Effects of Flavonoids on Expression of Genes Involved in Cell Cycle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Expression Profiling of KLF4
Expression Profiling of KLF4 AJCR0000006 Supplemental Data Figure S1. Snapshot of enriched gene sets identified by GSEA in Klf4-null MEFs. Figure S2. Snapshot of enriched gene sets identified by GSEA in wild type MEFs. 98 Am J Cancer Res 2011;1(1):85-97 Table S1: Functional Annotation Clustering of Genes Up-Regulated in Klf4 -Null MEFs ILLUMINA_ID Gene Symbol Gene Name (Description) P -value Fold-Change Cell Cycle 8.00E-03 ILMN_1217331 Mcm6 MINICHROMOSOME MAINTENANCE DEFICIENT 6 40.36 ILMN_2723931 E2f6 E2F TRANSCRIPTION FACTOR 6 26.8 ILMN_2724570 Mapk12 MITOGEN-ACTIVATED PROTEIN KINASE 12 22.19 ILMN_1218470 Cdk2 CYCLIN-DEPENDENT KINASE 2 9.32 ILMN_1234909 Tipin TIMELESS INTERACTING PROTEIN 5.3 ILMN_1212692 Mapk13 SAPK/ERK/KINASE 4 4.96 ILMN_2666690 Cul7 CULLIN 7 2.23 ILMN_2681776 Mapk6 MITOGEN ACTIVATED PROTEIN KINASE 4 2.11 ILMN_2652909 Ddit3 DNA-DAMAGE INDUCIBLE TRANSCRIPT 3 2.07 ILMN_2742152 Gadd45a GROWTH ARREST AND DNA-DAMAGE-INDUCIBLE 45 ALPHA 1.92 ILMN_1212787 Pttg1 PITUITARY TUMOR-TRANSFORMING 1 1.8 ILMN_1216721 Cdk5 CYCLIN-DEPENDENT KINASE 5 1.78 ILMN_1227009 Gas2l1 GROWTH ARREST-SPECIFIC 2 LIKE 1 1.74 ILMN_2663009 Rassf5 RAS ASSOCIATION (RALGDS/AF-6) DOMAIN FAMILY 5 1.64 ILMN_1220454 Anapc13 ANAPHASE PROMOTING COMPLEX SUBUNIT 13 1.61 ILMN_1216213 Incenp INNER CENTROMERE PROTEIN 1.56 ILMN_1256301 Rcc2 REGULATOR OF CHROMOSOME CONDENSATION 2 1.53 Extracellular Matrix 5.80E-06 ILMN_2735184 Col18a1 PROCOLLAGEN, TYPE XVIII, ALPHA 1 51.5 ILMN_1223997 Crtap CARTILAGE ASSOCIATED PROTEIN 32.74 ILMN_2753809 Mmp3 MATRIX METALLOPEPTIDASE -
Charles M. Perou, Phd Associate Professor Departments of Genetics
Charles M. Perou, PhD Associate Professor Departments of Genetics and Pathology Carolina Center for Genome Sciences Lineberger Comprehensive Cancer Center University of North Carolina at Chapel Hill Identification of GBM Subtypes using Gene Expression Profiling Agilent Custom Affymetrix Human Affymetrix HT-HG- 244k Exon 1.0 Array U133A Array Microarray Identify Samples and Genes represented on all 3 platforms Factor Analysis Single unified gene expression measurement for each gene 202 patients 11,681 genes Identification of GBM Subtypes Census Clustering of the 202 samples X 1740 Unsupervised clustering of 1740 genes suggests that 4 subtypes of GBM exist variably expressed genes selected using a unified gene expression measure across 3 expression platforms Core TCGA Samples (173) Gene Ontology/Pathway: with Subtype-defining genes • ProNeural: 1. nervous system development ProNeural Normal-like EGFR Mesenchymal 2. neuron differentiation (SOXs) 3. cell cycle = proliferation 4. cell adhesion molecules 5. ErbB signaling pathway FBXO3 GABRB2 • Normal‐like: SNCG NTSR2 1. nucleotide metabolic process MBP 2. neurological system process DLL3 3. axon NKX2-2, NRXN1, NRXN2 TOP2B, CDC7, MYB 4. neuron projection SOX2, SOX4, SOX10,SOX11 5. synaptic transmission ERBB3, PAK3, PAK7 NCAM1 OLIG2 • EGFR: 1. regulation of transcription 2. cell migration 3. nervous system development FGFR3 4. cell proliferation PDGFRA 5. metal ion binding EGFR AKT2 GLI2 TGFB3 • Mesenchymal: CASP8, CASP5, CASP4, CASP1 1. immune response COL8A2, COL5A1, COL1A1,COL1A2 2. receptor activity ILR4 CHI3L1 3. wound healing TRADD TLR2, TLR4, 4. cytokine and chemokine IGFBI mediated signaling pathway RELB 5. NF‐B Signaling Pathway Correlations between gene expression subtypes and clinical parameters Survival Analysis of Subtypes n=196 Subtypes are correlated with: 1. -
Supplemental Table S1 (A): Microarray Datasets Characteristics
Supplemental table S1 (A): Microarray datasets characteristics Title Summary Samples Literature ref. GEO ref. Acquisition of granule Gene expression profiling of 27 (1) GSE 11859 neuron precursor identity cerebellar tumors generated and Hedgehog‐induced from various early and late medulloblastoma in mice. stage CNS progenitor cells Medulloblastomas derived Study of mouse 5 (2) GSE 7212 from Cxcr6 mutant mice medulloblastoma in response respond to treatment with to inhibitor of Smoothened a Smoothened inhibitor Expression profiles of Identification of distinct classes 10 (3) GSE 9299 mouse medulloblastoma of up‐regulated or down‐ 339 & 340 regulated genes during Hh dependent tumorigenesis Genetic alterations in Identification of differently 10 (4) GSE 6463 mouse medulloblastomas expressed genes among CGNPs 339 & and generation of tumors and CGNPs transfected with 340 from cerebellar granule retroviruses that express nmyc neuron precursors or cyclin‐d1 Patched heterozygous Analysis of granule cell 14 (5) GSE 2426 model of medulloblastoma precursors, pre‐neoplastic cells, GDS1110 and tumor cells 1. Schuller U, Heine VM, Mao J, Kho AT, Dillon AK, Han YG, et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh‐induced medulloblastoma. Cancer Cell 2008;14:123‐134. 2. Sasai K, Romer JT, Kimura H, Eberhart DE, Rice DS, Curran T. Medulloblastomas derived from Cxcr6 mutant mice respond to treatment with a smoothened inhibitor. Cancer Res 2007;67:3871‐3877. 3. Mao J, Ligon KL, Rakhlin EY, Thayer SP, Bronson RT, Rowitch D, et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res 2006;66:10171‐10178. -
Nerve Growth Factor Induces Transcription of the P21 WAF1/CIP1 and Cyclin D1 Genes in PC12 Cells by Activating the Sp1 Transcription Factor
The Journal of Neuroscience, August 15, 1997, 17(16):6122–6132 Nerve Growth Factor Induces Transcription of the p21 WAF1/CIP1 and Cyclin D1 Genes in PC12 Cells by Activating the Sp1 Transcription Factor Guo-Zai Yan and Edward B. Ziff Howard Hughes Medical Institute, Department of Biochemistry, Kaplan Cancer Center, New York University Medical Center, New York, New York 10016 The PC12 pheochromocytoma cell line responds to nerve in which the Gal4 DNA binding domain is fused to the Sp1 growth factor (NGF) by gradually exiting from the cell cycle and transactivation domain, indicating that this transactivation do- differentiating to a sympathetic neuronal phenotype. We have main is regulated by NGF. Epidermal growth factor, which is a shown previously (Yan and Ziff, 1995) that NGF induces the weak mitogen for PC12, failed to induce any of these promoter expression of the p21 WAF1/CIP1/Sdi1 (p21) cyclin-dependent constructs. We consider a model in which the PC12 cell cycle kinase (Cdk) inhibitor protein and the G1 phase cyclin, cyclin is arrested as p21 accumulates and attains inhibitory levels D1. In this report, we show that induction is at the level of relative to Cdk/cyclin complexes. Sustained activation of p21 transcription and that the DNA elements in both promoters that expression is proposed to be a distinguishing feature of the are required for NGF-specific induction are clusters of binding activity of NGF that contributes to PC12 growth arrest during sites for the Sp1 transcription factor. NGF also induced a differentiation synthetic -
Insight Into Bortezomib Focusing on Its Efficacy Against P-Gp-Positive
International Journal of Molecular Sciences Article Insight into Bortezomib Focusing on Its Efficacy against P-gp-Positive MDR Leukemia Cells Tomáš Kyca 1, Lucia Pavlíková 1,2, Viera Boháˇcová 1, Anton Mišák 3 , Alexandra Poturnayová 1, Albert Breier 1,4,* , Zdena Sulová 1,* and Mário Šereš 1,2,* 1 Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; [email protected] (T.K.); [email protected] (L.P.); [email protected] (V.B.); [email protected] (A.P.) 2 Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia 3 Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; [email protected] 4 Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava 1, Slovakia * Correspondence: [email protected] (A.B.); [email protected] (Z.S.); [email protected] (M.Š.); Tel.: +421-2-593-25-514 or +421-918-674-514 (A.B.); +421-2-3229-5510 (Z.S.) Abstract: In this paper, we compared the effects of bortezomib on L1210 (S) cells with its effects on P-glycoprotein (P-gp)-positive variant S cells, which expressed P-gp either after selection with vincristine (R cells) or after transfection with a human gene encoding P-gp (T cells). Bortezomib induced the death-related effects in the S, R, and T cells at concentrations not exceeding 10 nM. -
Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase
cells Review Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase Jaroslav Kalous *, Denisa Jansová and Andrej Šušor Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic; [email protected] (D.J.); [email protected] (A.Š.) * Correspondence: [email protected] Received: 28 April 2020; Accepted: 24 June 2020; Published: 27 June 2020 Abstract: Cyclin dependent kinase 1 (CDK1) has been primarily identified as a key cell cycle regulator in both mitosis and meiosis. Recently, an extramitotic function of CDK1 emerged when evidence was found that CDK1 is involved in many cellular events that are essential for cell proliferation and survival. In this review we summarize the involvement of CDK1 in the initiation and elongation steps of protein synthesis in the cell. During its activation, CDK1 influences the initiation of protein synthesis, promotes the activity of specific translational initiation factors and affects the functioning of a subset of elongation factors. Our review provides insights into gene expression regulation during the transcriptionally silent M-phase and describes quantitative and qualitative translational changes based on the extramitotic role of the cell cycle master regulator CDK1 to optimize temporal synthesis of proteins to sustain the division-related processes: mitosis and cytokinesis. Keywords: CDK1; 4E-BP1; mTOR; mRNA; translation; M-phase 1. Introduction 1.1. Cyclin Dependent Kinase 1 (CDK1) Is a Subunit of the M Phase-Promoting Factor (MPF) CDK1, a serine/threonine kinase, is a catalytic subunit of the M phase-promoting factor (MPF) complex which is essential for cell cycle control during the G1-S and G2-M phase transitions of eukaryotic cells. -
TEAD4 Ensures Postimplantation Development by Promoting Trophoblast Self-Renewal: an Implication in Early Human Pregnancy Loss
TEAD4 ensures postimplantation development by promoting trophoblast self-renewal: An implication in early human pregnancy loss Biswarup Sahaa,1,2, Avishek Gangulya,1, Pratik Homea,b, Bhaswati Bhattacharyaa, Soma Raya, Ananya Ghosha, M. A. Karim Rumia,b, Courtney Marshb,c, Valerie A. Frenchc, Sumedha Gunewardenad, and Soumen Paula,b,c,3 aDepartment of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160; bInstitute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160; cDepartment of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160; and dDepartment of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160 Edited by R. Michael Roberts, University of Missouri, Columbia, MO, and approved June 22, 2020 (received for review February 12, 2020) Early pregnancy loss affects ∼15% of all implantation-confirmed Studies in mutant mouse models showed that failure in pla- human conceptions. However, evolutionarily conserved molecular centation often leads to in utero embryonic death (6, 7). Therefore, mechanisms that regulate self-renewal of trophoblast progenitors impaired placentation due to defective development or function of and their association with early pregnancy loss are poorly under- trophoblast cell lineages is considered one of the major underlying stood. Here, we provide evidence that transcription factor TEAD4 causes of early pregnancy loss. Disruptions of trophoblast pro- ensures survival of postimplantation mouse and human embryos genitor differentiation and defective placentation have also been by controlling self-renewal and stemness of trophoblast progeni- implicated as probable causes of pregnancy-associated compli- tors within the placenta primordium. -
Tagging Single Nucleotide Polymorphisms in Cell Cycle Control Genes and Susceptibility to Invasive Epithelial Ovarian Cancer
Research Article Tagging Single Nucleotide Polymorphisms in Cell Cycle Control Genes and Susceptibility to Invasive Epithelial Ovarian Cancer Simon A. Gayther,1 Honglin Song,2 Susan J. Ramus,1 Susan Kru¨ger Kjaer,4 Alice S. Whittemore,5 Lydia Quaye,1 Jonathan Tyrer,2 Danielle Shadforth,2 Estrid Hogdall,4 Claus Hogdall,6 Jan Blaeker,7 Richard DiCioccio,8 Valerie McGuire,5 Penelope M. Webb,9 Jonathan Beesley,9 Adele C. Green,9 David C. Whiteman,9 The Australian Ovarian Cancer Study Group,9 The Australian Cancer Study (Ovarian Cancer),20 Marc T. Goodman,10 Galina Lurie,10 Michael E. Carney,10 Francesmary Modugno,10 Roberta B. Ness,11 Robert P. Edwards,12 Kirsten B. Moysich,7 Ellen L. Goode,13 Fergus J. Couch,13 Julie M. Cunningham,13 Thomas A. Sellers,14 Anna H. Wu,15 Malcolm C. Pike,15 Edwin S. Iversen,16 Jeffrey R. Marks,16 Montserrat Garcia-Closas,17 Louise Brinton,17 Jolanta Lissowska,18 Beata Peplonska,19 Douglas F. Easton,3 Ian Jacobs,1 Bruce A.J. Ponder,2 Joellen Schildkraut,16 C. Leigh Pearce,15 Georgia Chenevix-Trench,9 Andrew Berchuck,16 Paul D.P. Pharoah,2 and on behalf of the Ovarian Cancer Association Consortium 1Translational Research Laboratories, University College London, London, United Kingdom; 2Cancer Research United Kingdom Department of Oncology and 3Cancer Research United Kingdom Genetic Epidemiology Unit, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom; 4Danish Cancer Society, Copenhagen, Denmark; 5Stanford University School of Medicine, Stanford, California; 6University of Copenhagen, -
Targeting Cyclin-Dependent Kinase 9 and Myeloid Cell Leukaemia 1 in MYC-Driven B-Cell Lymphoma
Targeting cyclin-dependent kinase 9 and myeloid cell leukaemia 1 in MYC-driven B-cell lymphoma Gareth Peter Gregory ORCID ID: 0000-0002-4170-0682 Thesis for Doctor of Philosophy September 2016 Sir Peter MacCallum Department of Oncology The University of Melbourne Doctor of Philosophy Submitted in total fulfilment of the degree of Abstract Aggressive B-cell lymphomas include diffuse large B-cell lymphoma, Burkitt lymphoma and intermediate forms. Despite high response rates to conventional immuno-chemotherapeutic approaches, an unmet need for novel therapeutic by resistance to chemotherapy and radiotherapy. The proto-oncogene MYC is strategies is required in the setting of relapsed and refractory disease, typified frequently dysregulated in the aggressive B-cell lymphomas, however, it has proven an elusive direct therapeutic target. MYC-dysregulated disease maintains a ‘transcriptionally-addicted’ state, whereby perturbation of A significant body of evidence is accumulating to suggest that RNA polymerase II activity may indirectly antagonise MYC activity. Furthermore, very recent studies implicate anti-apoptotic myeloid cell leukaemia 1 (MCL-1) as a critical survival determinant of MYC-driven lymphoma. This thesis utilises pharmacologic and genetic techniques in MYC-driven models of aggressive B-cell lymphoma to demonstrate that cyclin-dependent kinase 9 (CDK9) and MCL-1 are oncogenic dependencies of this subset of disease. The cyclin-dependent kinase inhibitor, dinaciclib, and more selective CDK9 inhibitors downregulation of MCL1 are used -
Cyclin A1 Rabbit Pab
Leader in Biomolecular Solutions for Life Science Cyclin A1 Rabbit pAb Catalog No.: A14529 Basic Information Background Catalog No. The protein encoded by this gene belongs to the highly conserved cyclin family, whose A14529 members are characterized by a dramatic periodicity in protein abundance through the cell cycle. Cyclins function as regulators of CDK kinases. Different cyclins exhibit distinct Observed MW expression and degradation patterns which contribute to the temporal coordination of 52kDa each mitotic event. The cyclin encoded by this gene was shown to be expressed in testis and brain, as well as in several leukemic cell lines, and is thought to primarily function in Calculated MW the control of the germline meiotic cell cycle. This cyclin binds both CDK2 and CDC2 47kDa/52kDa kinases, which give two distinct kinase activities, one appearing in S phase, the other in G2, and thus regulate separate functions in cell cycle. This cyclin was found to bind to Category important cell cycle regulators, such as Rb family proteins, transcription factor E2F-1, and the p21 family proteins. Multiple transcript variants encoding different isoforms Primary antibody have been found for this gene. Applications WB Cross-Reactivity Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 8900 P78396 Immunogen A synthetic peptide corresponding to a sequence within amino acids 350-450 of human CCNA1 (NP_001104515.1). Synonyms CCNA1;CT146;cyclin-A1 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. -
CDKN2C-Null Leiomyosarcoma: a Novel
original reports CDKN2C-Null Leiomyosarcoma: A Novel, Genomically Distinct Class of TP53/ RB1–Wild-Type Tumor With Frequent CIC Genomic Alterations and 1p/19q-Codeletion Erik A. Williams, MD1; Radwa Sharaf, PhD1; Brennan Decker, MD, PhD2; Adrienne J. Werth, MD3; Helen Toma, MD3; Meagan Montesion, PhD1; Ethan S. Sokol, PhD1; Dean C. Pavlick, BS1; Nikunj Shah, BS1; Kevin Jon Williams, MD4; Jeffrey M. Venstrom, MD1; Brian M. Alexander, MD, MPH1; Jeffrey S. Ross, MD1,5; Lee A. Albacker, PhD1; Douglas I. Lin, MD, PhD1; Shakti H. Ramkissoon, MD, PhD1,6; and Julia A. Elvin, MD, PhD1 abstract PURPOSE Leiomyosarcoma (LMS) harbors frequent mutations in TP53 and RB1 but few actionable genomic alterations. Here, we searched for recurrent actionable genomic alterations in LMS that occur in the absence of common untreatable oncogenic drivers. METHODS Tissues from 276,645 unique advanced cancers, including 2,570 uterine and soft tissue LMS, were sequenced by hybrid-capture–based next-generation DNA and RNA sequencing/comprehensive genomic profiling of up to 406 genes. We characterized clinicopathologic features of relevant patient cases. RESULTS Overall, 77 LMS exhibited homozygous copy loss of CDKN2C at chromosome 1p32.3 (3.0% of LMS). Genomic alterations (GAs) in TP53, RB1, and ATRX were rare compared with the remainder of the LMS cohort (11.7% v 73.4%, 0% v 54.5%, 2.6% v 24.5%, respectively; all P , .0001). CDKN2C-null LMS patient cases were significantly enriched for GAs in CIC (40.3% v 1.4%) at 19q13.2, CDKN2A (46.8% v 7.0%), and RAD51B (16.9% v 1.7%; all P , .0001). -
Correction1 4784..4785
Correction Correction: PCI-24781 Induces Caspase and Reactive Oxygen Species-Dependent Apoptosis In the article on PCI-24781 induces caspase and reactive oxygen species-dependent apoptosis published in the May 15, 2009 issue of Clinical Cancer Research, there was an error in Table 1. Down-regulated genes were incorrectly labeled as up-regulated genes. The correct table appears here. Bhalla S, Balasubramanian S, David K, et al. PCI-24781 induces caspase and reactive oxygen species-dependent apoptosis through NF-nB mechanisms and is synergistic with bortezomib in lymphoma cells. Clin Cancer Res 2009;15:3354–65. Table 1. Selected genes from expression analysis following 24-h treatment with PCI-24781, bortezomib, or the combination (in Ramos cells) Accn # Down-regulated genes 0.25 Mmol/L PCI/3 nmol/L Bor Name PCI-24781 Bortezomib Combination* Cell cycle-related NM_000075 Cyclin-dependent kinase 4 (CDK4) 0.49 0.83 0.37 NM_001237 Cyclin A2 (CCNA2) 0.43 0.87 0.37 NM_001950 E2F transcription factor 4, p107/p130-binding (E2F4) 0.48 0.79 0.40 NM_001951 E2F transcription factor 5, p130-binding (E2F5) 0.46 0.98 0.43 NM_003903 CDC16 cell division cycle 16 homolog (S cerevisiae) (CDC16) 0.61 0.78 0.43 NM_031966 Cyclin B1 (CCNB1) 0.55 0.90 0.43 NM_001760 Cyclin D3 (CCND3) 0.48 1.02 0.46 NM_001255 CDC20 cell division cycle 20 homolog (S cerevisiae; CDC20) 0.61 0.82 0.46 NM_001262 Cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4; CDKN2C) 0.61 1.15 0.56 NM_001238 Cyclin E1 (CCNE1) 0.56 1.05 0.60 NM_001239 Cyclin H (CCNH) 0.74 0.90 0.64 NM_004701