokke1,2, Cecily Wang1,2, Ryan Swanson1,2, Furva Rizvi1,2, Takato Imaizumi3, Daniel F Voytas1,2* 1Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States; 2Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States; 3Department of Biology, University of Washington, Seattle, United States Abstract Bioluminescence is a powerful biological signal that scientists have repurposed as a reporter for gene expression in plants and animals. However, there are downsides associated with the need to provide a substrate to these reporters, including its high cost and non-uniform tissue penetration. In this work we reconstitute a fungal bioluminescence pathway (FBP) in planta using a composable toolbox of parts. We demonstrate that the FBP can create luminescence across various tissues in a broad range of plants without external substrate addition. We also show how our toolbox can be used to deploy the FBP in planta to build auto-luminescent reporters for the study of gene-expression and hormone fluxes. A low-cost imaging platform for gene expression profiling is also described. These experiments lay the groundwork for future construction of programmable auto-luminescent plant traits, such as light driven plant-pollinator interactions or light emitting plant-based sensors. Introduction *For correspondence: Bioluminescence is used by a diverse set of organisms to achieve a broad range of goals, such as
[email protected] attracting mates, scaring off predators and recruiting other creatures to spread spores (Shimo- mura, 2006; Wainwright and Longo, 2017; Verdes and Gruber, 2017; Labella et al., 2017; Competing interests: The Oliveira et al., 2015).