Systemic Induction of the Angiogenesis Switch by the Tetraspanin D6.1A/CO-029

Total Page:16

File Type:pdf, Size:1020Kb

Systemic Induction of the Angiogenesis Switch by the Tetraspanin D6.1A/CO-029 Research Article Systemic Induction of the Angiogenesis Switch by the Tetraspanin D6.1A/CO-029 Sabine Gesierich,1 Igor Berezovskiy,1 Eduard Ryschich,2 and Margot Zo¨ller1,3 1Department of Tumor Progression and Immune Defence, German Cancer Research Centre; 2Department of Surgery, University of Heidelberg, Heidelberg; and 3Department of Applied Genetics, Faculty of Chemistry and Bioscience, University of Karlsruhe, Karlsruhe, Germany Abstract transcription of angiogenic factors (6, 7). Recent studies in Expression of the tetraspanin CO-029 is associated with poor knockout and transgenic mouse models have provided further prognosis in patients with gastrointestinal cancer. In a evidence that tumor angiogenesis is not only guided by the pancreatic tumor line, overexpression of the rat homologue, tumor cell itself, but is also closely tied to the tumor microenvi- ronment (8). D6.1A, induces lethally disseminated intravascular coagula- tion, suggesting D6.1A engagement in angiogenesis. D6.1A- Tetraspanins are a large family of proteins grouped according to overexpressing tumor cells induce the greatest amount of structural relatedness. The key feature of tetraspanins is their angiogenesis in vivo, and tumor cells as well as exosomes potential to associate with each other and with a multitude of derived thereof strikingly increase endothelial cell branching molecules from other protein families (9–11), the most prominent in vitro. Tumor cell–derived D6.1A stimulates angiogenic partners being integrins (12). The tetraspanin, D6.1A (rat)/CO-029 a h a h factor transcription, which includes increased matrix metal- (human), associates with 3 1 and 6 1 and, after disassembly of a h loproteinase and urokinase-type plasminogen activator se- hemidesmosomes, with 6 4. It also associates with the tetraspa- cretion, pronounced vascular endothelial growth factor nins, CD9 and CD81, and the immunoglobulin superfamily a expression in fibroblasts, vascular endothelial growth factor member, prostaglandin F2 receptor regulatory protein, a type II receptor expression, and strong D6.1A up-regulation in phosphoinositide-4-kinase, EpCAM, and CD44v4-v7 (13–15). sprouting endothelium. Thus, D6.1A initiates an angiogenic According to their association with different molecules, tetra- loop that, probably due to the abundance of D6.1A in tumor- spanins are assumed to function as adaptors that assemble protein derived exosomes, reaches organs distant from the tumor. complexes in defined membrane microdomains, called tetraspanin- Most importantly, because of the strong D6.1A up-regulation enriched microdomains, that provide a link to specific signal- on sprouting capillaries, angiogenesis could be completely transducing molecules (16). This mode of activity might explain inhibited by a D6.1A-specific antibody, irrespective of whether why tetraspanins are said to take part in a wide range of diverse or not the tumor expresses D6.1A. Tetraspanins have been functions (9, 11), such as B and T cell activation, platelet aggre- suggested to be involved in morphogenesis. This is the first gation, migration, proliferation (10, 17, 18), and tumor cell prog- report that a tetraspanin, CO-029/D6.1A, promotes tumor ression (18, 19). With respect to the latter, high expression of CD9 growth by its capacity to induce systemic angiogenesis that (20, 21) and CD82 (22) is mostly associated with a favorable can effectively, and with high selectivity for sprouting prognosis. CD151, D6.1A, and its human homologue, CO-029, are endothelium, be blocked by a D6.1A-specific antibody. (Cancer supposed to exert tumor-promoting activities (23–26). A possible Res 2006; 66(14): 7083-94) mechanistic basis for the prometastatic functions of tetraspanins could be their association with certain integrins and the accom- Introduction panying increase in cell motility (22, 23). Furthermore, tetraspanin interactions with platelets and leukocytes were suggested to The term angiogenesis defines the process of new capillary provide tumor cells with a survival advantage in the hostile formation from preexisting vasculature that occurs in physiologic environment which they encounter during metastatic spread (27). as well as pathologic conditions (1). Tumor cells essentially depend CD151 has also been reputed to be involved in cellular morpho- on angiogenesis to grow beyond a threshold size of a few cubic genesis, promoting the formation of cord-like structures, consid- millimeters (2). Angiogenesis is the result of an intricate balance ered as a preform of sprouting vessels (28). Finally, tumor cells can between proangiogenic and antiangiogenic factors, and the grow in mosaics with endothelial cells, and mosaic growth depends dominance of proangiogenic factors is called the angiogenic switch on tetraspanin expression (29). Taking into account that coagul- (3). One of the main angiogenic switch inducers is hypoxia (4), opathy and thrombosis are frequent complications, particularly in whereas the most well-known proangiogenic factor is vascular patients with lung and pancreatic cancer (30), it is important to endothelial growth factor (VEGF; ref. 5), and matrix metal- note that CD9, CD63, and CD151 are expressed by platelets. CD9 loproteinases (MMP) are essentially required to create space for and CD63 associate with aIIbh3, which supports activated platelet sprouting capillaries by degradation of the basal membrane as well adhesion to neutrophils and platelet aggregation (31). In CD151 as for the liberation of angiogenic factors and for inducing the knockout mice, platelet spreading is impaired, aggregation is reduced, and the bleeding time is prolonged. This is likely due to the absence of an outside-in signal provided by CD151, leading to Requests for reprints: Margot Zo¨ller, Department of Tumor Progression and Tumor Defence, German Cancer Research Centre, Im Neuenheimer Feld, 280 D-69120 the activation of aIIbh3 (32). Heidelberg, Germany. Phone: 49-6221-422454; Fax: 49-6221-424760; E-mail: m.zoeller@ D6.1A overexpression on a pancreatic rat adenocarcinoma line is dkfz.de. I2006 American Association for Cancer Research. associated with the formation of hemorrhagic ascites (15) and can doi:10.1158/0008-5472.CAN-06-0391 induce a severe consumption coagulopathy, such that rats become www.aacrjournals.org 7083 Cancer Res 2006; 66: (14). July 15, 2006 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 2006 American Association for Cancer Research. Cancer Research moribund due to disseminated intravascular coagulation rather supernatant after 2 days of culture by differential centrifugation. Super- than the tumor burden (13). These features prompted us to search natants were centrifuged twice for 10 minutes at 500  g, once for   for the possible involvement of D6.1A in angiogenesis. 20 minutes at 2,000 g, and once for 30 minutes at 10,000 g to eliminate cell debris. The purified supernatant was centrifuged for 90 minutes at 100,000  g using a SW41 rotor. The pellet was resuspended in PBS and Materials and Methods centrifuged again for 90 minutes at 100,000  g. Rats and tumors. BDX rats, bred at the animal facilities of the German Western blotting. Cell lysates (1% Triton X-100) were resolved on 12% or Cancer Research Centre, were kept under specific pathogen–free con- 15% SDS-PAGE under nonreducing conditions. Proteins were transferred ditions, fed sterilized food and water ad libitum. Rats were used for to Hybond enhanced chemiluminescence at 30 V overnight. After blocking experiments at the age of 6 to 10 weeks. BSp73AS (AS) cells, a pancreatic (5% fat-free milk powder), immunoblotting was done with the indicated adenocarcinoma line of the BDX rat strain (33), were transfected with D6.1A antibodies, followed by horseradish peroxidase–labeled secondary anti- cDNA (AS-D6.1A; ref. 13). For intravital microscopy, AS cells were bodies. Blots were developed with the enhanced chemiluminescence transfected with the enhanced green fluorescent protein (EGFP) cDNA– detection system. containing pEGFP-N1 vector (Becton Dickinson, Heidelberg, Germany). AS- Zymography. Cells (106) were seeded in 24-well plates (35). After D6.1A cells were transfected with the EGFP cDNA inserted in the overnight culture, cells were washed and starved in serum-free medium. pcDNA3.1Hygro vector (Invitrogen, Karlsruhe, Germany). Transfected lines Conditioned medium was collected after 24 hours and was centrifuged were selected in RPMI 1640, 10% FCS, and 500 Ag/mL of G418. The selection (15 minutes, 15,000  g) to remove cell debris. Aliquots were incubated with medium for double-transfected lines contained an additional 50 Ag/mL of Laemmli buffer (15 minutes, 37jC) and separated in a 10% acrylamide gel hygromycin. A BDX fibroblast line, generated by NiSO4 treatment, and containing 1 mg/mL of gelatin. The gel was washed for 30 minutes each in RAEC, a Wistar rat–derived aortic endothelial cell line (Cell-lining, Berlin, 2.5% Triton X-100, 2.5% Triton X-100/50 mmol/L Tris (pH7.5), and 2.5% A Germany) was maintained in RPMI 1640 and 10% FCS. Confluent cultures Triton X-100/50 mmol/L Tris (pH7.5), 5 mmol/L CaCl 2,1 mol/L ZnCl2. were trypsinized and split. Gels were incubated (24-48 hours, 37jC) in 50 mmol/L Tris (pH7.5), A Antibodies. The following monoclonal and polyclonal antibodies were 5 mmol/L CaCl2,1 mol/L ZnCl2, and stained with Coomassie blue. used: mouse anti-D6.1A (D6.1; ref. 34), mouse anti-a6h4 (B5.5; ref. 34), rabbit Matrigel assay. Tumor cells (105) were seeded on matrigel-coated anti-CD151 (14); anti-CD9
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • A Shared Pathway of Exosome Biogenesis Operates at Plasma And
    bioRxiv preprint doi: https://doi.org/10.1101/545228; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A shared pathway of exosome biogenesis operates at plasma and endosome membranes Francis K. Fordjour1, George G. Daaboul2, and Stephen J. Gould1* 1Department of Biological Chemistry Johns Hopkins University Baltimore, MD USA 2Nanoview Biosciences Boston, MA USA Corresponding author: Stephen J. Gould, Ph.D. Department of Biological Chemistry Johns Hopkins University Baltimore, MD USA Email: [email protected] Tel (01) 443 847 9918 1 bioRxiv preprint doi: https://doi.org/10.1101/545228; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary: This study of exosome cargo protein budding reveals that cells use a common pathway for budding exosomes from plasma and endosome membranes, providing a new mechanistic explanation for exosome heterogeneity and a rational roadmap for exosome engineering. Keywords: Protein budding, tetraspanin, endosome, plasma membrane, extracellular vesicle, CD9, CD63, CD81, SPIR, interferometry Abbreviations: EV, extracellular vesicles; IB, immunoblot; IFM, immunofluorescence microscopy; IPMC, intracellular plasma membrane-connected compartment; MVB, multivesicular body; SPIR, single-particle interferometric reflectance; SPIRI, single-particle interferometric reflectance imaging 2 bioRxiv preprint doi: https://doi.org/10.1101/545228; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved.
    [Show full text]
  • Tetraspanin CD151 Plays a Key Role in Skin Squamous Cell Carcinoma
    Oncogene (2013) 32, 1772–1783 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE Tetraspanin CD151 plays a key role in skin squamous cell carcinoma QLi1, XH Yang2,FXu1, C Sharma1, H-X Wang1, K Knoblich1, I Rabinovitz3, SR Granter4 and ME Hemler1 Here we provide the first evidence that tetraspanin CD151 can support de novo carcinogenesis. During two-stage mouse skin chemical carcinogenesis, CD151 reduces tumor lag time and increases incidence, multiplicity, size and progression to malignant squamous cell carcinoma (SCC), while supporting both cell survival during tumor initiation and cell proliferation during the promotion phase. In human skin SCC, CD151 expression is selectively elevated compared with other skin cancer types. CD151 support of keratinocyte survival and proliferation may depend on activation of transcription factor STAT3 (signal transducers and activators of transcription), a regulator of cell proliferation and apoptosis. CD151 also supports protein kinase C (PKC)a–a6b4 integrin association and PKC-dependent b4 S1424 phosphorylation, while regulating a6b4 distribution. CD151–PKCa effects on integrin b4 phosphorylation and subcellular localization are consistent with epithelial disruption to a less polarized, more invasive state. CD151 ablation, while minimally affecting normal cell and normal mouse functions, markedly sensitized mouse skin and epidermoid cells to chemicals/drugs including 7,12-dimethylbenz[a]anthracene (mutagen) and camptothecin (topoisomerase inhibitor), as well as to agents targeting epidermal growth factor receptor, PKC, Jak2/Tyk2 and STAT3. Hence, CD151 ‘co-targeting’ may be therapeutically beneficial. These findings not only support CD151 as a potential tumor target, but also should apply to other cancers utilizing CD151/laminin-binding integrin complexes.
    [Show full text]
  • Extracellular Vesicle Human CD9/CD63/CD81 Antibody Panel
    Extracellular Vesicle Human CD9/CD63/CD81 Antibody Panel Antibody panel for the detection of extracellular vesicles using CD9, CD63, and CD81 markers Catalog #100-0211 1 Kit Product Description The Extracellular Vesicle Human CD9/CD63/CD81 Antibody Panel is suitable for the detection of extracellular vesicles (EVs) derived from human cells. It comprises three primary antibodies that are immunoreactive toward human CD9, CD63, and CD81; these are proteins that are typically expressed on EVs and widely used as markers to analyze and isolate these cell-derived particles. CD9, CD63, and CD81 belong to the tetraspanin family of membrane proteins, which possess four transmembrane domains and interact with diverse proteins on the cell surface to form multimolecular networks termed tetraspanin-enriched microdomains. CD9, CD63, and CD81 proteins are expressed on the surface of many cells, including B cells, T cells, NK cells, monocytes, dendritic cells, thymocytes, endothelial cells, and fibroblasts, and are involved in modulating a variety of cellular processes including cell activation, adhesion, differentiation, and tumor invasion. The antibodies provided in this panel have been reported for use in analyzing primary cells, cell lines, and EVs by ELISA, flow cytometry, immunocytochemistry, immunoprecipitation, and Western blotting. They have been reported to cross-react with their cognate antigens in non-human primates, including baboons and rhesus and cynomolgus macaques. Product Information The following products comprise the Extracellular
    [Show full text]
  • Aberrant Expression of Tetraspanin Molecules in B-Cell Chronic Lymphoproliferative Disorders and Its Correlation with Normal B-Cell Maturation
    Leukemia (2005) 19, 1376–1383 & 2005 Nature Publishing Group All rights reserved 0887-6924/05 $30.00 www.nature.com/leu Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation S Barrena1,2, J Almeida1,2, M Yunta1,ALo´pez1,2, N Ferna´ndez-Mosteirı´n3, M Giralt3, M Romero4, L Perdiguer5, M Delgado1, A Orfao1,2 and PA Lazo1 1Instituto de Biologı´a Molecular y Celular del Ca´ncer, Centro de Investigacio´n del Ca´ncer, Consejo Superior de Investigaciones Cientı´ficas-Universidad de Salamanca, Salamanca, Spain; 2Servicio de Citometrı´a, Universidad de Salamanca and Hospital Universitario de Salamanca, Salamanca, Spain; 3Servicio de Hematologı´a, Hospital Universitario Miguel Servet, Zaragoza, Spain; 4Hematologı´a-hemoterapia, Hospital Universitario Rı´o Hortega, Valladolid, Spain; and 5Servicio de Hematologı´a, Hospital de Alcan˜iz, Teruel, Spain Tetraspanin proteins form signaling complexes between them On the cell surface, tetraspanin antigens are present either as and with other membrane proteins and modulate cell adhesion free molecules or through interaction with other proteins.25,26 and migration properties. The surface expression of several tetraspanin antigens (CD9, CD37, CD53, CD63, and CD81), and These interacting proteins include other tetraspanins, integri- F 22,27–30F their interacting proteins (CD19, CD21, and HLA-DR) were ns particularly those with the b1 subunit HLA class II 31–33 34,35 analyzed during normal B-cell maturation and compared to a moleculesFeg HLA DR -, CD19, the T-cell recep- group of 67 B-cell neoplasias. Three patterns of tetraspanin tor36,37 and several other members of the immunoglobulin expression were identified in normal B cells.
    [Show full text]
  • Clinical Significance of CD81 Expression by Clonal Plasma Cells
    Leukemia (2012) 26, 1862 --1869 & 2012 Macmillan Publishers Limited All rights reserved 0887-6924/12 www.nature.com/leu ORIGINAL ARTICLE Clinical significance of CD81 expression by clonal plasma cells in high-risk smoldering and symptomatic multiple myeloma patients B Paiva1,2, N-C Gutie´ rrez1,2, X Chen2, M-B Vı´driales1,2, M-A´ Montalba´n3, L Rosin˜ol4, A Oriol5, J Martı´nez-Lo´ pez3, M-V Mateos1,2, LLo´ pez-Corral1,2,EDı´az-Rodrı´guez2, J-J Pe´ rez1,2, E Ferna´ndez-Redondo3, F de Arriba6, L Palomera7, E Bengoechea8, M-J Terol9, RdePaz10, A Martin11, J Herna´ndez12, A Orfao2,13, J-J Lahuerta3, J Blade´ 4, A Pandiella2 and J-F San Miguel1,2 on behalf of the GEM (Grupo Espan˜ ol de Mieloma)/PETHEMA (Programa para el Estudio de la Terape´ utica en Hemopatı´as Malignas) cooperative study groups The presence of CD19 in myelomatous plasma cells (MM-PCs) correlates with adverse prognosis in multiple myeloma (MM). Although CD19 expression is upregulated by CD81, this marker has been poorly investigated and its prognostic value in MM remains unknown. We have analyzed CD81 expression by multiparameter flow cytometry in MM-PCs from 230 MM patients at diagnosis included in the Grupo Espan˜ol de Mieloma (GEM)05465years trial as well as 56 high-risk smoldering MM (SMM). CD81 expression was detected in 45% (103/230) MM patients, and the detection of CD81 þ MM-PC was an independent prognostic factor for progression-free (hazard ratio ¼ 1.9; P ¼ 0.003) and overall survival (hazard ratio ¼ 2.0; P ¼ 0.02); this adverse impact was validated in an additional series of 325 transplant-candidate MM patients included in the GEM05 o65 years trial.
    [Show full text]
  • Interaction of Duffy Antigen Receptor for Chemokines and KAI1: a Critical Step in Metastasis Suppression
    Review Interaction of Duffy Antigen Receptor for Chemokines and KAI1: A Critical Step in Metastasis Suppression Megumi Iiizumi, Sucharita Bandyopadhyay, and Kounosuke Watabe Department of Medical Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, Illinois Abstract disease. The discovery of a series of metastasis suppressor genes in Tumor metastases suppressor protein KAI1/CD82 is capable of the past decade has shed new light on many crucial aspects of blocking the tumor metastases without affecting the primary this intricate biological process. The metastases suppressor genes tumor formation, andits expression is significantly down- and their encoded proteins, by definition, suppress the process of regulatedin many types of human cancers. However, the exact metastasis without affecting tumorigenesis. To date, more than molecular mechanism of the suppressor function of KAI1 a dozen of these genes have been identified and include nm23, remains elusive. Evidence from our laboratory supports a KAI1, Kiss1, BRMS1, MKK4, RhoGDI2, RKIP, Drg-1, CRSP3, SSeCKs, model in which tumor cells dislodge from the primary tumor TXNIP/VDUP-1, Claudin-4, and RRM1 (1). andintravasate into the bloodor lymphatic vessels followed The KAI1 gene was originally isolated as a prostate-specific by attachment to the endothelial cell surface whereby KAI1 tumor metastasis suppressor gene using the microcell-mediated interacts with the Duffy antigen receptor for chemokines chromosome transfer method followed by Alu-PCR. It is located in the p11.2 region of human chromosome 11 (2, 3). When the KAI1 (DARC) protein. This interaction transmits a senescent signal to cancer cells expressing KAI1, whereas cells that lost KAI1 gene was transferred into highly metastatic Dunning rat prostatic expression can proliferate, potentially giving rise to metasta- cancer cells, KAI1-expressing cancer cells were suppressed in their ses.
    [Show full text]
  • CD81 Protein Is Expressed at High Levels in Normal Germinal Center B Cells and in Subtypes of Human Lymphomas☆ Robert F
    Human Pathology (2010) 41, 271–280 www.elsevier.com/locate/humpath Original contribution CD81 protein is expressed at high levels in normal germinal center B cells and in subtypes of human lymphomas☆ Robert F. Luo MD, MPH a, Shuchun Zhao MS a, Robert Tibshirani PhD b, June H. Myklebust PhD c, Mrinmoy Sanyal PhD c, Rosemary Fernandez c, Dita Gratzinger MD, PhD a, Robert J. Marinelli PhD d, Zhi Shun Lu MS a, Anna Wong MD a, Ronald Levy MD c, Shoshana Levy PhD c,1, Yasodha Natkunam MD, PhD a,⁎,1 aDepartment of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA bDepartment of Health Research and Policy and Statistics, Stanford University School of Medicine, Stanford, CA 94305, USA cDivision of Oncology, Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA dDepartment of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA Received 8 May 2009; revised 28 July 2009; accepted 30 July 2009 Keywords: Summary CD81 is a tetraspanin cell surface protein that regulates CD19 expression in B lymphocytes CD81; and enables hepatitis C virus infection of human cells. Immunohistologic analysis in normal Lymphoma; hematopoietic tissue showed strong staining for CD81 in normal germinal center B cells, a cell type in Tissue microarray which its increased expression has not been previously recognized. High-dimensional flow cytometry analysis of normal hematopoietic tissue confirmed that among B- and T-cell subsets, germinal center B cells showed the highest level of CD81 expression. In more than 800 neoplastic tissue samples, its expression was also found in most non-Hodgkin lymphomas.
    [Show full text]
  • Product Sheet: Exosome Antibodies and Elisas
    System Biosciences Accelerating discoveries through innovations Exosome Research Exosome Antibodies, Arrays and ELISAs Track, Verify and Quantitate Exosomes with Validated Antibody Systems Exosomes are small membrane vesicles secreted by most cell types in vivo and in Highlights vitro. Exosomes are found in cell culture media, blood, urine, amniotic fluid, malignant ascite fluids and contain distinct subsets of microRNAs and proteins • Exosome antibodies for Westerns depending upon the tissue from which they are secreted. SBI's ExoELISA kits are designed for fast and quantitative analysis of well-characterized exosomal protein • Validated CD63, CD9, CD81 and Hsp70 markers: CD63, CD9, CD81 or Hsp70. The exosome antibody kits allow for the • Exosome ELISAs for quantitation confirmation of exosome recoveries and the ExoELISA kit enables the specific quantitation of CD63, CD9 or CD81 positive exosome microvesicles. The exosome • Measure exact number of exosome antibody and ExoELISA kits are fully compatible with exosomes isolated by SBI's particles isolated from your samples ExoQuick or ExoQuick-TC as well as ultracentrifugation methods. Exosome antibodies for Western blots Exosome antibody arrays to check recoveries For Western blotting analysis, we recommend The Exo-Check antibody array has 12 pre-printed spots and resuspending the exosome pellet in 1XRIPA features 8 antibodies for known exosome markers (CD63, CD81, buffer with the appropriate protease inhibitor ALIX, FLOT1, ICAM1, EpCam, ANXA5 and TSG101) and a GM130 cocktail. SBI offers individual antibodies for CD63, cis-Golgi marker to monitor any cellular contamination in your CD9, CD81 and Hsp70 as well as a Western blot exosome isolations. Your exosome preparations are lysed and sampler kit (Catalog# EXOAB-KIT-1) which then incubated with the array for the pre-printed antibodies to includes four exosomal marker antibodies: CD63, capture their respective exosome proteins.
    [Show full text]
  • Monoclonal B-Cell Lymphocytosis
    Update on the International Standardized Approach for Flow Cytometric Residual Disease Monitoring in Chronic Lymphocytic Leukaemia Andy C. Rawstron on behalf of ERIC consortium MRD international harmonised approach 2007 • CD19/CD5/Kappa/Lamba • CD19/CD5/CD3/CD45, with CD19+CD3+ control for limit of detection – B/T-cell doublets have characteristics similar to CLL, not so other contaminants • CD19/CD5/CD20/CD38 • CD19/CD5/CD81/CD22 • CD19/CD5/CD43/CD79b – MRD markers chosen from CD19+CD3+ events => similar 50 potential combinations for characteristics to CLL cells reproducibility of detection Other “noise” is easy to exclude International standardised approach for residual disease monitoring in CLL: Leukemia 2007, 21(5): 956-64 Design of the 6CLR panel: combinations, conjugates, contamination and cocktails T-test for # of Regression cells classed as slope for # of CLL with or cells classed as without CD3 CLL +/- CD3 CD20/79b/38 0.019 1.13 CD81/22/43 0.15 1.06 CD81/79b/43 0.69 1.05 Signal:Noise 1 Minimum events 50 1000 100 0.1 10 0.01 leucocytes leucocytes 1 Observed CLL % of CD79b CD79b CD43 CD43 CD20 CD20 CD38 CD38 Observed CLL % of Exclude result if CLL < CD19+3+ PE APC APC AH7 FITC AH7 FITC PE 0.001 0.001 0.01 0.1 1 Antibody Actual CLL % of leucocytes FITC PE PerC5.5 PE-Cy7 APC APC-H7 CD3 CD38 CD5 CD19 CD79b CD20 CD81 CD22 CD5 CD19 CD43 CD20 4-CLR and 6-CLR versions of the CLL MRD harmonised assay • Basic Clonality assessment: • Basic clonality assessment, – CD19/ CD5/ Kappa/ Lambda and calculate B-cells as a • Calculate B-cells as a
    [Show full text]
  • Reproducible Diagnosis of CLL by Flow Cytometry: an ERIC & ESCCA
    Reproducible diagnosis of CLL by flow cytometry: an ERIC & ESCCA harmonisation project Andy C. Rawstron, Karl-Anton Kreuzer, Asha Soosapilla, Martin Spacek, Peter Gambell, Neil McIver-Brown, Katherina Psarra, Maria Arroz, Raffaella Milani, Javier de la Serna, M. Teresa Cedena, Ozren Jaksic, Josep Nomdedeu, Carol Moreno, Gian Matteo Rigolin, Antonio Cuneo, Preben Johansen, Hans Johnsen, Richard Rosenquist Brandell, Carston Utoft Niemann, David Westerman, Marek Trneny, Stephen Mulligan, Peter Hillmen, David Oscier, Michael Hallek, Paolo Ghia, Emili Montserrat. On behalf of the European Research Initiated on CLL (ERIC) and the European Society for Clinical Cell Analysis (ESCCA) Current criteria: flexibility in marker expression • WHO criteria: • IWCLL guidelines: • CLL cells usually co-express CD5 and • CLL cells co-express the T-cell CD23 antigen CD5 and B-cell surface • Using flow cytometry, the tumour cells antigens CD19, CD20, and CD23. express dim surface IgM/IgD, CD20, CD22, CD5, CD19, CD79a, CD23, CD43 • The levels of surface Ig, CD20, & and CD11c (weak). CD10 is negative CD79b are characteristically low. and FMC& and CD79b are usually negative or weakly expressed in typical • Each clone is restricted to expression CLL. of either kappa or lambda. • Some cases may have an atypical • Variations of the intensity of immunophenotype (e.g. CD5- or expression of these markers may CD23-, FMC7+ or CD11c+, strong sIg, or CD79b+). exist and do not prevent inclusion of a patient in clinical trials for CLL. Trial cases referred to a central lab: ~2-5% not CLL & ~2-5% sub-optimal for MRD monitoring but this may vary according to trial treatment options • ADMIRE/ARCTIC trial: FCR-based treatment (n=421) • 97% typical phenotype (2% with no CD200 or CD43 expression) • 3% CD23neg, usually with additional aberrant markers but no t(11;14).
    [Show full text]
  • CD151 Expression Is Associated with a Hyperproliferative T Cell Phenotype Lillian Seu, Christopher Tidwell, Laura Timares, Alexandra Duverger, Frederic H
    CD151 Expression Is Associated with a Hyperproliferative T Cell Phenotype Lillian Seu, Christopher Tidwell, Laura Timares, Alexandra Duverger, Frederic H. Wagner, Paul A. Goepfert, Andrew O. This information is current as Westfall, Steffanie Sabbaj and Olaf Kutsch of September 26, 2021. J Immunol published online 27 September 2017 http://www.jimmunol.org/content/early/2017/09/27/jimmun ol.1700648 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2017/09/27/jimmunol.170064 Material 8.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published September 27, 2017, doi:10.4049/jimmunol.1700648 The Journal of Immunology CD151 Expression Is Associated with a Hyperproliferative T Cell Phenotype Lillian Seu, Christopher Tidwell, Laura Timares, Alexandra Duverger, Frederic H. Wagner, Paul A. Goepfert, Andrew O. Westfall, Steffanie Sabbaj, and Olaf Kutsch The tetraspanin CD151 is a marker of aggressive cell proliferation and invasiveness for a variety of cancer types.
    [Show full text]