Movement Patterns of a Native and Nonnative Frugivore in Hawaii And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trophic Categories in a Mammal Assemblage: Diversity in an Agricultural Landscape
Trophic categories in a mammal assemblage: diversity in an agricultural landscape Graziela Dotta1,2 & Luciano M. Verdade1 Biota Neotropica v7 (n2) http://www.biotaneotropica.org.br/v7n2/pt/abstract?short-communication+bn01207022007 Recebido em 08/05/06 Versão Reformulada recebida 26/02/07 Publicado em 01/05/07 1Laboratório de Ecologia Animal, Escola Superior de Agronomia “Luiz de Queiroz”, Universidade de São Paulo – USP, Avenida Pádua Dias, 11, CP 09, CEP 13418-900, Piracicaba, SP, Brazil 2Autor para correspondência: Graziela Dotta, e-mail: [email protected], http:// www.ciagri.usp.br/~lea/ Abstract Dotta, G. & Verdade, L.M. Trophic categories in a mammal assemblage: diversity in an agricultural landscape. Biota Neotrop. May/Aug 2007 vol. 7, no. 2 http://www.biotaneotropica.org.br/v7n2/pt/abstract?short- communication+bn01207022007. ISSN 1676-0603. Mammals play an important role in the maintenance and regeneration of tropical forests since they have essential ecological functions and can be considered key-species in structuring biological communities. In landscapes with elevated anthropogenic pressure and high degree of fragmentation, species display distinct behavioral responses, generally related to dietary habits. The landscape of Passa-Cinco river basin, in the central- eastern region of São Paulo State, shows a high degree of anthropogenic disturbance, with sugar cane plantations, eucalyptus forests, native semideciduous forest remnants and pastures as the key habitat types in the region. We surveyed medium to large mammals in those habitats and determined species richness and relative abundance for each of the following trophic categories: Insectivore/Omnivores, Frugivore/Omnivores, Carnivores, Frugivore/ Herbivores and Herbivore/Grazers. Differences in species richness and relative abundance among habitats were tested using one-way analysis of variance, followed by Tukey test, considering 1) each of the trophic categories individually and 2) the set of categories together. -
Bats & Spiders
Bats & Spiders Literacy Centers For 2nd & 3rd Grades FREE from The Curriculum Corner facts opinions Spiders and bats Bats can fly. are creepy. Bats are the most Bats are mammals. interesting animal we’ve learned about. Bats are the only I think we should have more books about bats in mammals that can fly. our library. ©www.thecurriculumcorner.com Most bats eat Bats are cute. insects or fruit. Most bats are Bats are my nocturnal. favorite mammal. Bats are mammals. Bats are the scariest mammal. Bats are the only Seeing bats in a cave is mammals that can fly. the coolest sight. ©www.thecurriculumcorner.com Spiders have Spiders are ugly. eight legs. Spiders live on every Spiders can scare continent but Antarctica. anyone. Only a few spiders species Spiders are disgusting of spiders are dangerous eight-legged creatures. to humans. Arachnophobia is a fear Spiders are more of spiders. interesting than bats. ©www.thecurriculumcorner.com Name: ________________________________ 1 Fact About My Animal Is: 1 Opinion About My Animal Is: My animal is: ©www.thecurriculumcorner.com Name: ________________________________ 1 Fact About My Animal Is: 1 Opinion About My Animal Is: My animal is: ©www.thecurriculumcorner.com the time just dusk before night locating objects echolocation by sound frugivore a fruit eater an animal that eats insectivore insects an animal that sleeps nocturnal during the day and is active at night warm-blooded animals that are vertebrates, have hair on their mammal bodies, and make milk to feed their babies an animal that feeds on hematophagous blood the natural home of an habitat animal or plant arachnophobia a fear of spiders an animal that has eight arachnid legs and a body with two parts poison that is produced by venom an animal and used to kill or injure another animal a new made from silk web threads woven together by a spider Vocabulary Task #1 Vocabulary Task #2 Sort your Put your words words by the in ABC order. -
Tmcm1de1.Pdf
Departament de Biologia Facultat de Ciències Hybridization patterns in Balearic endemic plants assessed by molecular and morphological markers — Ph. D. Thesis — Miquel Àngel Conesa Muñoz Supervisors: Dr. Maurici Mus Amézquita (Universitat de les Illes Balears) Dr. Josep Antoni Rosselló Picornell (Universitat de València) May 2010 Palma de Mallorca El doctor Maurici Mus Amézquita, professor titular de la Universitat de les Illes Balears, i el doctor Josep Antoni Rosselló Picornell, professor titular de la Universitat de València, CERTIFIQUEN: Que D. Miquel Àngel Conesa Muñoz ha realitzat, baix la seva direcció en el Laboratori de Botànica de la Universitat de les Illes Balears i en el Departament de Botànica del Jardí Botànic de la Universitat de València, el treball per optar al grau de Doctor en Biologia de les Plantes en Condicions Mediterrànies, amb el títol: “HYBRIDIZATION PATTERNS IN BALEARIC ENDEMIC PLANTS ASSESSED BY MOLECULAR AND MORPHOLOGICAL MARKERS” Considerant finalitzada la present memòria, autoritzem la seva presentació amb la finalitat de ser jutjada pel tribunal corresponent. I per tal que així consti, signem el present certificat a Palma de Mallorca, a 27 de maig de 2010. Dr. Maurici Mus Dr. Josep A. Rosselló 1 2 A la meva família, als meus pares. 3 4 Agraïments - Acknowledgements En la vida tot arriba. A moments semblava que no seria així, però aquesta tesi també s’ha acabat. Per arribar avui a escriure aquestes línies, moltes persones han patit amb mi, per mi, o m’han aportat el seu coneixement i part del seu temps. Així doncs, merescut és que els recordi aquí. Segurament deixaré algú, que recordaré quan ja sigui massa tard per incloure’l. -
Plant-Frugivore Interactions in a Heterogeneous Forest Landscape of South Africa
Plant-frugivore interactions in a heterogeneous forest landscape of South Africa Dissertation In partial fulfilment of the requirements for the award of a Doctorate Degree in Natural Sciences (Dr. rer. nat) The Faculty of Biology, Philipps-University of Marburg Lackson Chama, MSc Sinazongwe (Zambia) June 2012, Marburg From the Faculty of Biology, Philipps-University Marburg als Dissertation am angenommen. Dekan: Prof. Dr. Paul Galland Erstgutachterin: Prof. Dr. N. Farwig Zweitgutachter: Prof. Dr. R. Brandl Tag der Disputation: 25th June 2012 Dedicated to my son, Mishila, who’s first two years on earth I was hardly part of, due to my commitment towards this work. Contents CHAPTER 1: GENERAL INTRODUCTION ..................................................................................................................... 3 EFFECTS OF HUMAN ACTIVITIES ON FOREST BIODIVERSITY ........................................................................................................ 4 PLANT-FRUGIVORE INTERACTIONS IN CHANGING LANDSCAPES .................................................................................................. 5 THE ROLE OF FUNCTIONAL DIVERSITY IN FRUGIVORE COMMUNITIES ........................................................................................... 5 EFFECTS OF SEED INGESTION BY FRUGIVOROUS BIRDS ON GERMINATION SUCCESS ........................................................................ 6 AIMS OF THE THESIS ......................................................................................................................................................... -
All About Food Webs
fact sheet All about food webs We all need energy to live, so do other animals! An animal’s energy is derived from the food it eats. Different animals eat different things as their energy source: carnivores herbivores omnivores only eat animals (meat) only eat plants eat animals and plants Plants produce their own food, using energy from the sun, by a process called water + carbon dioxide + sunlight photosynthesis. Because they make their own food plants food + oxygen are called ‘producers’. Animals are called ‘consumers’, because they get their energy by consuming other things. What do you think these eat? • insectivore • nectarivore • frugivore ast0890 | Feeding relationships 3: All about food webs (fact sheet) developed for the Department of Education WA © The University of Western Australia 2012 for conditions of use see spice.wa.edu.au/usage version 1.1 revised November 2015 page 1 Licensed for NEALS A food chain shows what consumes what in an environment, that is, species that are linked to each other by what they eat. It also illustrates the direction in which energy passes from one species to the next. acacia cicada green tree frog freshwater crocodile Acacia plants are producers. The arrow shows at the beginning of the food chain, cicadas eat acacia, so cicadas are called ‘first order’ consumers. Next in the food chain, green tree frogs eat cicadas, so green tree frogs are ‘second order’ consumers. Then, freshwater crocodiles eat frogs, so freshwater crocodiles are ‘third order’ consumers. Each animal is named a different order of consumer, based on its position in a particular food chain. -
Frugivore Biodiversity and Complementarity in Interaction Networks
1 Frugivore biodiversity and complementarity in interaction networks 2 enhance landscape-scale seed dispersal function 3 4 Daniel García1*, Isabel Donoso1,2 & Javier Rodríguez-Pérez1,3 5 6 1. Depto. Biología de Organismos y Sistemas, Universidad de Oviedo, and Unidad Mixta de 7 Investigación en Biodiversidad (CSIC-Uo-PA), E-33071 Oviedo, Spain 8 2. Senckenberg Biodiversity and Climate Research Centre, Frankfurt (Main), Germany. 9 3. Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade de Évora, 10 Portugal. 11 12 * Author for correspondence, E-mail: [email protected] 13 14 15 16 17 18 19 20 21 22 1 23 Abstract 24 1. Animal biodiversity matters for the provision of ecosystem functions derived from trophic 25 activity. However, the mechanisms underlying this pattern remain elusive since animal 26 abundance and diversity, which are the components commonly used for representing 27 biodiversity, provide poor information about ecological complementarity in species 28 assemblages. An approach based on species interaction networks may overcome this 29 constraint. 30 2. Here, we relate frugivore biodiversity and frugivore-plant network structure with landscape- 31 scale seed dispersal function. We sampled, for two years, and at fourteen plots with variable 32 assemblages of frugivores and plants in the Cantabrian Range (N Spain), data on the 33 abundance and diversity of frugivorous birds, the consumption of fleshy fruits of woody plants, 34 and the landscape-scale patterns of avian seed deposition. As a measure of interaction 35 complementarity in seed dispersal networks, we estimated the degree to which frugivore and 36 plant species specialize in their interacting partners. -
Rubus Discolor Himalayan Blackberry Rosaceae
Rubus discolor Himalayan blackberry Rosaceae Forest Starr, Kim Starr, and Lloyd Loope United States Geological Survey--Biological Resources Division Haleakala Field Station, Maui, Hawai'i March, 2003 OVERVIEW Rubus discolor (Himalayan blackberry), native to western Europe, has become a pest plant in moist temperate regions of the world where it has been introduced. In North America, this species is spreading along the west coast and several north eastern states where it invades disturbed habitat forming thorny dense impenetrable thickets through rapid growth. Spread is facilitated by fruit eating birds and mammals. In Hawai'i, Rubus discolor is known from the islands of O'ahu and Maui, where it is still somewhat limited in distribution. It is targeted for control on O'ahu by the O'ahu Invasive Species Committee (OISC). On Maui, Rubus discolor is sparingly known from both West and East Maui. On West Maui, Rubus discolor is located near the beginning of the trail that leads to Pu'u Kukui where is thought to have originally been planted. The plant now occupies several acres and may still be eradicable if resources were available. On East Maui, Rubus discolor is also known from a small area in the Ainahou flats, 6,300 ft (1,920 m) elevation (P. Bily pers. comm.). These locations are all near vulnerable native mesic and wet native forest areas. Control of Rubus species is somewhat difficult. However, control of this plant now would help prevent its further spread on Maui. TAXONOMY Family: Rosaceae (rose family) (Wagner et al. 1999). Latin name: Rubus discolor Weihe & Nees (Wagner et al. -
In the Andean Rainforests of Argentina
Mammalia 2016; 80(1): 11–19 Mariano S. Sánchez* Structure of three subtropical bat assemblages (Chiroptera) in the Andean rainforests of Argentina Abstract: I evaluated bat assemblages in terms of spe- Introduction cies richness, relative abundance, trophic guild structure, and seasonal changes at three sites along of the Southern In the Neotropics, bats account for about 50% of the Yungas forests. A total of 854 individuals were captured, mammal diversity, greatly influencing the structure representing 25 species of three families, with an effort of and functionality of these communities (e.g., Simmons 27,138 m of mist net opened per hour. Subtropical assem- and Voss 1998, Aguirre 2002, Sampaio et al. 2003). Bats blages showed a similar structure to those from tropical have a great diversity of dietary habits, playing a crucial landmark, with a dominance of frugivorous Phyllostomid; functional roles as pollen and seed dispersers (Mus- in addition, a few species were abundant, followed by a carella and Fleming 2007, Lobova et al. 2009) and as long tail of less common species. However, subtropical predators of arthropods and small vertebrates (Giannini sites differed due to the dominance of the genus Sturnira and Kalko 2005, Kalka et al. 2008). Moreover, bats are and the great contribution to richness of Vespertilionidae important components in the diet of several predatory and Molossidae families. Contrary to my original expec- animals such as birds, reptiles, and others mammals tations, the latitudinal gradient of species richness does (including other bats; Kunz and Parsons 2009), suggest- not seem to produce significant differences in richness ing that bats may be important regulators of complex between the northern and the southern sites, with the ecological processes and may provide important ecosys- central site being different. -
Behavioral Ecology of Amazonian Mixed-Species Flocks
BEHAVIORAL ECOLOGY OF AMAZONIAN MIXED-SPECIES FLOCKS By Sean M. Williams A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Zoology–Doctor of Philosophy Ecology, Evolutionary Biology, and Behavior–Dual Major 2017 ABSTRACT BEHAVIORAL ECOLOGY OF AMAZONIAN MIXED-SPECIES FLOCKS By Sean M. Williams Amazonian mixed-species flocks of birds are remarkable by virtue of their strength of interspecific association. In these flocks, individuals of different species associate with each other for the duration of their lives, i.e. during all daylight hours, 365 days of the year across many years. These obligate relationships provide a unique opportunity to study the behavioral ecology of dependent interspecific relationships. I break my thesis into three chapters. First, I ask whether the relationship between two obligatorily flocking species (nuclear antshrike and antwren species) is symmetrical and whether transient species (non-obligate flocking species) are equally attracted to the nuclear species. Are the transient species equally attracted to the two nuclear species? And are the two nuclear species equally attracted to each other? This first question was necessary to ask before my other questions because I needed to know which species are following other species and which species are being followed. Then, I ask whether the behavior of a single species (the same antshrike species I determined was mostly being followed in the first question) can predict the space use of the whole flock and what environmental and behavioral variables explain the space use. Finally, I ask whether a particular context-dependent vocalization of the antshrike might serve as a mechanism of interspecific cohesion of the flock. -
Revised Recovery Plan for Hawaiian Forest Birds 2-1
II. SPECIES ACCOUNTS Section II contains accounts of all species covered in this recovery plan, presented in taxonomic order following the American Ornithologists’ Union checklist (1998). These accounts are not meant to be a complete reference, but rather to summarize sufficient relevant information about each species in order to understand the prescribed recovery strategy and the prioritization of recovery actions. All of the Hawaiian forest birds face the same set of threats, but the relative importance of those threats varies among species depending on their life history, current distribution and status, and habitat requirements. The priority placed on each component of the recovery strategy therefore varies among species. The species accounts build on and refine the overall recovery strategy discussed in the Introduction (Section I), and justify the recovery criteria presented in Section III as well as the recovery actions and priorities presented in the Recovery Actions Narrative (Section IV). Each account also includes a summary of previous and ongoing conservation efforts, including Federal and State regulations, land acquisition, research, and management directed at or relevant to the recovery of the species. All of the accounts follow the same format and contain the following section headings: description and taxonomy; life history; habitat description; historical and current range and status; reasons for decline and current threats; conservation efforts; and recovery strategy. Longer accounts for better-studied species contain additional subheadings to help locate information. When available, maps showing the historical and current distribution of the species and recovery areas appear in the accounts (Figures 6 through 21). Recovery plans are prepared following a determination that a species merits listing as endangered or threatened under the Endangered Species Act (Act). -
Rubus Niveus F. B Hill Or Mysore Raspberry Rosaceae
Rubus niveus f. b Hill or mysore raspberry Rosaceae Forest Starr, Kim Starr, and Lloyd Loope United States Geological Survey--Biological Resources Division Haleakala Field Station, Maui, Hawai'i March, 2003 OVERVIEW Rubus niveus f. b is native from Indian to southeastern Asia, the Philippines, and Indonesia, is now known to be naturalized on Kaua'i, Maui, and Hawai'i (Nagata 1995, Flynn and Lorence 1998, Wagner et al. 1999). On Maui, a second form of Rubus, "form b" is known from Kula and the Polipoli area. In this area, R. niveus form b is common and well established in degraded pasture, shrubland, native mesic forests, and disturbed forestry plantations, 3,000-6,500 ft (914-1,981 m). In the Polipoli area, Rubus niveus form b runs rampant and is increasingly becoming a nuisance. Large thickets blanket surrounding vegetation, fills gulches, and making access to areas impossible. Control is currently done by the State Department of Land and Natural Resources, who keep the thorny plant from impeding recreational activities in the area. Rubus niveus is a Hawai'i state noxious weed. The population in Polipoli is well established and not likely eradicable at this time. Natural areas currently free of Rubus niveus form b should be familiar with the plant so it can be detected early and controlled as soon as possible to prevent the establishment of this species in new areas where it is not wanted. TAXONOMY Family: Rosaceae (rose family) (Wagner et al. 1999). Latin name: Rubus niveus Thunb. (Wagner et al. 1999). Rubus niveus Thunb. form b (Gerrish et al. -
A Comparative Study of Mixed-Species Bird Flocks in Shaded Coffee Plantation and Natural Forest in Wayanad, Kerala
CHANDRAN & VISHNUDAS: Bird flocks in coffee plantation 97 A comparative study of mixed-species bird flocks in shaded coffee plantation and natural forest in Wayanad, Kerala Karthika Chandran & Vishnudas C. K. Karthika C. & Vishnudas C. K. 2018. A comparative study of mixed-species bird flocks in shaded coffee plantation and natural forest in Wayanad, Kerala. Indian BIRDS. 14 (4): 97–102. Karthika Chandran, Centre for Wildlife Studies, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India. E-mail: [email protected] Vishnudas C. K., Hume Centre for Ecology and Wildlife Biology, #161, 2nd floor, Valappil Complex, Gudalai Road, Kalpetta, Wayanad, Kerala, India. E-mail: [email protected] [Corresponding author] Manuscript received on 01 November 2017. Abstract Mixed-species flocks, in two different habitats (coffee plantation and natural forest) in Wayanad District, were studied in order to compare the species composition and organisation of flocks in both habitats. Flocks were surveyed along three 500 m trails at the study sites and species, species numbers, number of individuals, and the foraging height and foraging substrate of species within the flocks were recorded. A total of 38 flocks were observed in the coffee plantation and 25 flocks in the natural forest. The results suggested no significant differences in the abundance of mixed-species flocks, mean species richness, or mean number of individuals per flock. However, there was a change in the foraging levels of certain species from mid-canopy/ upper canopy in coffee plantation to lower canopy/understorey levels in forest. The foraging height of the flock members differed significantly between both habitats.