Single-Cell RNA Sequencing Identifies Candidate Renal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mapping the Physiological and Molecular Markers of Stress and SSRI Antidepressant Treatment in S100a10 Corticostriatal Neurons
Molecular Psychiatry (2020) 25:1112–1129 https://doi.org/10.1038/s41380-019-0473-6 ARTICLE Mapping the physiological and molecular markers of stress and SSRI antidepressant treatment in S100a10 corticostriatal neurons 1 2 1 3,4 1 Derya Sargin ● Revathy U. Chottekalapanda ● Kristina E. Perit ● Victoria Yao ● Duong Chu ● 1 2 1 3,4,5 6 2 Daniel W. Sparks ● Salina Kalik ● Saige K. Power ● Olga G. Troyanskaya ● Eric F. Schmidt ● Paul Greengard ● Evelyn K. Lambe 1,7,8 Received: 30 October 2018 / Revised: 8 April 2019 / Accepted: 17 May 2019 / Published online: 20 August 2019 © The Author(s) 2019. This article is published with open access Abstract In mood disorders, psychomotor and sensory abnormalities are prevalent, disabling, and intertwined with emotional and cognitive symptoms. Corticostriatal neurons in motor and somatosensory cortex are implicated in these symptoms, yet mechanisms of their vulnerability are unknown. Here, we demonstrate that S100a10 corticostriatal neurons exhibit distinct serotonin responses and have increased excitability, compared with S100a10-negative neurons. We reveal that prolonged social isolation disrupts the specific serotonin response which gets restored by chronic antidepressant treatment. We identify fi 1234567890();,: 1234567890();,: cell-type-speci c transcriptional signatures in S100a10 neurons that contribute to serotonin responses and strongly associate with psychomotor and somatosensory function. Our studies provide a strong framework to understand the pathogenesis and create new avenues for the treatment of mood disorders. Introduction Our understanding of mood and anxiety disorders is limited These authors contributed equally: Derya Sargin, Revathy U. Chottekalapanda due to the complexity of the circuitry involved and the diverse symptoms manifested in these diseases. -
Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis. -
Deciphering the Functions of Ets2, Pten and P53 in Stromal Fibroblasts in Multiple
Deciphering the Functions of Ets2, Pten and p53 in Stromal Fibroblasts in Multiple Breast Cancer Models DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Julie Wallace Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2013 Dissertation Committee: Michael C. Ostrowski, PhD, Advisor Gustavo Leone, PhD Denis Guttridge, PhD Dawn Chandler, PhD Copyright by Julie Wallace 2013 Abstract Breast cancer is the second most common cancer in American women, and is also the second leading cause of cancer death in women. It is estimated that nearly a quarter of a million new cases of invasive breast cancer will be diagnosed in women in the United States this year, and approximately 40,000 of these women will die from breast cancer. Although death rates have been on the decline for the past decade, there is still much we need to learn about this disease to improve prevention, detection and treatment strategies. The majority of early studies have focused on the malignant tumor cells themselves, and much has been learned concerning mutations, amplifications and other genetic and epigenetic alterations of these cells. However more recent work has acknowledged the strong influence of tumor stroma on the initiation, progression and recurrence of cancer. Under normal conditions this stroma has been shown to have protective effects against tumorigenesis, however the transformation of tumor cells manipulates this surrounding environment to actually promote malignancy. Fibroblasts in particular make up a significant portion of this stroma, and have been shown to impact various aspects of tumor cell biology. -
The S100A10 Subunit of the Annexin A2 Heterotetramer Facilitates L2-Mediated Human Papillomavirus Infection
The S100A10 Subunit of the Annexin A2 Heterotetramer Facilitates L2-Mediated Human Papillomavirus Infection Andrew W. Woodham1, Diane M. Da Silva2,3, Joseph G. Skeate1, Adam B. Raff1, Mark R. Ambroso4, Heike E. Brand3, J. Mario Isas4, Ralf Langen4, W. Martin Kast1,2,3* 1 Departments of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, California, United States of America, 2 Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, California, United States of America, 3 Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America, 4 Department of Biochemistry & Molecular Biology, University of Southern California, Los Angeles, California, United States of America Abstract Mucosotropic, high-risk human papillomaviruses (HPV) are sexually transmitted viruses that are causally associated with the development of cervical cancer. The most common high-risk genotype, HPV16, is an obligatory intracellular virus that must gain entry into host epithelial cells and deliver its double stranded DNA to the nucleus. HPV capsid proteins play a vital role in these steps. Despite the critical nature of these capsid protein-host cell interactions, the precise cellular components necessary for HPV16 infection of epithelial cells remains unknown. Several neutralizing epitopes have been identified for the HPV16 L2 minor capsid protein that can inhibit infection after initial attachment of the virus to the cell surface, which suggests an L2-specific secondary receptor or cofactor is required for infection, but so far no specific L2-receptor has been identified. Here, we demonstrate that the annexin A2 heterotetramer (A2t) contributes to HPV16 infection and co- immunoprecipitates with HPV16 particles on the surface of epithelial cells in an L2-dependent manner. -
Novel Candidate Key Drivers in the Integrative Network of Genes, Micrornas, Methylations, and Copy Number Variations in Squamous Cell Lung Carcinoma
Hindawi Publishing Corporation BioMed Research International Volume 2015, Article ID 358125, 11 pages http://dx.doi.org/10.1155/2015/358125 Research Article Novel Candidate Key Drivers in the Integrative Network of Genes, MicroRNAs, Methylations, and Copy Number Variations in Squamous Cell Lung Carcinoma Tao Huang,1,2 Jing Yang,2 and Yu-dong Cai1 1 CollegeofLifeScience,ShanghaiUniversity,Shanghai200444,China 2Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China Correspondence should be addressed to Tao Huang; [email protected] and Yu-dong Cai; cai [email protected] Received 17 September 2014; Revised 6 January 2015; Accepted 22 January 2015 Academic Editor: Aparup Das Copyright © 2015 Tao Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The mechanisms of lung cancer are highly complex. Not only mRNA gene expression but also microRNAs, DNA methylation, and copy number variation (CNV) play roles in tumorigenesis. It is difficult to incorporate so much information into a single model that can comprehensively reflect all these lung cancer mechanisms. In this study, we analyzed the 129 TCGA (The Cancer Genome Atlas) squamous cell lung carcinoma samples with gene expression, microRNA expression, DNA methylation, and CNV data. First, we used variance inflation factor (VIF) regression to build the whole genome integrative network. Then, we isolated the lung cancer subnetwork by identifying the known lung cancer genes and their direct regulators. -
CD81 Antibody (C-Term) Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP6631B
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 CD81 Antibody (C-term) Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP6631B Specification CD81 Antibody (C-term) - Product Information Application WB, IHC-P, FC,E Primary Accession P60033 Reactivity Human, Mouse Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Antigen Region 176-203 CD81 Antibody (C-term) - Additional Information Gene ID 975 Other Names CD81 antigen, 26 kDa cell surface protein TAPA-1, Target of the antiproliferative antibody 1, Tetraspanin-28, Tspan-28, Western blot analysis of CD81 Antibody CD81, CD81, TAPA1, TSPAN28 (C-term) (Cat. #AP6631b) in mouse kidney(lane 1) and cerebellum(lane 2) tissue Target/Specificity lysates (35ug/lane). CD81 (arrow) was This CD81 antibody is generated from detected using the purified Pab. rabbits immunized with a KLH conjugated synthetic peptide between 176-203 amino acids from the C-terminal region of human CD81. Dilution WB~~1:1000 IHC-P~~1:10~50 FC~~1:10~50 Format Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by dialysis against PBS. Storage Maintain refrigerated at 2-8°C for up to 2 Formalin-fixed and paraffin-embedded weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw human brain tissue with CD81 Antibody cycles. (C-term), which was peroxidase-conjugated to the secondary antibody, followed by DAB Precautions staining. This data demonstrates the use of CD81 Antibody (C-term) is for research use this antibody for immunohistochemistry; Page 1/4 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 only and not for use in diagnostic or clinical relevance has not been evaluated. -
PAX5 Expression in Acute Leukemias: Higher B-Lineage Specificity Than Cd79a and Selective Association with T(8;21)-Acute Myelogenous Leukemia
[CANCER RESEARCH 64, 7399–7404, October 15, 2004] PAX5 Expression in Acute Leukemias: Higher B-Lineage Specificity Than CD79a and Selective Association with t(8;21)-Acute Myelogenous Leukemia Enrico Tiacci,1 Stefano Pileri,2 Annette Orleth,1 Roberta Pacini,1 Alessia Tabarrini,1 Federica Frenguelli,1 Arcangelo Liso,3 Daniela Diverio,4 Francesco Lo-Coco,5 and Brunangelo Falini1 1Institutes of Hematology and Internal Medicine, University of Perugia, Perugia, Italy; 2Unit of Hematopathology, University of Bologne, Bologne, Italy; 3Section of Hematology, University of Foggia, Foggia, Italy; 4Department of Cellular Biotechnologies and Hematology, University La Sapienza of Rome, Rome, Italy; and 5Department of Biopathology, University Tor Vergata of Rome, Rome, Italy ABSTRACT (13, 16). PAX5 expression also occurs in the adult testis and in the mesencephalon and spinal cord during embryogenesis (17), suggesting an The transcription factor PAX5 plays a key role in the commitment of important role in the development of these tissues. hematopoietic precursors to the B-cell lineage, but its expression in acute Rearrangement of the PAX5 gene through reciprocal chromosomal leukemias has not been thoroughly investigated. Hereby, we analyzed routine biopsies from 360 acute leukemias of lymphoid (ALLs) and mye- translocations has been described in different types of B-cell malig- loid (AMLs) origin with a specific anti-PAX5 monoclonal antibody. Blasts nancies (18–23), and, more recently, PAX5 has also been shown to be from 150 B-cell ALLs showed strong PAX5 nuclear expression, paralleling targeted by aberrant hypermutation in Ͼ50% of diffuse large B-cell that of CD79a in the cytoplasm. Conversely, PAX5 was not detected in 50 lymphomas (24). -
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
Atlas Antibodies in Breast Cancer Research Table of Contents
ATLAS ANTIBODIES IN BREAST CANCER RESEARCH TABLE OF CONTENTS The Human Protein Atlas, Triple A Polyclonals and PrecisA Monoclonals (4-5) Clinical markers (6) Antibodies used in breast cancer research (7-13) Antibodies against MammaPrint and other gene expression test proteins (14-16) Antibodies identified in the Human Protein Atlas (17-14) Finding cancer biomarkers, as exemplified by RBM3, granulin and anillin (19-22) Co-Development program (23) Contact (24) Page 2 (24) Page 3 (24) The Human Protein Atlas: a map of the Human Proteome The Human Protein Atlas (HPA) is a The Human Protein Atlas consortium cell types. All the IHC images for Swedish-based program initiated in is mainly funded by the Knut and Alice the normal tissue have undergone 2003 with the aim to map all the human Wallenberg Foundation. pathology-based annotation of proteins in cells, tissues and organs expression levels. using integration of various omics The Human Protein Atlas consists of technologies, including antibody- six separate parts, each focusing on References based imaging, mass spectrometry- a particular aspect of the genome- 1. Sjöstedt E, et al. (2020) An atlas of the based proteomics, transcriptomics wide analysis of the human proteins: protein-coding genes in the human, pig, and and systems biology. mouse brain. Science 367(6482) 2. Thul PJ, et al. (2017) A subcellular map of • The Tissue Atlas shows the the human proteome. Science. 356(6340): All the data in the knowledge resource distribution of proteins across all eaal3321 is open access to allow scientists both major tissues and organs in the 3. -
Autophagy Modulation in Bladder Cancer Development and Treatment (Review)
ONCOLOGY REPORTS 42: 1647-1655, 2019 Autophagy modulation in bladder cancer development and treatment (Review) FAPING LI, HUI GUO, YUXUAN YANG, MINGLIANG FENG, BIN LIU, XIANG REN and HONGLAN ZHOU Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China Received April 24, 2019; Accepted August 1, 2019 DOI: 10.3892/or.2019.7286 Abstract. Bladder cancer (BC) is a potentially life-threatening 1. Introduction malignancy. Due to a high recurrence rate, frequent surveil- lance strategies and intravesical drug therapies, BC is Bladder cancer (BC) is a potentially life-threatening malig- considered one of the most expensive tumors to treat. As a nancy that is considered one of the most expensive tumors fundamental evolutionary catabolic process, autophagy plays in terms of treatment and medical care (1-3). After prostate an important role in the maintenance of cellular environ- cancer, it is the second most common type of urological cancer mental homeostasis by degrading and recycling damaged and ranks 10th among the most common types of cancer cytoplasmic components, including macromolecules and around the globe (4). It has been estimated that there were organelles. Scientific studies in the last two decades have 549,393 new cases of BC and 199,922 deaths resulting from shown that autophagy acts as a double‑edged sword with this disease worldwide in 2018, according to a report from regard to the treatment of cancer. On one hand, autophagy the International Agency for Research on Cancer (4). The inhibition is able to increase the sensitivity of cancer cells to primary histological subtype of human BC is transitional cell treatment, a process known as protective autophagy. -
Molecules with Specificity for Cd45 and Cd79 Moleküle Mit Cd45- Und Cd79-Spezifizität Molécules Présentant Une Spécificité Vis-À-Vis De Cd45 Et Cd79
(19) *EP003169704B1* (11) EP 3 169 704 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07K 16/28 (2006.01) 29.07.2020 Bulletin 2020/31 (86) International application number: (21) Application number: 15738655.8 PCT/EP2015/066368 (22) Date of filing: 16.07.2015 (87) International publication number: WO 2016/009029 (21.01.2016 Gazette 2016/03) (54) MOLECULES WITH SPECIFICITY FOR CD45 AND CD79 MOLEKÜLE MIT CD45- UND CD79-SPEZIFIZITÄT MOLÉCULES PRÉSENTANT UNE SPÉCIFICITÉ VIS-À-VIS DE CD45 ET CD79 (84) Designated Contracting States: • WRIGHT, Michael John AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Slough GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Berkshire SL1 3WE (GB) PL PT RO RS SE SI SK SM TR • TYSON, Kerry Designated Extension States: Slough BA ME Berkshire SL1 3WE (GB) Designated Validation States: MA (74) Representative: UCB Intellectual Property c/o UCB Celltech (30) Priority: 16.07.2014 GB 201412659 IP Department 208 Bath Road (43) Date of publication of application: Slough, Berkshire SL1 3WE (GB) 24.05.2017 Bulletin 2017/21 (56) References cited: (73) Proprietor: UCB Biopharma SRL WO-A1-2011/025904 WO-A1-2013/085893 1070 Brussels (BE) • GOLD ET AL.: "The B Cell Antigen Receptor (72) Inventors: Activates the AKT/Glycogegn Synthase Kinase-3 • FINNEY, Helene Margaret Signalling Pathway via Phosphatydilinositol Slough 3-Kinase", J. IMMUNOLOGY, vol. 163, 1999, Berkshire SL1 3WE (GB) pages 1894-1905, XP002745175, • RAPECKI, Stephen Edward Slough Berkshire SL1 3WE (GB) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. -
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.