Investigating Two Component Regulatory Systems for The

Total Page:16

File Type:pdf, Size:1020Kb

Investigating Two Component Regulatory Systems for The Investigating Two Component Regulatory Systems for the Determination of Adaptive Responses in A. baumannii. By LAURA PAULINE EVANS A thesis submitted to the University of Birmingham for the degree of MASTER OF PHILOSOPHY. Antimicrobial Agents Research Group School of Immunity and Infection College of Medical and Dental Sciences University Of Birmingham October 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract To investigate the role of the two component systems AdeRS and PmrAB in adaptation to the presence of antimicrobials, adeRS and pmrAB were deleted in multi-drug resistant Acinetobacter baumannii strain AYE. The effect of deleting these genes on antimicrobial susceptibility, growth, accumulation, virulence and ability to form a biofilm was investigated. The deletion of adeRS and pmrAB had no effect on bacterial growth or the accumulation of Hoechst 33342 (bis-benzimide). AYEΔpmrAB, but not AYEΔadeRS, accumulated significantly more norfloxacin than AYE. All strains accumulated more norfloxacin in the presence of the efflux inhibitor carbonyl cyanide m-chlorophenylhydrazone. AYE∆adeRS and AYE∆pmrAB, but not AYE, accumulated more norfloxacin in the presence of verapamil. AYEΔadeRS was more susceptible than AYE to antibiotics and biocides and both strains in biofilm were more tolerant of biocides than their planktonic counterparts. Deletion of pmrAB had no effect on antibiotic susceptibility. AYE was more virulent than both AYE∆adeRS and AYE∆pmrAB. The results of this study suggest that in strain AYE, adeRS are not essential for efflux of norfloxacin or Hoechst 33342 and that pmrAB are involved in the accumulation of some compounds. Both AdeRS and PmrAB are important for virulence and AdeRS has a role in antimicrobial susceptibility. Acknowledgements Nothing could have prepared me for this rollercoaster ride and what an experience! I have worked with many people in ARG and TDG who will continue to inspire me for years to come. Laura, thank you for believing in me, answering my numerous questions and helping me find a higher gear when I already thought I was running at full speed! Thank you also to Vito for your advice and support, I could not have done it without you. Mark and Matt at the HPA, you were full of enthusiasm and encouragement and I thoroughly enjoyed working with you. I must also thank my friends and family who shared my highs and lows and ensured that I started each day smiling. This includes Lucy and Rui who became my second family and gave me an even greater love of cooking! Life is full of opportunities, but it is often the people you meet along the way that make them unforgettable - thanks to you all. For Amelia, my greatest inspiration of all Contents 1. Introduction......................................................................................................................... 1 1.1 Acinetobacter ............................................................................................................... 1 1.1.1 Different Species of Acinetobacter .......................................................................... 2 1.1.1.1 AYE ........................................................................................................................ 6 1.1.2 Physiology ................................................................................................................. 6 1.1.3 Habitat ...................................................................................................................... 7 1.1.4 Disease ..................................................................................................................... 8 1.1.4.1 Pathogenicity ........................................................................................................ 8 1.1.4.2 Virulence ............................................................................................................... 9 1.1.5 Treatment ............................................................................................................... 13 1.2. Antimicrobial resistance ............................................................................................ 18 1.2.1. Antibiotic and biocide resistance in Gram Negative Bacteria................................ 18 1.2.1.1. Chromosomal vs. Transmissible Resistance ....................................................... 18 1.2.1.2. Brief Overview of Mechanisms of Resistance .................................................... 19 1.2.2 Antibiotic Resistance and Mechanisms in Acinetobacter baumannii .................... 22 1.2.2.1 β-lactams ............................................................................................................ 24 1.2.2.2 Fluoroquinolones ................................................................................................ 25 1.2.2.3 Polymyxins .......................................................................................................... 26 1.2.2.4 Aminoglycosides ................................................................................................. 27 1.2.2.5. Tetracycline, Chloramphenicol and Tigecycline ................................................. 27 1.2.2.6. Biocides ............................................................................................................... 28 1.2.2.7. Multidrug Resistance .......................................................................................... 29 1.2.2.7.1. Efflux ............................................................................................................... 30 1.3. Two Component Systems .......................................................................................... 32 1.3.1. Signal Transduction ................................................................................................ 33 1.3.2. Two Component Systems in Acinetobacter ........................................................... 37 1.3.2.1 TCSs in Antibiotic and Biocide Resistance .......................................................... 38 1.3.2.1.1 AdeRS .................................................................................................................. 38 1.3.2.1.2 Other TCSs in Antibiotic and Biocide Resistance ................................................ 43 1.3.2.2 TCSs in Acinetobacter Not Involved in Antibiotic or Biocide Resistance ............ 49 1.4 Methods to Study Acinetobacter ............................................................................... 50 1.4.1 Genetic Manipulation in A. baumannii .................................................................. 50 1.4.2 Virulence Models ................................................................................................... 53 1.5 Background to the Project ......................................................................................... 54 1.5.1 Overview ................................................................................................................ 54 1.5.2. Hypotheses to be Tested ........................................................................................ 54 1.5.3. Aims and Objectives ............................................................................................... 55 2. Materials and Methods ..................................................................................................... 57 2.1. Bioinformatics ............................................................................................................ 57 2.1.1. Comparison of A. baumannii Genomes ................................................................. 57 2.1.2. Identification of TCS genes in AYE .......................................................................... 57 2.2. Bacterial Strains, Growth, Storage and Identification ............................................... 59 2.3. DNA Extraction, Purification, Quantification and Sequencing .................................. 64 All DNA sequencing was carried out by the Functional Genomics, Proteomics and Metabolomics Facility, University of Birmingham. .............................................................. 66 2.4. Inactivation of Histidine Kinase Genes in A. baumannii AYE ..................................... 66 2.4.1. Construction of pMo130-TelR/UPDOWN ............................................................... 66 2.4.1.1. Primer design ...................................................................................................... 66 2.4.1.2. Cloning ................................................................................................................ 70 2.4.1.3. Verification of Construct .................................................................................... 75 2.4.2. Transfer of pMo130-TelR/UPDOWN into S17-1 by Transformation ...................... 76 2.4.3. Transfer of pMo130-TelR/UPDOWN into AYE by Conjugation and Selection of Deletion Mutants .................................................................................................................
Recommended publications
  • Evolutionary Genomics of Conjugative Elements and Integrons
    Université Paris Descartes École doctorale Interdisciplinaire Européenne 474 Frontières du Vivant Microbial Evolutionary Genomic, Pasteur Institute Evolutionary genomics of conjugative elements and integrons Thèse de doctorat en Biologie Interdisciplinaire Présentée par Jean Cury Pour obtenir le grade de Docteur de l’Université Paris Descartes Sous la direction de Eduardo Rocha Soutenue publiquement le 17 Novembre 2017, devant un jury composé de: Claudine MÉDIGUE Rapporteure CNRS, Genoscope, Évry Marie-Cécile PLOY Rapporteure Université de Limoges Érick DENAMUR Examinateur Université Paris Diderot, Paris Philippe LOPEZ Examinateur Université Pierre et Marie Curie, Paris Alan GROSSMAN Examinateur MIT, Cambdridge, USA Eduardo ROCHA Directeur de thèse CNRS, Institut Pasteur, Paris ِ عمحمود ُبدرويش َالنرد َم ْن انا ِٔ َقول ُلك ْم ما ا ُقول ُلك ْم ؟ وانا لم أ ُك ْن َ َج ًرا َص َق َل ْت ُه ُالمياه َفأ ْص َب َح ِوهاً و َق َصباً َثق َب ْت ُه ُالرياح َفأ ْص َب َح ًنايا ... انا ِع ُب َالن ْرد ، ا َرب ُح يناً وا َس ُر يناً انا ِم ُثل ُك ْم ا وا قل قليً ... The dice player Mahmoud Darwish Who am I to say to you what I am saying to you? I was not a stone polished by water and became a face nor was I a cane punctured by the wind and became a lute… I am a dice player, Sometimes I win and sometimes I lose I am like you or slightly less… Contents Acknowledgments 7 Preamble 9 I Introduction 11 1 Background for friends and family . 13 2 Horizontal Gene Transfer (HGT) . 16 2.1 Mechanisms of horizontal gene transfer .
    [Show full text]
  • Epidemiological and Molecular Analysis of Virulence and Antibiotic Resistance in Acinetobacter Baumannii
    UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA DEPARTAMENTO DE BIOQUÍMICA Y BIOLOGÍA MOLECULAR IV TESIS DOCTORAL Epidemiological and Molecular Analysis of Virulence and Antibiotic Resistance in Acinetobacter baumannii Análisis Epidemiológico y Molecular de la Virulencia y la Antibiorresistencia en Acinetobacter baumannii MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Elias Dahdouh DIRECTORA Mónica Suárez Rodríguez Madrid, 2017 © Elias Dahdouh, 2016 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA DEPARTAMENTO DE BIOQUIMICA Y BIOLOGIA MOLECULAR IV TESIS DOCTORAL Análisis Epidemiológico y Molecular de la Virulencia y la Antibiorresistencia en Acinetobacter baumannii Epidemiological and Molecular Analysis of Virulence and Antibiotic Resistance in Acinetobacter baumannii MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Elias Dahdouh Directora Mónica Suárez Rodríguez Madrid, 2016 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA Departamento de Bioquímica y Biología Molecular IV ANALYSIS EPIDEMIOLOGICO Y MOLECULAR DE LA VIRULENCIA Y LA ANTIBIORRESISTENCIA EN Acinetobacter baumannii EPIDEMIOLOGICAL AND MOLECULAR ANALYSIS OF VIRULENCE AND ANTIBIOTIC RESISTANCE IN Acinetobacter baumannii MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Elias Dahdouh Bajo la dirección de la doctora Mónica Suárez Rodríguez Madrid, Diciembre de 2016 First and foremost, I would like to thank God for the continued strength and determination that He has given me. I would also like to thank my father Abdo, my brother Charbel, my fiancée, Marisa, and all my friends for their endless support and for standing by me at all times. Moreover, I would like to thank Dra. Monica Suarez Rodriguez and Dr. Ziad Daoud for giving me the opportunity to complete this doctoral study and for their guidance, encouragement, and friendship.
    [Show full text]
  • The Microbiota Continuum Along the Female Reproductive Tract and Its Relation to Uterine-Related Diseases
    ARTICLE DOI: 10.1038/s41467-017-00901-0 OPEN The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases Chen Chen1,2, Xiaolei Song1,3, Weixia Wei4,5, Huanzi Zhong 1,2,6, Juanjuan Dai4,5, Zhou Lan1, Fei Li1,2,3, Xinlei Yu1,2, Qiang Feng1,7, Zirong Wang1, Hailiang Xie1, Xiaomin Chen1, Chunwei Zeng1, Bo Wen1,2, Liping Zeng4,5, Hui Du4,5, Huiru Tang4,5, Changlu Xu1,8, Yan Xia1,3, Huihua Xia1,2,9, Huanming Yang1,10, Jian Wang1,10, Jun Wang1,11, Lise Madsen 1,6,12, Susanne Brix 13, Karsten Kristiansen1,6, Xun Xu1,2, Junhua Li 1,2,9,14, Ruifang Wu4,5 & Huijue Jia 1,2,9,11 Reports on bacteria detected in maternal fluids during pregnancy are typically associated with adverse consequences, and whether the female reproductive tract harbours distinct microbial communities beyond the vagina has been a matter of debate. Here we systematically sample the microbiota within the female reproductive tract in 110 women of reproductive age, and examine the nature of colonisation by 16S rRNA gene amplicon sequencing and cultivation. We find distinct microbial communities in cervical canal, uterus, fallopian tubes and perito- neal fluid, differing from that of the vagina. The results reflect a microbiota continuum along the female reproductive tract, indicative of a non-sterile environment. We also identify microbial taxa and potential functions that correlate with the menstrual cycle or are over- represented in subjects with adenomyosis or infertility due to endometriosis. The study provides insight into the nature of the vagino-uterine microbiome, and suggests that sur- veying the vaginal or cervical microbiota might be useful for detection of common diseases in the upper reproductive tract.
    [Show full text]
  • Exploring the Microbiome: Diversity of the Microbial Community of Three Foam Nesting Frogs, Genus: Polypedates, Across a Developmental Gradient Sarah Mcgrath
    James Madison University JMU Scholarly Commons Masters Theses The Graduate School Summer 2018 Exploring the microbiome: diversity of the microbial community of three foam nesting frogs, Genus: Polypedates, across a developmental gradient Sarah McGrath Follow this and additional works at: https://commons.lib.jmu.edu/master201019 Part of the Environmental Microbiology and Microbial Ecology Commons, and the Other Microbiology Commons Recommended Citation McGrath, Sarah, "Exploring the microbiome: diversity of the microbial community of three foam nesting frogs, Genus: Polypedates, across a developmental gradient" (2018). Masters Theses. 575. https://commons.lib.jmu.edu/master201019/575 This Thesis is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in Masters Theses by an authorized administrator of JMU Scholarly Commons. For more information, please contact [email protected]. Exploring the microbiome: diversity of the microbial community of three foam nesting frogs, Genus: Polypedates, across a developmental gradient Sarah McGrath A thesis submitted to the Graduate Faculty of JAMES MADISON UNIVERSITY In Partial Fulfillment of the Requirements for the degree of Master of Science Department of Biology August 2018 FACULTY COMMITTEE: Committee Chair: Dr. David S. McLeod Committee Members/Readers: Dr. Morgan Steffen Dr. Reid Harris Dedication This work is dedicated to my father, John Robinson McGrath, for instilling in me a love of nature; my mother, Susanna Terrell McGrath, for continuously demonstrating that hard work pays off; Nicholas Blaser, for being an unwavering source of support; and Jennifer A. Sheridan, for providing me with my first opportunity to fully understand the demand and intricacy of tropical fieldwork.
    [Show full text]
  • Identification, Molecular Epidemiology, and Antibiotic Resistance Characterization of Acinetobacter Spp
    FACULTY OF HEALTH SCIENCES DEPARTMENT OF MEDICAL BIOLOGY UNIVERSITY HOSPITAL OF NORTH NORWAY DEPARTMENT OF MICROBIOLOGY AND INFECTION CONTROL REFERENCE CENTRE FOR DETECTION OF ANTIMICROBIAL RESISTANCE Identification, molecular epidemiology, and antibiotic resistance characterization of Acinetobacter spp. clinical isolates Nabil Karah A dissertation for the degree of Philosophiae Doctor June 2011 Acknowledgments The work presented in this thesis has been carried out between January 2009 and September 2011 at the Reference Centre for Detection of Antimicrobial Resistance (K-res), Department of Microbiology and Infection Control, University Hospital of North Norway (UNN); and the Research Group for Host–Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø (UIT), Tromsø, Norway. I would like to express my deep and truthful acknowledgment to my main supervisor Ørjan Samuelsen. His understanding and encouraging supervision played a major role in the success of every experiment of my PhD project. Dear Ørjan, I am certainly very thankful for your indispensible contribution in all the four manuscripts. I am also very grateful to your comments, suggestions, and corrections on the present thesis. I am sincerely grateful to my co-supervisor Arnfinn Sundsfjord for his important contribution not only in my MSc study and my PhD study but also in my entire career as a “Medical Microbiologist”. I would also thank you Arnfinn for your nonstop support during my stay in Tromsø at a personal level. My sincere thanks are due to co-supervisors Kristin Hegstad and Gunnar Skov Simonsen for the valuable advice, productive comments, and friendly support. I would like to thank co-authors Christian G.
    [Show full text]
  • PDF-Document
    SUPPLEMENTARY DATA Characterization of microbial communities associated with ceramic raw materials as potential contributors for the improvement of ceramic rheological properties Angela M. Garcia-Sanchez 1, Bernardino Machado-Moreira 2, Mário Freire 3, Ricardo Santos 3, Sílvia Monteiro 3, Diamantino Dias 4, Orquídia Neves 2, Amélia Dionísio 2 and Ana Z. Miller 5* 1 Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville. Profesor García González 2, 41012 Seville, Spain; 2 CERENA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal; 3 Laboratorio de Análises do Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; 4 Rauschert Portuguesa, SA., Estrada Nacional 249-4, Trajouce, 2785-653 São Domingos de Rana, Portugal; 5 Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Sevilla, Spain; 6 HERCULES Laboratory, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal. * Correspondence: [email protected] The Supplementary data include: Figure S1. Rarefaction curves. Table S1. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 1A (74 sequences, 64 OTUs). Table S2. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 2B (69 sequences, 51 OTUs). Table S3. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 4D (80 sequences, 54 OTUs). Table S4. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 6F (86 sequences, 38 OTUs). Table S5. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 7G (79 sequences, 48 OTUs).
    [Show full text]
  • The Presence and Role of Secondary Metabolites in Biofilm Forming Bacteria Isolated from Activated Sludge
    The Presence and Role of Secondary Metabolites in Biofilm Forming Bacteria Isolated from Activated Sludge by Önder Kimyon A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biotechnology and Biomolecular Sciences Faculty of Science The University of New South Wales Sydney, Australia January 2017 1 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Kimyon First name: Önder Other name/s: Abbreviation for degree as given in the University calendar: PhD School: Shool of Biotechnology and Biomolecular Sciences Faculty: Science Title: Mr. Abstract 350 words maximum: (PLEASE TYPE) Biofilms are known as highly-structured microbial aggregates encased in a self-produced matrix composed of extracellular polymeric substances. Bacteria commonly grow in surface-associated (inert or organic) or suspended biofilms (bioflocs) in their natural environment. The role of secondary metabolites in regulation of bacterial biofilm formation has been frequently studied, however, there is still much to be learned regarding the role of secondary metabolites in biofilm communities given the diversity of secondary metabolites produced by bacteria. The thesis presented here explores the presence and role of secondary metabolites in biofilm forming bacteria, including an interplay between N-acetylglucosamine (NAG) and acylated homoserine lactone mediated gene expression. This thesis investigated the presence of quorum sensing (QS) and chitinase activities in chitin colonising bacteria isolated from activated sludge. The culture collection was dominated by Gammaproteobacteria, and QS, quorum quenching and chitinase activities are shown to be common among isolated bacteria. Further, a novel AHL-detection method was developed through modification of currently used AHL screening techniques.
    [Show full text]
  • The Environmental Acinetobacter Baumannii Isolate DSM30011
    GBE The Environmental Acinetobacter baumannii Isolate DSM30011 Reveals Clues into the Preantibiotic Era Genome Diversity, Virulence Potential, and Niche Range of a Predominant Nosocomial Pathogen Guillermo D. Repizo1,2,*, Alejandro M. Viale2,Vıtor Borges3,Marıa M. Cameranesi2, Najwa Taib4, Martın Espariz2,Ce´lineBrochier-Armanet4,Joao~ Paulo Gomes3, and Suzana P. Salcedo1 1Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, University of Lyon, France 2Departamento de Microbiologia, Instituto de Biologia Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Argentina 3Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal 4Laboratoire de Biome´ trie et Biologie Evolutive, Univ. Lyon, Universite´ Lyon 1, CNRS, UMR5558, Villeurbanne, France *Corresponding author: E-mail: [email protected]. Accepted: August 24, 2017 Data deposition: The whole genome shotgun project for A. baumannii DSM30011 has been deposited at DDBJ/ENA/GenBank under the accession JJOC00000000. The version described in this paper is version JJOC02000000. Abstract Acinetobacter baumannii represents nowadays an important nosocomial opportunistic pathogen whose reservoirs outside the clinical setting are obscure. Here, we traced the origins of the collection strain A. baumannii DSM30011 to an isolate first reported in 1944, obtained from the enriched microbiota responsible of the aerobic decomposition of the resinous desert shrub guayule. Whole-genome sequencing and phylogenetic analysis based on core genes confirmed DSM30011 affiliation to A. baumannii. Comparative studies with 32 complete A. baumannii genomes revealed the presence of 12 unique accessory chromosomal regions in DSM30011 including five encompassing phage-related genes, five containing toxin genes of the type-6 secretion system, and one with an atypical CRISPRs/cas cluster.
    [Show full text]
  • Exploring Coral Microbiome Assemblages in the South China
    www.nature.com/scientificreports OPEN Exploring coral microbiome assemblages in the South China Sea Lin Cai1, Ren-Mao Tian1, Guowei Zhou1,2, Haoya Tong1, Yue Him Wong1, Weipeng Zhang1, Apple Pui Yi Chui3, James Y. Xie4, Jian-Wen Qiu 4, Put O. Ang3, Sheng Liu2, Hui Huang2 & 1 Received: 21 July 2017 Pei-Yuan Qian Accepted: 18 January 2018 Coral reefs are signifcant ecosystems. The ecological success of coral reefs relies on not only coral-algal Published: xx xx xxxx symbiosis but also coral-microbial partnership. However, microbiome assemblages in the South China Sea corals remain largely unexplored. Here, we compared the microbiome assemblages of reef-building corals Galaxea (G. fascicularis) and Montipora (M. venosa, M. peltiformis, M. monasteriata) collected from fve diferent locations in the South China Sea using massively-parallel sequencing of 16S rRNA gene and multivariate analysis. The results indicated that microbiome assemblages for each coral species were unique regardless of location and were diferent from the corresponding seawater. Host type appeared to drive the coral microbiome assemblages rather than location and seawater. Network analysis was employed to explore coral microbiome co-occurrence patterns, which revealed 61 and 80 co-occurring microbial species assembling the Galaxea and Montipora microbiomes, respectively. Most of these co-occurring microbial species were commonly found in corals and were inferred to play potential roles in host nutrient metabolism; carbon, nitrogen, sulfur cycles; host detoxifcation; and climate change. These fndings suggest that the co-occurring microbial species explored might be essential to maintain the critical coral-microbial partnership. The present study provides new insights into coral microbiome assemblages in the South China Sea.
    [Show full text]
  • Characterization of the Skin Cultivable Microbiota Composition of the Frog Pelophylax Perezi Inhabiting Different Environments
    International Journal of Environmental Research and Public Health Article Characterization of the Skin Cultivable Microbiota Composition of the Frog Pelophylax perezi Inhabiting Different Environments Diogo Neves Proença 1,† , Emanuele Fasola 2,† , Isabel Lopes 2 and Paula V. Morais 1,* 1 Department of Life Sciences and Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; [email protected] 2 CESAM and Department of Biology, University of Aveiro, 3810-005 Aveiro, Portugal; [email protected] (E.F.); [email protected] (I.L.) * Correspondence: [email protected]; Tel.: +35-1239240700 † Diogo Neves Proença and Emanuele Fasola contributed equally to this work. Abstract: Microorganisms that live in association with amphibian skin can play important roles in protecting their host. Within the scenarios of global change, it is important to understand how environmental disturbances, namely, metal pollution, can affect this microbiota. The aim of this study is to recognize core bacteria in the skin cultivable microbiota of the Perez frog (Pelophylax perezi) that are preserved regardless of the environmental conditions in which the frogs live. The characterization of these isolates revealed characteristics that can support their contributions to the ability of frogs to use metal impacted environments. Frog’s skin swabs were collected from P. perezi populations that inhabit a metal-polluted site and three reference (non-metal polluted) sites. Bacterial strains were isolated, identified, and subjected to an acid mine drainage tolerance Citation: Proença, D.N.; Fasola, E.; (AMD) test, collected upstream from a site heavily contaminated with metals, and tested to produce Lopes, I.; Morais, P.V.
    [Show full text]
  • Downloaded from Genbank to Female Eclosion at 9 Days
    ORIGINAL RESEARCH published: 02 June 2021 doi: 10.3389/fmicb.2021.670383 Gut Bacterial Diversity in Different Life Cycle Stages of Adelphocoris suturalis (Hemiptera: Miridae) Hui Xue 1,2, Xiangzhen Zhu 1,2, Li Wang 1,2, Kaixin Zhang 1,2, Dongyang Li 1,2, Jichao Ji 1,2, Lin Niu 1,2, Changcai Wu 1,2, Xueke Gao 1,2*, Junyu Luo 1,2* and Jinjie Cui 1,2* 1 State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China, 2 Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China Bacteria and insects have a mutually beneficial symbiotic relationship. Bacteria participate in several physiological processes such as reproduction, metabolism, and detoxification Edited by: Adly M. M. Abdalla, of the host. Adelphocoris suturalis is considered a pest by the agricultural industry and International Atomic Energy Agency, is now a major pest in cotton, posing a serious threat to agricultural production. As with Vienna, Austria many insects, various microbes live inside A. suturalis. However, the microbial composition Reviewed by: Mohammad Mehrabadi, and diversity of its life cycle have not been well-studied. To identify the species and Tarbiat Modares University, Iran community structure of symbiotic bacteria in A. suturalis, we used the HiSeq platform to Monica Rosenblueth, perform high-throughput sequencing of the V3–V4 region in the 16S rRNA of symbiotic National Autonomous University of Mexico, Mexico bacteria found in A. suturalis throughout its life stages. Our results demonstrated that *Correspondence: younger nymphs (1st and 2nd instar nymphs) have higher species richness.
    [Show full text]
  • CARACTERIZAÇÃO DE Acinetobacter Spp. MULTIRRESISTENTES PRODUTORES DE CARBAPENEMASES, DOS TIPOS OXA E NDM, ISOLADOS DE DIFERENTES REGIÕES DO BRASIL
    MINISTÉRIO DA SAÚDE FUNDAÇÃO OSWALDO CRUZ INSTITUTO OSWALDO CRUZ Doutorado no Programa de Pós-Graduação em Medicina Tropical CARACTERIZAÇÃO DE Acinetobacter spp. MULTIRRESISTENTES PRODUTORES DE CARBAPENEMASES, DOS TIPOS OXA E NDM, ISOLADOS DE DIFERENTES REGIÕES DO BRASIL THIAGO PAVONI GOMES CHAGAS Rio de Janeiro Outubro de 2015 INSTITUTO OSWALDO CRUZ Programa de Pós-Graduação em Medicina Tropical THIAGO PAVONI GOMES CHAGAS Caracterização de Acinetobacter spp. multirresistentes produtores de carbapenemases, dos tipos OXA e NDM, isolados de diferentes regiões do Brasil Tese apresentada ao Instituto Oswaldo Cruz como parte dos requisitos para obtenção do título de Doutor em Ciências (Medicina Tropical). Orientador: Profª. Drª. Marise Dutra Asensi RIO DE JANEIRO Outubro de 2015 Ficha catalográfica elaborada pela Biblioteca de Ciências Biomédicas/ ICICT / FIOCRUZ - RJ C433 Chagas, Thiago Pavoni Gomes Caracterização de Acinetobacter spp. multirresistentes produtores de carbapenemases, dos tipos OXA e NDM, isolados de diferentes regiões do Brasil / Thiago Pavoni Gomes Chagas. – Rio de Janeiro, 2015. xiii, 118 f. : il. ; 30 cm. Tese (Doutorado) – Instituto Oswaldo Cruz, Pós-Graduação em Medicina Tropical, 2015. Bibliografia: f. 70-104 1. Acinetobacter spp.. 2. Resistência aos antimicrobianos. 3. Carbapenemases. 4. OXA-23. 5. NDM. 6. PFGE. 7. MLST. I. Título. CDD 616.92 INSTITUTO OSWALDO CRUZ Programa de Pós-Graduação em Medicina Tropical AUTOR: THIAGO PAVONI GOMES CHAGAS Caracterização de Acinetobacter spp. multirresistentes produtores de carbapenemases, dos tipos OXA e NDM, isolados de diferentes regiões do Brasil ORIENTADOR: Profª. Drª. Marise Dutra Asensi Aprovada em: 26/10/2015 REVISÃO: Profª Drª. Ana Paula D’Allincourt Carvalho Assef Instituto Oswaldo Cruz (IOC - FIOCRUZ) EXAMINADORES: Prof.
    [Show full text]