Comparison of Developmental Trajectories in the Starlet Sea Anemone Nematostella Vectensis: Embryogenesis, Regeneration, and Two Forms of Asexual Fission

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Developmental Trajectories in the Starlet Sea Anemone Nematostella Vectensis: Embryogenesis, Regeneration, and Two Forms of Asexual Fission Invertebrate Biology 126(2): 99–112. r 2007, The Authors Journal compilation r 2007, The American Microscopical Society, Inc. DOI: 10.1111/j.1744-7410.2007.00081.x Comparison of developmental trajectories in the starlet sea anemone Nematostella vectensis: embryogenesis, regeneration, and two forms of asexual fission Adam M. Reitzel, Patrick M. Burton, Cassandra Krone, and John R. Finnertya Department of Biology, Boston University, Boston, Massachusetts 02215, USA Abstract. The starlet sea anemone, Nematostella vectensis, is a small burrowing estuarine animal, native to the Atlantic coast of North America. In recent years, this anemone has emerged as a model system in cnidarian developmental biology. Molecular studies of em- bryology and larval development in N. vectensis have provided important insights into the evolution of key metazoan traits. However, the adult body plan of N. vectensis may arise via four distinct developmental trajectories: (1) embryogenesis following sexual reproduction, (2) asexual reproduction via physal pinching, (3) asexual reproduction via polarity reversal, and (4) regeneration following bisection through the body column. Here, we compare the ontogenetic sequences underlying alternate developmental trajectories. Additionally, we de- scribe the predictable generation of anomalous phenotypes that can occur following localized injuries to the body column. These studies suggest testable hypotheses on the molecular mechanisms underlying alternate developmental trajectories, and they provoke new questions about the evolution of novel developmental trajectories and their initiation via environmental cues. Additional key words: Nematostella, planula, regeneration, transverse fission Nematostella vectensis STEPHENSON 1935 is a Nematostella vectensis is the only sea anemone spe- euryhaline, eurythermal, burrowing sea anemone cies whose members have been cultured throughout (Anthozoa, Actiniaria) living in coastal estuarine its entire life cycle in the laboratory (Fautin 2002), habitats throughout North America and Southern and recently, it has emerged as an important basal England (Stephenson 1935; Crowell 1946; Hand metazoan system for research in development and 1957). Nematostella vectensis is a member of the fam- genomics (reviewed in Darling et al. 2005). Studies ily Edwardsiidae, a monophyletic clade of burrowing utilizing N. vectensis have led to a better molecular sea anemones with a global distribution (Daly 2002; understanding of anthozoan development while Daly et al. 2002). Like many cnidarians, N. vectensis illuminating critical events in the early evolution of can undergo multiple developmental trajectories, i.e., animals such as the origin of bilateral symmetry the adult polyp may develop via embryogenesis, asex- (Finnerty et al. 2004), anterior–posterior patterning ual fission, or regeneration (Hand & Uhlinger 1992). (Finnerty & Martindale 1999), and triploblasty Unlike the majority of cnidarians, N. vectensis is a (Scholz & Technau 2003; Martindale et al. 2004). relatively well-studied species with a rich literature With completion of its genome sequence and the describing its natural history (Hand & Uhlinger 1994; characterization of 150,000 expressed sequence tags, Sheader et al. 1997), geographic distribution (Hand N. vectensis’s utility as a genomic model system will & Uhlinger 1994 and references therein; Pearson et increase dramatically (Sullivan et al. 2006). al. 2002; Darling et al. 2004), population genetic Despite the increasing prominence of N. vectensis structure (Pearson et al. 2002; Darling et al. 2004), as a laboratory model for development, its complete and conservation (Sheader et al. 1997). developmental repertoire has not yet been thorough- ly explored. The specific developmental sequences of embryogenesis, asexual reproduction, and regenera- tion have not been explicitly compared in one source. a Author for correspondence. Portions of each process have been described in pre- E-mail: [email protected] viously published papers. Frank & Bleakney (1976) 100 Reitzel, Burton, Krone, & Finnerty and Hand & Uhlinger (1992), and later Martin regions (Gierer et al. 1972). However, the Cnidaria (1997), discussed the general features of embryo- have a large diversity of developmental and repro- genesis, the planula larva, and early juvenile mor- ductive mechanisms, making investigations with phology. More detailed observations of early many species across the phylum necessary for a embryogenesis and larval/juvenile development broader, comparative picture (Collins et al. 2005). have been reported in recent papers addressing the Comparisons among additional species would help expression of developmental regulatory genes (e.g., elucidate underlying similarities and differences in Finnerty et al. 2004; Martindale et al. 2004). A num- developmental processes across the Cnidaria. ber of authors (Lindsay 1975; Frank & Bleakney Nematostella vectensis provides an opportunity to 1978; Hand & Uhlinger 1992, 1995) have described elucidate the molecular mechanisms underlying mul- one type of asexual reproduction in N. vectensis that tiple developmental trajectories because members we have termed ‘‘physal pinching’’ (Darling et al. will undergo four distinct trajectories in the labora- 2005). Herein, we describe this process in greater de- tory (embryogenesis, regeneration, asexual reproduc- tail, and we also describe a second, distinct form of tion via physal pinching, and asexual reproduction asexual reproduction that we have termed ‘‘polarity via polarity reversal). Understanding the various reversal.’’ Complete bidirectional regeneration fol- developmental trajectories at the morphological lowing bisection (referred hereafter as just regenera- level is a necessary prerequisite for framing reason- tion) in adults of N. vectensis has been discussed able hypotheses about the underlying molecular largely as an explanation for naturally occurring mechanisms. Previous works with Hydra (Fro¨bius and laboratory-generated ‘‘anomalies’’ (Frank & et al. 2003) and an oligochaete, Pristina leidyi SMITH Bleakney 1978). Adults are frequently collected in 1896 (Bely & Wray 2001), have hypothesized that the the field with multiple oral crowns sharing a common molecular mechanisms underlying alternate develop- physa (Frank & Bleakney 1978). Hand & Uhlinger mental trajectories are likely to be highly similar, as (1995) reported a range of regeneration variants, in- the final phenotype resulting from each process is cluding a four-crowned anemone, by administering identical. However, differences among developmen- specific local injuries to the body wall. tal trajectories in N. vectensis in both temporal se- Members of N. vectensis comprise only one among quence and spatial relationship of particular the thousands of cnidarian species that are capable of developmental events suggest that the underlying developing via alternate developmental trajectories. molecular mechanisms for alternate developmental Understanding the evolution of these trajectories and trajectories may differ in important ways. For exam- the developmental mechanisms will also be strength- ple, embryogenesis proceeds from a single cell, while ened by comparisons with previous work on regeneration and fission occur in fully differentiated development for other species with multiple develop- adults. Likewise, while regeneration is initiated by mental pathways. Within the Cnidaria, a large body external forces, fission is initiated by endogenous sig- of work has investigated alternate developmental tra- nals. Here, we compare and contrast four alternate jectories, especially regeneration and asexual repro- developmental trajectories in N. vectensis at the mor- duction by budding, and to a lesser extent, phological level, with the long-term goal of under- embryogenesis. Most of this work has been carried standing how such developmental flexibility may be out with the hydrozoan Hydra, which has become a encoded in the genome, and how it may evolve. model system for studying asexual reproduction and regeneration (Bode & Bode 1984; Bode 2003). Ex- tensive work manipulating adults with excision and Methods tissue grafts resulted in models for tissue dynamics Animal care and pattern formation in Hydra (Meinhardt 1993). Adults of Hydra that undergo steady-state morpho- Adults of Nematostella vectensis were maintained genesis continually produce cells in the body column in glass or plastic dishes in 33% strength artificial that migrate to the oral and aboral poles, where they seawater (B12%) at room temperature (211–221C). differentiate into region-specific cells. Recent work Adults were fed freshly hatched nauplii (Artemia sp.) has begun characterizing the specific genes and pep- daily, and water was changed weekly. tides involved in cell differentiation and tissue pat- terning during this process (Steele 2002). Individuals Developmental observations of Hydra can regenerate after bisection or even dis- sociation into single cells, resulting in a number of Observations were performed by eye or with abnormal adult phenotypes including multiple oral the aid of a dissecting microscope (model SZX9, Invertebrate Biology vol. 126, no. 2, spring 2007 Reproduction in N. vectensis 101 Olympus, Melville, NY, USA). Images were recorded and similarly observed until regeneration was on a digital camera (Nikon CoolPix 900, Tokyo, complete. Japan) affixed to the dissecting microscope. Scanning electron micrographs were taken for developmental stages between the gastrula and the metamorphosed
Recommended publications
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1999 Academic Press. This manuscript is an author version with the final publication available and may be cited as: Young, C. M. (1999). Marine invertebrate larvae. In E. Knobil & J. D. Neill (eds.), Encyclopedia of Reproduction, 3. (pp. 89-97). London, England, and San Diego, CA: Academic Press. --------1111------- Marine Invertebrate Larvae Craig M. Young Harbor Branch Oceanographic Institution 1. What Is a Larva? metamorphOSiS Morphological and physiological changes II. The Production of Larvae that occur during the transition from the larval phase to iII. Larval forms and Diversity the juvenile phase: often coincides with settlement in ben­ IV. Larval Feeding and Nutrition thic species. V. Larval Orientation, Locomotion, Dispersal, and mixed development A developmental mode that includes a Mortality brooded or encapsulated embryonic stage as well as a free­ VI. Larval Settlement and Metamorphosis swimming larval stage. VlI. Ecological and Evolutionary Significance of Larvae planktotrophic larva A feeding larva that obtains at least part VlIl. Economic and Medical Importance of Larvae of its nutritional needs from either particulate or dissolved exogenous sources. Planktotrophic larvae generally hatch from small, transparent eggs. GLOSSARY settlement The permanent transition of a larva from the plankton to the benthos. In sessile organisms, settlement atrochal larva A uniformly ciliated larva (cilia not arranged is marked by adhesion to the substratum. It is often closely in distinct bands). associated with metamorphosis and may involve habitat se­ competent larva A larva that is physiologically and morpho­ lection.
    [Show full text]
  • Toxin-Like Neuropeptides in the Sea Anemone Nematostella Unravel Recruitment from the Nervous System to Venom
    Toxin-like neuropeptides in the sea anemone Nematostella unravel recruitment from the nervous system to venom Maria Y. Sachkovaa,b,1, Morani Landaua,2, Joachim M. Surma,2, Jason Macranderc,d, Shir A. Singera, Adam M. Reitzelc, and Yehu Morana,1 aDepartment of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, 9190401 Jerusalem, Israel; bSars International Centre for Marine Molecular Biology, University of Bergen, 5007 Bergen, Norway; cDepartment of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223; and dBiology Department, Florida Southern College, Lakeland, FL 33801 Edited by Baldomero M. Olivera, University of Utah, Salt Lake City, UT, and approved September 14, 2020 (received for review May 31, 2020) The sea anemone Nematostella vectensis (Anthozoa, Cnidaria) is a to a target receptor in the nervous system of the prey or predator powerful model for characterizing the evolution of genes func- interfering with transmission of electric impulses. For example, tioning in venom and nervous systems. Although venom has Nv1 toxin from Nematostella inhibits inactivation of arthropod evolved independently numerous times in animals, the evolution- sodium channels (12), while ShK toxin from Stichodactyla heli- ary origin of many toxins remains unknown. In this work, we pin- anthus is a potassium channel blocker (13). Nematostella’snem- point an ancestral gene giving rise to a new toxin and functionally atocytes produce multiple toxins with a 6-cysteine pattern of the characterize both genes in the same species. Thus, we report a ShK toxin (7, 9). The ShKT superfamily is ubiquitous across sea case of protein recruitment from the cnidarian nervous to venom anemones (14); however, its evolutionary origin remains unknown.
    [Show full text]
  • A Sea Anemone, <I>Edwardsia Meridionalls</I> Sp. Nov., From
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Williams, R. B., 1981. A sea anemone, Edwardsia meridionalis sp. Nov., from Antarctica and a preliminary revision of the genus Edwardsia de Quatrefages, 1841 (Coelenterata: Actiniaria). Records of the Australian Museum 33(6): 325–360. [28 February 1981]. doi:10.3853/j.0067-1975.33.1981.271 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia A SEA ANEMONE, EDWARDSIA MERIDIONALlS SP. NOV., FROM ANTARCTICA AND A PRELIMINARY REVISION OF THE GENUS EDWARDSIA DE QUATREFAGES, 1841 (COELENTERATA: ACTINIARIA). R. B. WllLIAMS 2 Carrington Place, Tring, Herts., HP23 SLA, England SUMMARY A newly recognized sea anemone, Edwardsia meridionalis sp. nov., from McMurdo Sound, Antarctica is described and compared with other Edwardsia species. Its habitat and geographical distribution are described. The generic name Edwardsia de Quatrefages, 1841 and the familial name Edwardsiidae Andres, 1881 are invalid. A summary of a proposal made to the International Commission on Zoological Nomenclature to conserve these names is given. The genus Edwardsia is defined and its known synonyms are given. A review of the published descriptions found of nominal Edwardsia species revealed many nomina nuda, nomina dubia, synonyms and homonyms. The remaining nomina clara comprize forty currently accepted nominal species, which are listed with their known synonyms and geographical distributions. The following nomenclatural changes are instituted: E. carlgreni nom. novo is proposed as a replacement name for E.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Effects of Pressure on Swimming Behavior in Planula Larvae of the Coral Porites Astreoides (Cnidaria, Scleractinia)
    Joumlllof EXPERIMENTAL MARINE BIOLOGY Journal of Experimental Marine Biology and Ecology AND ECOLOGY ELSEVIER 288 (2003) 181 - 20 1 www.elscvicr.com/locatc/jcmbc Effects of pressure on swimming behavior in planula larvae of the coral Porites astreoides (Cnidaria, Scleractinia) Joel L. Stake *, Paul W. Sammarco Department of B;%g,J: University ofLouisiana lit LlIli,yelle. Lafayette, LA 7115114. USA Louisiana Universities Marine Consortium (LUMCON). 8/24 Ilwv. 56. Chauvin, LA 711344. USA Received 8 August 2002 ; received in revised form 20 November 2002 ; accepted 15 December 2002 Abstract Mechanisms governing the behavior of coral planulae are not well understood. particularly those manifesting themselves between the time when the larvae are released and when they settle. Larvae from the hermatypic coral Porites astreoides Lamarck were exposed to different levels of hydrostatic pressure- J03.4, 206.9. 310.3, 413.8. and 517.1 kPa (including ambient pressure). Data were collected at stops of the above pressures for 15 min each, respectively. This was done in both an increasing sequence and a decreasing one. When exposed to increases in pressure from 103.4 kl'a, larvae swam upward (negative barotaxis) in a spiraling motion. Upon exposure to decreasing pressure [rom 517.1 kl'a, larvae moved downward (positive barotaxis). but the magnitude of the vertical movement was much less than in the case of increasing pressure. This suggests that these larvae are more sensitive to increased pressure than decreasing pressure. High variance was also observed in the responses of these larvae at both the intra- and inter-colony levels. Thus. this behavioral trait is variable within the population.
    [Show full text]
  • The Starlet Sea Anemone
    The Starlet Sea Anemone I. The starlet sea anemone (Nematostella vectensis)—an “emerging model system” A. The growing literature on Nematostella. A query of the Scientific Citation Index (conducted 06/26/07) identified 74 articles and reviews that contain “nematostella” in the title, keywords, or abstract. The number of such publications is increasing dramatically (Fig. 1a), as are the citations of these papers (Fig. 1b). Much of the Nematostella literature is not yet indexed; we identified another 66 published books, reviews, or articles published prior to the 1990’s that mention Nematostella. An annotated list is housed at http://nematostella.org/Resources_References. A B Figure 1. Nematostella publications (A) and citations (B) by year. B. Nematostella’s Merits as a Model System Nematostella is an estuarine sea anemone that is native to the Atlantic coast of North America. In the early 1990’s, its potential value as a model system for developmental biology was first explicitly recognized by Hand and Uhlinger [1]. Over the last 10 years, its utility has extended far beyond developmental biology due to its informative phylogenetic position, and its amenability to field studies, organismal studies, developmental studies, cellular studies, molecular and biochemical studies, genetic studies, and genomic studies [2]. 1. Phylogenetic relationships. Nematostella is a member of the Cnidaria, one of the oldest metazoan phyla. The Cnidaria is a closely related outgroup to the Bilateria, the evolutionary lineage that comprises >99% of all extant animals (Fig. 3). Comparisons between Nematostella and bilaterians have provided insights into the evolution of key animal innovations, including germ cell specification, bilateral symmetry, mesoderm, and the nervous system [3-7].
    [Show full text]
  • First Record of the Freshwater Jellyfish Craspedacusta Sowerbii
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Gredleriana Jahr/Year: 2015 Band/Volume: 015 Autor(en)/Author(s): Morpurgo Massimo, Alber Renate Artikel/Article: First record of the freshwater jellyfish Craspedacusta sowerbii Lankester, 1880 (Cnidaria: Hydrozoa: Limnomedusae) in South Tyrol (Italy) 61-64 Massimo Morpurgo & Renate Alber First record of the freshwater jellyfish Craspedacusta sowerbii LANKESTER, 1880 (Cnidaria: Hydrozoa: Limnomedusae) in South Tyrol (Italy) The Museum of Nature South Tyrol and the Biological Laboratory of the Environmental Agency of Bolzano were notified during the summer of 2015 of the presence of jellyfish in the Large Lake of Monticolo / Montiggl (46°25’20”N 11°17’21”E in the Bolzano/Bozen Province, Italy). The lake is located at 492 m a.s.l. and has a surface area of 17,8 hectares, a maximum length of about 700 m, a maximum width of about 300 m and a maximum depth of about 11,5 m. It is a natural lake of glacial origin; chemical data classify it as meso-eutrophic. On 23th August 2015 we took several underwater pictures with scuba diving equipment of a jellyfish swimming in the lake at about –0.5 m depth and we also obtained 3 live specimens. In one hour underwater (between 12 a.m. and 1 p.m.), we found only one specimen in the lake. Two others specimens had been collected the day before by a swimmer and given to the first author of this paper. One specimen has been first frozen and than fixed in formalin 4% for the scientific collection of Museum of Nature South Tyrol (C.
    [Show full text]
  • Metamorphosis in the Cnidaria1
    Color profile: Disabled Composite Default screen 1755 REVIEW/SYNTHÈSE Metamorphosis in the Cnidaria1 Werner A. Müller and Thomas Leitz Abstract: The free-living stages of sedentary organisms are an adaptation that enables immobile species to exploit scattered or transient ecological niches. In the Cnidaria the task of prospecting for and identifying a congenial habitat is consigned to tiny planula larvae or larva-like buds, stages that actually transform into the sessile polyp. However, the sensory equipment of these larvae does not qualify them to locate an appropriate habitat from a distance. They there- fore depend on a hierarchy of key stimuli indicative of an environment that is congenial to them; this is exemplified by genera of the Anthozoa (Nematostella, Acropora), Scyphozoa (Cassiopea), and Hydrozoa (Coryne, Proboscidactyla, Hydractinia). In many instances the final stimulus that triggers settlement and metamorphosis derives from substrate- borne bacteria or other biogenic cues which can be explored by mechanochemical sensory cells. Upon stimulation, the sensory cells release, or cause the release of, internal signals such as neuropeptides that can spread throughout the body, triggering decomposition of the larval tissue and acquisition of an adult cellular inventory. Progenitor cells may be preprogrammed to adopt their new tasks quickly. Gregarious settlement favours the exchange of alleles, but also can be a cause of civil war. A rare and spatially restricted substrate must be defended. Cnidarians are able to discriminate between isogeneic and allogeneic members of a community, and may use particular nematocysts to eliminate allogeneic competitors. Paradigms for most of the issues addressed are provided by the hydroid genus Hydractinia.
    [Show full text]
  • Starlet Sea Anemone (Nematostella Vectensis)
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Starlet sea anemone (Nematostella vectensis) MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Dr Harvey Tyler-Walters, Charlotte Marshall, & Angus Jackson 2017-03-08 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1136]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tyler-Walters, H., Marshall, C.E. & Jackson, A. 2017. Nematostella vectensis Starlet sea anemone. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1136.2 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2017-03-08 Starlet sea anemone (Nematostella vectensis) - Marine Life Information Network See online review for distribution map Nematostella vectensis, one individual removed from the substratum.
    [Show full text]
  • Did Internal Transport, Rather Than Directed Locomotion, Favor the Evolution of Bilateral Symmetry in Animals? John R
    Hypotheses Did internal transport, rather than directed locomotion, favor the evolution of bilateral symmetry in animals? John R. Finnerty Summary riding effect on behavior and ecology.(1,2) Animals that exhibit The standard explanation for the origin of bilateral radial symmetry are typically either sessile bottom dwellers symmetry is that it conferred an advantage over radial symmetry for directed locomotion. However, recent (e.g. hydras and sea anemones) or planktonic drifters (e.g. developmental and phylogenetic studies suggest that jellyfishes). Bilateral symmetry is associated with directed bilateral symmetry may have evolved in a sessile benthic locomotion (swimming fishes, burrowing worms, crawling animal, predating the origin of directed locomotion. An insects, etc.). The secondary loss of bilateral symmetry in evolutionarily feasible alternative explanation is that the echinoderms is associated with the loss of directed bilateral symmetry evolved to improve the efficiency of internal circulation by affecting the compartmentalization locomotion. Thus, the maintenance of bilateral symmetry in of the gut and the location of major ciliary tracts. This so many independent animal lineages over the last 500 million functional design principle is illustrated best by the years must have been driven, at least in part, by selection for phylum Cnidaria where symmetry varies from radial to directed locomotion. However, the origin of bilateral symmetry tetraradial, biradial and bilateral. In the Cnidaria, bilateral is a separate question.
    [Show full text]
  • Hidden Among Sea Anemones: the First Comprehensive Phylogenetic Reconstruction of the Order Actiniaria
    Hidden among Sea Anemones: The First Comprehensive Phylogenetic Reconstruction of the Order Actiniaria (Cnidaria, Anthozoa, Hexacorallia) Reveals a Novel Group of Hexacorals Estefanı´a Rodrı´guez1*, Marcos S. Barbeitos2,3, Mercer R. Brugler1,2,4, Louise M. Crowley1, Alejandro Grajales1,4, Luciana Gusma˜o5, Verena Ha¨ussermann6, Abigail Reft7, Marymegan Daly8 1 Division of Invertebrate Zoology, American Museum of Natural History, New York City, New York, United States of America, 2 Sackler Institute for Comparative Genomics, American Museum of Natural History, New York City, New York, United States of America, 3 Departamento de Zoologia, Universidade Federal do Parana´, Curitiba, Brazil, 4 Richard Gilder Graduate School, American Museum of Natural History, New York City, New York, United States of America, 5 Departamento de Zoologia, Universidade de Sa˜o Paulo, Sa˜o Paulo, Brazil, 6 Escuela de Ciencias del Mar, Pontificia Universidad Cato´lica de Valparaı´so, Valparaı´so, Chile, 7 Department of Molecular Evolution and Genomics, University of Heidelberg, Heidelberg, Germany, 8 Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio, United States of America Abstract Sea anemones (order Actiniaria) are among the most diverse and successful members of the anthozoan subclass Hexacorallia, occupying benthic marine habitats across all depths and latitudes. Actiniaria comprises approximately 1,200 species of solitary and skeleton-less polyps and lacks any anatomical synapomorphy. Although monophyly is anticipated based on higher-level molecular phylogenies of Cnidaria, to date, monophyly has not been explicitly tested and at least some hypotheses on the diversification of Hexacorallia have suggested that actiniarians are para- or poly-phyletic.
    [Show full text]
  • Cellular Pathways During Spawning Induction in the Starlet Sea
    www.nature.com/scientificreports OPEN Cellular pathways during spawning induction in the starlet sea anemone Nematostella vectensis Shelly Reuven1,3, Mieka Rinsky2,3, Vera Brekhman1, Assaf Malik1, Oren Levy2* & Tamar Lotan1* In cnidarians, long-term ecological success relies on sexual reproduction. The sea anemone Nematostella vectensis, which has emerged as an important model organism for developmental studies, can be induced for spawning by temperature elevation and light exposure. To uncover molecular mechanisms and pathways underlying spawning, we characterized the transcriptome of Nematostella females before and during spawning induction. We identifed an array of processes involving numerous receptors, circadian clock components, cytoskeleton, and extracellular transcripts that are upregulated upon spawning induction. Concurrently, processes related to the cell cycle, fatty acid metabolism, and other housekeeping functions are downregulated. Real-time qPCR revealed that light exposure has a minor efect on expression levels of most examined transcripts, implying that temperature change is a stronger inducer for spawning in Nematostella. Our fndings reveal the potential mechanisms that may enable the mesenteries to serve as a gonad-like tissue for the developing oocytes and expand our understanding of sexual reproduction in cnidarians. Sexual reproduction is the predominant mode of procreation in almost all eukaryotes, from fungi and plants to fsh and mammals. It generates the conditions for sexual selection, which is a powerful evolutionary force driving morphological, physiological, and behavioral changes in many species 1,2. Sex is thought to have arisen once and to have been present in the last eukaryotic common ancestor 3–5; therefore, it is an important trait in evolutionary biology.
    [Show full text]