Environmental Effects of Stratospheric Ozone Depletion, UV Radiation, And

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Effects of Stratospheric Ozone Depletion, UV Radiation, And Photochemical & Photobiological Sciences https://doi.org/10.1007/s43630-020-00001-x PERSPECTIVES Environmental efects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Efects Assessment Panel, Update 2020 R. E. Neale1 · P. W. Barnes2 · T. M. Robson3 · P. J. Neale4 · C. E. Williamson5 · R. G. Zepp6 · S. R. Wilson7 · S. Madronich8 · A. L. Andrady9 · A. M. Heikkilä10 · G. H. Bernhard11 · A. F. Bais12 · P. J. Aucamp13 · A. T. Banaszak14 · J. F. Bornman15 · L. S. Bruckman16 · S. N. Byrne17 · B. Foereid18 · D.‑P. Häder19 · L. M. Hollestein20 · W.‑C. Hou21 · S. Hylander22 · M. A. K. Jansen23 · A. R. Klekociuk24 · J. B. Liley25 · J. Longstreth26 · R. M. Lucas27 · J. Martinez‑Abaigar28 · K. McNeill29 · C. M. Olsen30 · K. K. Pandey31 · L. E. Rhodes32 · S. A. Robinson33 · K. C. Rose34 · T. Schikowski35 · K. R. Solomon36 · B. Sulzberger37 · J. E. Ukpebor38 · Q.‑W. Wang39 · S.‑Å. Wängberg40 · C. C. White41 · S. Yazar42 · A. R. Young43 · P. J. Young44 · L. Zhu45 · M. Zhu46 Received: 5 November 2020 / Accepted: 10 November 2020 © The Author(s) 2021 Abstract This assessment by the Environmental Efects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) provides the latest scientifc update since our most recent comprehensive assessment (Photochemical and Photobio- logical Sciences, 2019, 18, 595–828). The interactive efects between the stratospheric ozone layer, solar ultraviolet (UV) radiation, and climate change are presented within the framework of the Montreal Protocol and the United Nations Sustain- able Development Goals. We address how these global environmental changes afect the atmosphere and air quality; human health; terrestrial and aquatic ecosystems; biogeochemical cycles; and materials used in outdoor construction, solar energy technologies, and fabrics. In many cases, there is a growing infuence from changes in seasonality and extreme events due to climate change. Additionally, we assess the transmission and environmental efects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, in the context of linkages with solar UV radiation and the Montreal Protocol. 1 Introduction and human health (Fig. 1). Due to the Montreal Protocol, large increases in UV-B (280–315 nm) radiation have been The contribution of the Montreal Protocol to several of the avoided and global warming reduced through regulation United Nations Sustainable Development Goals (SDGs) is of the ozone depleting substances, most of which are also addressed in this EEAP 2020 Update Assessment. The SDGs potent greenhouse gases. The resulting changes in strato- and their targets are provided for a number of sustainabil- spheric ozone, ultraviolet (UV) radiation and climate are ity themes, including climate change, air and water quality, evaluated regarding the efects on humans and the environ- biodiversity and ecosystems, contaminants and materials, ment. Some of the potential consequences are assessed of recent unexpected events, such as the COVID-19 pandemic (Sect. 9), and unprecedented increases in UV radiation over Electronic supplementary material The online version of this the Arctic in 2020 due to stratospheric ozone depletion article (https ://doi.org/10.1007/s4363 0-020-00001 -x) contains (Sect. 2). supplementary material, which is available to authorized users. * J. F. Bornman [email protected] * S. Hylander [email protected] Extended author information available on the last page of the article Vol.:(0123456789)1 3 Photochemical & Photobiological Sciences Fig. 1 The Sustainable Development Goals (SDG) relevant to this ment of chemicals and wastes; 12.5 reduce waste generation; 13.1 assessment are shown outside the circle with specifc targets (num- strengthen resilience to climate-related hazards and disasters; 13.2 bers in white) linked to EEAP Working Groups (1–7, numbers in integrate climate change measures into policy; strategy and planning; black) in concentric circles. These SDG targets include: 2.3 increase 13.3 improve education on climate-change mitigation; 14.1 reduce productivity of small-scale food producers; 2.4 ensure sustainable marine pollution; 14.3 minimise impacts of ocean acidifcation; 15.1 food production systems; 2.5 maintain genetic diversity of agricul- ensure the conservation of terrestrial ecosystems; 15.3 combat deser- tural plants and animals; 3.3 end epidemics of communicable dis- tifcation; and 17.14 enhance policy coherence for sustainable devel- eases; 3.9 reduce deaths caused by air; soil and water contamination; opment. Topics covered by the EEAP Working Groups 1–7 are: (1) 6.1 achieve access to safe drinking water; 6.3 reduce water pollution; Stratospheric ozone, UV radiation and climate interactions; (2) 6.6 protect water-related ecosystems; 7.A enhance international coop- human health; (3) terrestrial ecosystems and biodiversity; (4) aquatic eration around clean energy; 9.4 upgrade industries to be sustainable; ecosystems; (5) biogeochemistry in a changing environment; (6) air 11.5 reduce deaths caused by disasters; 11.6 reduce the environmen- quality; and (7) material damage (fgure created by Emma Leslie, tal impact of cities; 12.4 achieve environmentally sound manage- Global Challenges Program, Univ. of Wollongong, Australia) 1 3 Photochemical & Photobiological Sciences 2 Stratospheric ozone, UV radiation, has been avoided due to the Montreal Protocol. This new and climate interactions study is based on a coupled atmosphere–ocean–land–sea–ice model and took into account the efect of the Montreal This section provides an update since our last assessments Protocol on emissions of ODSs that have contributed the [1, 2] on recent fndings of the interactions between strato- most to stratospheric chlorine concentrations, namely the spheric ozone, solar ultraviolet (UV) radiation and cli- chlorofuorocarbons (CFCs) CFC-11 and CFC-12, as well mate, and discusses the impact of the Montreal Protocol as the CFC substitutes HCFC-22, HFC-125 and HFC-134a. on these processes. In addition to protecting life on Earth Increases in GHG concentrations (including the concentra- from harmful UV radiation, the Montreal Protocol is also tions of these ODSs) were described in this model by the 1 highly efective in mitigating global warming because most Representative Concentration Pathway (RCP) [11] that of the ozone-depleting substances (ODSs) regulated by the leads to the strongest warming at Earth’s surface (RCP 8.5). Montreal Protocol are also potent greenhouse gases (GHGs). The study concluded that, as of 2019, implementation of the According to new quantitative estimates, the implementation Montreal Protocol has prevented warming ranging between of the Montreal Protocol has prevented between a quarter 0.5 °C and 1.0 °C over large mid-latitude regions of land, and a third of the global mean increases in air temperature, particularly parts of Africa, North America and Eurasia. depending on the time period considered. The stratospheric As much as 1.1 °C warming has been avoided over parts ozone hole over Antarctica continues to recover, with 2019 of the Arctic. In addition to quantifying benefts from the being one of the years with the lowest spring-time UV index Montreal Protocol that have already been realised, Goyal measured at the South Pole since the start of measurements et al. [10] also assessed the Montreal Protocol’s efect on in 1991. In the Arctic, springtime episodes of stratospheric the future climate for the RCP 8.5 scenario. Projected tem- ozone depletion, identifed frst in the early 2010s, continue perature increases that are likely to be averted by 2050 are to occur. The last episode in the spring of 2020 led to the on the order of 1.5 °C to 2 °C over most extrapolar land largest ozone loss measured to date and resulted in UV areas, and between 3 °C and 4 °C over the Arctic. Averaged indices that were twice as high as typical at several Arc- over the globe (including the oceans), about 1 °C warming tic locations. Additional topics discussed include: trends would be avoided by 2050, which corresponds to about 25% in measured surface UV radiation from ground-based and mitigation of global warming expected from all GHGs. The satellite data that are driven by changes in total ozone, aero- Montreal Protocol is contributing to SDG 13.2 by reducing sols and clouds; efects of Antarctic ozone depletion on the global warming. climate in the Southern Hemisphere and linkages to Aus- These benefts of the Montreal Protocol were corrobo- tralian wildfres; and projections of surface UV-B radiation rated by Polvani et al. [3] using calculations with a diferent for the second half of the twenty-frst century. This section climate model. When all known forcings (GHGs, ODSs) contributes to SDG 11.5, 12.4, 13.2, and 17.14 by providing were taken into account, the simulated global-mean air further evidence that the Montreal Protocol has protected the temperature at the surface increased by 0.59 °C between climate and the stratospheric ozone layer. 1955 and 2005. When the concentrations of ODSs and atmospheric ozone were fxed at 1955 levels, the resulting 2.1 Additional evidence has accumulated temperature change was only 0.39 °C. Hence, ODSs were that the Montreal Protocol is reducing global responsible for about one-third of global warming over warming this period. Similar calculations for the Arctic (60–90° N) resulted in temperature changes of 1.59 °C and 0.82 °C for Most ODSs controlled by the Montreal Protocol and its the two scenarios, respectively, suggesting that ODSs con- amendments are also potent GHGs with global warming tributed about one-half to the warming at the Arctic surface. potentials (GWPs) that are substantially larger than those of Changes in Arctic temperatures have a direct efect on sea . carbon dioxide (CO 2) and methane (CH4). Over the second ice loss. Polvani et al [3] concluded that ODSs contributed half of the twentieth century, all ODSs taken together were the second-most important GHG with approximately one third of the radiative forcing of CO2 [3].
Recommended publications
  • Climate Change and Human Health: Risks and Responses
    Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Ozone Layer Depletion (PDF)
    United States Air and Radiation EPA 430-F-10-027 Environmental Protection 6205J August 2010 Agency www.epa.gov/ozone/strathome.html Ozone Layer Depletion The stratospheric ozone layer forms a thin shield in the upper atmosphere, protecting life on Earth from the sun’s ultraviolet (UV) rays. It has been called the Earth’s sunscreen. In the 1980s, scientists found evidence that the ozone layer was being depleted. Depletion of the ozone layer results in increased UV radiation reaching the Earth’s surface, which in turn leads to a greater chance of overexposure to UV radiation and the related health effects of skin cancer, cataracts, and immune suppression. This fact sheet explains the importance of protecting the stratospheric ozone layer. What is Stratospheric Ozone? Ozone is a naturally-occurring gas that can be good or bad for your health and the environment depending on its location in the atmosphere. In the layer near the Earth’s surface—the troposphere— ground-level or “bad” ozone is an air pollutant that is a key ingredient of urban smog. But higher up, in the stratosphere, “good” ozone protects life on Earth by absorbing some of the sun’s UV rays. An easy way to remember this is the phrase “good up high, bad nearby.” Ozone Layer Depletion Compounds that contain chlorine and bromine molecules, such as methyl chloroform, halons, and chlorofluorocarbons (CFCs), are stable and have atmospheric lifetimes long enough to be transported by winds into Ozone “up high” in the stratosphere protects the Earth, while ozone close to the Earth’s surface is harmful.
    [Show full text]
  • Global Environmental Issues and Its Remedies
    International Journal of Sustainable Energy and Environment Vol. 1, No. 8, September 2013, PP: 120 - 126, ISSN: 2327- 0330 (Online) Available online at www.ijsee.com Research article Global Environmental Issues and its Remedies Dr. MD. Zulfequar Ahmad Khan* Address Present. Permanent Address for Correspondence *Dr. Md Zulfequar Ahmad Khan 21-B, Lane No 3, Associate Professor Jamia Nagar, Zakir Nagar, Department of Geography & Environmental Studies New Delhi-110025 Arba Minch University INDIA Arba Minch, Ethiopia. Mobile No.: +919718502867 Mobile No: +251 923934234 E-mail: [email protected] _____________________________________________________________________________________________ Abstract To the surprise of many out-spoken environmentalists, it, in fact, turns out mankind and technology actually aren’t the only significant causes of global environmental problems. However, before we start to get too comfortable and confidently assume that we as human beings are officially “off the hook,” the fact remains that several “man-made” causes play a significant role in our current, global problems trend. Many human actions affect what people value. One way in which the actions that cause global change are different from most of these is that the effects take decades to centuries to be realized. This fact causes many concerned people to consider taking action now to protect the values of those who might be affected by global environmental change in years to come. But because of uncertainty about how global environmental systems work, and because the people affected will probably live in circumstances very much different from those of today and may have different values, it is hard to know how present-day actions will affect them.
    [Show full text]
  • Chapter 1 Ozone and Climate
    1 Ozone and Climate: A Review of Interconnections Coordinating Lead Authors John Pyle (UK), Theodore Shepherd (Canada) Lead Authors Gregory Bodeker (New Zealand), Pablo Canziani (Argentina), Martin Dameris (Germany), Piers Forster (UK), Aleksandr Gruzdev (Russia), Rolf Müller (Germany), Nzioka John Muthama (Kenya), Giovanni Pitari (Italy), William Randel (USA) Contributing Authors Vitali Fioletov (Canada), Jens-Uwe Grooß (Germany), Stephen Montzka (USA), Paul Newman (USA), Larry Thomason (USA), Guus Velders (The Netherlands) Review Editors Mack McFarland (USA) IPCC Boek (dik).indb 83 15-08-2005 10:52:13 84 IPCC/TEAP Special Report: Safeguarding the Ozone Layer and the Global Climate System Contents EXECUTIVE SUMMARY 85 1.4 Past and future stratospheric ozone changes (attribution and prediction) 110 1.1 Introduction 87 1.4.1 Current understanding of past ozone 1.1.1 Purpose and scope of this chapter 87 changes 110 1.1.2 Ozone in the atmosphere and its role in 1.4.2 The Montreal Protocol, future ozone climate 87 changes and their links to climate 117 1.1.3 Chapter outline 93 1.5 Climate change from ODSs, their substitutes 1.2 Observed changes in the stratosphere 93 and ozone depletion 120 1.2.1 Observed changes in stratospheric ozone 93 1.5.1 Radiative forcing and climate sensitivity 120 1.2.2 Observed changes in ODSs 96 1.5.2 Direct radiative forcing of ODSs and their 1.2.3 Observed changes in stratospheric aerosols, substitutes 121 water vapour, methane and nitrous oxide 96 1.5.3 Indirect radiative forcing of ODSs 123 1.2.4 Observed temperature
    [Show full text]
  • Ozone: Good up High, Bad Nearby
    actions you can take High-Altitude “Good” Ozone Ground-Level “Bad” Ozone •Protect yourself against sunburn. When the UV Index is •Check the air quality forecast in your area. At times when the Air “high” or “very high”: Limit outdoor activities between 10 Quality Index (AQI) is forecast to be unhealthy, limit physical exertion am and 4 pm, when the sun is most intense. Twenty minutes outdoors. In many places, ozone peaks in mid-afternoon to early before going outside, liberally apply a broad-spectrum evening. Change the time of day of strenuous outdoor activity to avoid sunscreen with a Sun Protection Factor (SPF) of at least 15. these hours, or reduce the intensity of the activity. For AQI forecasts, Reapply every two hours or after swimming or sweating. For check your local media reports or visit: www.epa.gov/airnow UV Index forecasts, check local media reports or visit: www.epa.gov/sunwise/uvindex.html •Help your local electric utilities reduce ozone air pollution by conserving energy at home and the office. Consider setting your •Use approved refrigerants in air conditioning and thermostat a little higher in the summer. Participate in your local refrigeration equipment. Make sure technicians that work on utilities’ load-sharing and energy conservation programs. your car or home air conditioners or refrigerator are certified to recover the refrigerant. Repair leaky air conditioning units •Reduce air pollution from cars, trucks, gas-powered lawn and garden before refilling them. equipment, boats and other engines by keeping equipment properly tuned and maintained. During the summer, fill your gas tank during the cooler evening hours and be careful not to spill gasoline.
    [Show full text]
  • Environmental Effects of Ozone Depletion and Its Interactions with Climate Change: 2010 Assessment
    University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2010 Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2010 Assessment Sharon A. Robinson University of Wollongong, [email protected] Stephen R. Wilson University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Robinson, Sharon A. and Wilson, Stephen R.: Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2010 Assessment 2010. https://ro.uow.edu.au/scipapers/456 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2010 Assessment Abstract This quadrennial Assessment was prepared by the Environmental Effects Assessment Panel (EEAP) for the Parties to the Montreal Protocol. The Assessment reports on key findings on environment and health since the last full Assessment of 2006, paying attention to the interactions between ozone depletion and climate change. Simultaneous publication of the Assessment in the scientific literature aims to inform the scientific community how their data, modeling and interpretations are playing a role in information dissemination to the Parties
    [Show full text]
  • Effectiveness of Houseplants in Reducing the Indoor Air Pollutant
    as a result of increased input of the Effectiveness of Houseplants in Reducing precursors of ozone into the atmos- the Indoor Air Pollutant Ozone phere (Mustafa, 1990). Automobiles are the principal contributors to sec- ondary tropospheric ozone genera- Heather L. Papinchak1, E. Jay Holcomb2,4, tion (Maroni et al., 1995). Teodora Orendovici Best3, and Dennis R. Decoteau2 Ozone as an indoor air pollutant can be prevalent in homes and offices due to infiltration of outdoor ambient ADDITIONAL INDEX WORDS. mitigation, depletion rates, foliage air indoors (Weschler, 2000). Ozone- emitting equipment such as copy UMMARY Sansevieria trifasciata S . Three common indoor houseplants, snake plant ( ), machines, laser printers, ultraviolet spider plant (Chlorophytum comosum), and golden pothos (Epipremnum aureum), were evaluated for their species effectiveness in reducing ozone concentrations in a lighting, and some electrostatic air simulated indoor environment. Continuously stirred tank reactor (CSTR) chambers purification systems may also contrib- housed within a greenhouse equipped with a charcoal filtration air supply system ute to indoor ozone levels (Maroni were used to simulate an indoor environment in which ozone concentrations could et al., 1995; Weschler, 2000). Ozone be measured and regulated. Ozone was injected into the chambers and when generation from appliances such as concentrations reached 200 ± 5 ppb, the ozone-generating system was turned off photocopiers on average yield 5.2 and ozone concentrations over time (ozone was monitored every 5–6 min in each mgÁh–1 and laser printers on average chamber) were recorded until about <5 ppb were measured in the treatment produce 1.2 mgÁh–1; however, con- chamber. On average, ozone depletion time (time from when the ozone generating centrations could vary based on < system was turned off at 200 ppb to 5 ppb in the chamber) ranged from 38 to equipment maintenance (Black and 120 min per evaluation.
    [Show full text]
  • The Ozone Layer Our Global Sunscreen by Mike Carlowicz
    The Ozone Layer Our Global Sunscreen By Mike Carlowicz t’s not often that scientists get to conduct experiments that seem like they come out of a A good idea with a science fiction novel or a video game. Yet, that is what some researchers at NASA did a few bad outcome years ago. Atmospheric physicists Paul Newman and Luke Oman built a simulation of the Earth’s The experiments run by Newman and atmosphere and then proceeded to strip away our protective ozone layer. Their computer colleagues were actually extensions of an model reproduced the chemistry and circulation of the air; natural variations in temperatures and experiment that humans have been unwit- winds; and minor changes in the energy received from the sun. Newman and Oman then added tingly running with Earth for nearly a cen- ozone-destroying chemicals to the atmosphere at a rate of 3% more per year—on top of what tury. Humans have been depleting the ozone was already in our 1970s atmosphere. For several months, they ran their model on a supercom- layer with chemical products. puter and reproduced about 80 years of simulated Earth time. They called their experiment “The The unintentional experiment started World Avoided.” in the late 1920s, when Thomas Midgley By the year 2020 in the simulation, 17% of the Earth’s protective ozone layer vanished. Holes Jr. and other industrial chemists began to in the ozone layer formed not just over Antarctica—as they currently do each spring—but over produce chlorofluorocarbons (CFCs), non- the Arctic, too. By 2040, the ultraviolet (UV) index, the measure of the sunburn-causing radiation toxic compounds that improved refrigera- reaching the Earth’s surface, rose as high as 15 on summer days in mid-latitude cities such as tion.
    [Show full text]
  • UV Radiation (PDF)
    United States Air and Radiation EPA 430-F-10-025 Environmental Protection 6205J June 2010 Agency www.epa.gov/ozone/strathome.html UV Radiation This fact sheet explains the types of ultraviolet radiation and the various factors that can affect the levels reaching the Earth’s surface. The sun emits energy over a broad spectrum of wavelengths: visible light that you see, infrared radiation that you feel as heat, and ultraviolet (UV) radiation that you can’t see or feel. UV radiation has a shorter wavelength and higher energy than visible light. It affects human health both positively and negatively. Short exposure to UVB radiation generates vitamin D, but can also lead to sunburn depending on an individual’s skin type. Fortunately for life on Earth, our atmosphere’s stratospheric ozone layer shields us from most UV radiation. What does get through the ozone layer, however, can cause the following problems, particularly for people who spend unprotected time outdoors: ● Skin cancer ● Suppression of the immune system ● Cataracts ● Premature aging of the skin Did You Since the benefits of sunlight cannot be separated from its damaging effects, it is important to understand the risks of overexposure, and take simple precautions to protect yourself. Know? Types of UV Radiation Ultraviolet (UV) radiation, from the Scientists classify UV radiation into three types or bands—UVA, UVB, and UVC. The ozone sun and from layer absorbs some, but not all, of these types of UV radiation: ● tanning beds, is UVA: Wavelength: 320-400 nm. Not absorbed by the ozone layer. classified as a ● UVB: Wavelength: 290-320 nm.
    [Show full text]
  • Stratospheric Ozone Protection: 30 Years of Progress and Achievements
    Stratospheric Ozone Protection: 30 Years of Progress and Achievements United States Environmental Protection Agency Office of Air and Radiation 1200 Pennsylvania Avenue, NW (6205T) Washington, DC 20460 https://www.epa.gov/ozone-layer-protection EPA-430-F-17-006 November 2017 Page 2 Stratospheric Ozone Protection 30 Years of Progress and Achievements Stratospheric Ozone Protection: 30 Years of Progress and Achievements Introduction Overexposure to ultraviolet (UV) radiation is a (CFCs), which were widely used in a variety of threat to human health. It can cause skin damage, industrial and household applications, such as eye damage, and even suppress the immune sys- aerosol sprays, plastic foams, and the refriger- tem. UV overexposure also interferes with envi- ant in refrigerators, air conditioning units in cars ronmental cycles, affecting organisms—such as and buildings, and elsewhere. plants and phytoplankton—that move nutrients and energy through the biosphere. Scientific observations of the rapid thinning of the ozone layer over Antarctica from the late In the 1970s, scientists discovered that Earth’s 1970s onward—often referred to as the “ozone primary protection from UV radiation, the strato- hole”—catalyzed international action to dis- spheric ozone layer, was thinning as a result of continue the use of CFCs. In 1987, the United the use of chemicals that contained chlorine States joined 23 other countries and the Euro- and bromine, which when broken down could pean Union to sign the Montreal Protocol on destroy ozone molecules. The
    [Show full text]
  • The Arctic Ozone Layer
    The Arctic Ozone Layer How the Arctic Ozone Layer is Responding to Ozone-Depleting Chemicals and Climate Change Photographs are the property of the EC ARQX picture archive. Special permission was obtained from Mike Harwood (p. vii: Muskoxen on Ellesmere Island), Richard Mittermeier (pp. vii, 12: Sunset from the Polar Environment Atmospheric Research Laboratory), Angus Fergusson (p. 4: Iqaluit; p. 8: Baffin Island), Yukio Makino (p. vii: Instrumentation and scientist on top of the Polar Environment Atmospheric Research Laboratory), Tomohiro Nagai (p. 25: Figure 20), and John Bird (p. 30: Polar Environment Atmospheric Research Laboratory). To obtain additional copies of this report, write to: Angus Fergusson Science Assessments Section Science & Technology Integration Division Environment Canada 4905 Dufferin Street Toronto ON M3H 5T4 Canada Please send feedback, comments and suggestions to [email protected] © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2010. Catalogue No.: En164-18/2010E ISBN: 978-1-100-10787-5 Aussi disponible en français The Arctic Ozone Layer How the Arctic Ozone Layer is Responding to Ozone-Depleting Chemicals and Climate Change by Angus Fergusson Acknowledgements The author wishes to thank David Wardle, Ted Shepherd, Norm McFarlane, Nathan Gillett, John Scinocca, Darrell Piekarz, Ed Hare, Elizabeth Bush, Jacinthe Lacroix and Hans Fast for their valuable advice and assistance during the preparation of this manuscript. i Contents Summary ....................................................................................................................................................
    [Show full text]
  • Ozone Depletion and Climate Change
    Environment Environnement Canada Canada OzoneOzone DepletionDepletion andand ClimateClimate Change:Change: UnderstandingUnderstanding thethe LinkagesLinkages Angus Fergusson Meteorological Service of Canada Published by authority of the Minister of the Environment Copyright © Minister of Public Works and Government Services Canada, 2001 Catalogue No. EN56-168/2001E ISBN: 0-662-30692-9 Également disponible en français Author: Angus Fergusson (Environment Canada) Editing: David Francis (Lanark House Communications) David Wardle / Jim Kerr (Environment Canada) Contributing Authors: Bruce McArthur (Environment Canada): Bratt Lake Observatory David Tarasick (Environment Canada): Canadian Middle Atmosphere Model Tom McElroy (Environment Canada): MANTRA Project Special thanks for comments to: Vitali Fioletov (Environment Canada) Hans Fast (Environment Canada) Pictures: Angus Fergusson (Environment Canada) John Bird (Environment Canada) Brent Colpitts Ray Jackson Layout and Design: BTT Communications Additional copies may be obtained, free of charge, from: Angus Fergusson Science Assessment and Integration Branch Meteorological Service of Canada 4905 Dufferin Street Downsview, Ontario M3H 5T4 E-mail: [email protected] Table of Contents Summary 2 Introduction 4 The Atmosphere and its Radiative Effects 6 The Dynamics of the Atmosphere 10 The Chemistry of the Atmosphere 12 Biogeochemical Linkages: The Impact of Increased UV Radiation 14 Canadian Research and Monitoring 16 Implications for Policy 20 The Research Agenda 22 Making Connections 26 Bibliography 28 Figure 1. Compared to the earth itself, the earth’s atmosphere as seen from space looks remarkably thin, much like the skin on an apple. In this photograph, the two lowest layers of the atmosphere, the troposphere and the stratosphere, are clearly visible. The stratosphere is home to the ozone layer that protects life on earth from intense ultraviolet radiation.
    [Show full text]