Distribution of Minerals in Young and Mature Leaves of Different Leaf Vegetable Crops Cultivated in a Field

Total Page:16

File Type:pdf, Size:1020Kb

Distribution of Minerals in Young and Mature Leaves of Different Leaf Vegetable Crops Cultivated in a Field Open Journal of Plant Science Toshihiro Watanabe1*, Eriko Maejima1, Research Article Masaru Urayama1, Masako Owadano1, Aiko Yamauchi1, Ryosuke Okada1, Takuro Shinano2 and Mitsuru Osaki1 Distribution of Minerals in Young 1Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, and Mature Leaves of Different Leaf 0608589, Japan 2Agricultural Radiation Research Center, NARO Vegetable Crops Cultivated in a Field Tohoku Agricultural Research Center, 50 Aza Harajyukuminami, Arai, Fukushima, 9602156, Japan Abstract Dates: Received: 02 May, 2016; Accepted: 17 May, At least 17 elements are known to be essential for plants; however, plants also absorb and 2016;Published: 18 May, 2016 accumulate various nonessential elements. Plants re-translocate different elements, including essential and nonessential elements, with differing efficiencies from mature to young developing organs via *Corresponding author: Dr. Toshihiro the phloem transport, resulting in different distributions of minerals in these organs. Therefore, in this Watanabe, Research Faculty of Agriculture, study, we analyzed the concentrations of 23 elements in young and mature leaves of different leaf Hokkaido University, Kita-9, Nishi-9, Kitaku, vegetable crops to comprehensively understand the mineral dynamics in plants. The allocation profiles Sapporo, 0608589, Japan, Tel: +81-11- of minerals in leaves of varying ages differed among species. For example, a higher molybdenum 706-2498; Fax: +81-11-706-2498; E-mail: allocation profile was observed in young crown daisy Glebionis( coronaria) leaves, which might be related to the efficient nitrate assimilation in young leaves of this species. Thus, this study provides a www.peertechz.com new insight into the mineral uptake and transport mechanisms in plants. Keywords: Minerals; Ionome; Leaf; Bok choy; Komatsuna; Turnip; Crown daisy this study, we analyzed the concentrations of 23 elements in young and mature leaves of different leaf vegetable crops and attempted to Introduction examine whether there was a phylogenetic influence on the elemental distribution profile and elemental concentration profile in leaves. To date, 17 elements have been recognized as essential for In this study, we selected the leaf vegetable crops because we could plants [1]. However, soil contains various nonessential and essential obtain plants of uniform size during field cultivation and their plant elements, and plants growing in fields absorb and accumulate both the type was suitable for collecting leaves of varying ages. elements. The accumulation of minerals in plants is largely affected by genetic variation and growth environment [2,3]. In particular, Materials and Methods compared with normal plants, specific plant species, known as Cultivation hyperaccumulators, accumulate extremely high concentrations of In 2012, four vegetable crop species/varieties were cultivated nonessential or trace elements, including aluminum (Al), sodium in an experimental field of the Hokkaido University, Japan. For (Na), silicon, and heavy metals, in their above-ground organs [4-6]. all cultivations, N, P, and K fertilizers were uniformly applied as Minerals are transported via the xylem and phloem vascular −1 ammonium sulfate (140 kg N ha ), superphosphate (130 kg P2O5 systems in plants. Essential elements are re-translocated from old or −1 −1 ha ), and potassium sulfate (100 kg K2O ha ), respectively. For mature organs to young developing organs via the phloem transport each species/variety, two different commercial cultivars were used. to increase their efficiency of use1 [ ]. However, the mobilities of Seeds of bok choy (Brassica rapa var. chinensis cv. Fuyushomi and essential elements in the phloem differ among elements. For example, cv. Shikizanmai), komatsuna (B. rapa var. perviridis cv. Shoten and the mobilities of nitrogen, potassium (K), phosphorus (P), sulfur (S), cv. Hitomikomatsuna), turnip (B. rapa var. rapa cv. Taibyohikari and magnesium (Mg) are high, whereas those of calcium (Ca) and and cv. Fukukomachi), and crown daisy (Glebionis coronaria cv. manganese (Mn) are low [1]. Moreover, some nonessential elements Kiwamechuba and cv. Chubashingiku) were sown on June 14 in the were found in high concentrations in the phloem sap [7,8]. field. General properties of the field soil are detailed in a previous Ionomics is the study of the accumulation of all metals, metalloids, study [3]. All species used in this study have similar growth rate, and and nonmetals (ionome) in living organisms [9]. Ionomics aims to are usually cultivated in this prefecture during spring to autumn. systematically profile all elements found in a certain organism and Young and mature leaves were sampled on July 23, with three considers the genetic links among the elements, thereby providing replicates from at least three plants each. The row and hill spacing insight into the functional status of a complex biological organism. used was 13 × 13 cm. Leaf samples were dried in an oven at 70°C for Moreover, ionomics can be applied to the study of the phylogenetic 72 h and ground with a vibrating sample mill (TI-100; CMT, Saitama, influence on mineral accumulation. Our previous broad survey of Japan) for mineral analysis. various plant species investigated higher-level phylogenetic effects Mineral analysis that influenced the leaf composition of a wide range of elements [10]. However, the ionome profile of leaves may not be constant and Plant samples were digested in 2 mL of 61% (w/v) HNO3 (EL may change with leaf senescence as described above. Therefore, in grade; Kanto Chemical, Tokyo, Japan) at 110 °C in a DigiPREP Citation: Watanabe T, Maejima E, Urayama M, Owadano M, Yamauchi A, et al. (2016) Distribution of Minerals in Young and Mature Leaves of Different Leaf Vegetable Crops Cultivated in a Field. Open J Plant Sci 1(1): 005-009. 005 Watanabe et al. (2016) 6 apparatus (SCP Science, QC, Canada) for approximately 2 h until Bok choy 1 the solution had almost disappeared. After the samples had cooled, Bok choy 2 4 Komatsuna 1 0.5 mL H2O2 (semiconductor grade; Santoku Chemical, Tokyo, Komatsuna 2 2 Crown daisy 1 Japan) was added, and the samples were heated at 110 °C for a further Crown daisy 2 20 min. Once digestion was complete, the tubes were cooled and Turnip 1 0 Turnip 2 made up to a volume of 10 mL by adding 2% (w/v) HNO3 in Milli-Q PC2 (16.8%) water. The concentrations of the following elements were measured -2 Q%J$ using inductively coupled plasma-mass spectrometry (ELAN DRC-e; -4 Perkin Elmer, Waltham, MA, USA): lithium (Li), boron (B), Na, K, -4 -2 0 2 4 6 chromium (Cr), cobalt (Co), nickel (Ni), arsenic (As), molybdenum PC1 (45.7%) (Mo), cadmium (Cd), Mg, Al, P, Ca, Mn, iron (Fe), copper (Cu), zinc 0.6 (Zn), strontium (Sr), barium (Ba), and cesium (Cs). Li 0.4 Fe Mg Mn Statistical analyses Co Cs As 0.2 Mo Ba Al All statistical analyses were performed using the Sigmaplot 11.0 Sr Cr Ni V Zn 0.0 Ca Cu B Cd (Systat Software, Inc., San Jose, CA, USA) and Minitab 14 (Minitab Na Rb Inc., State College, PA, USA) softwares. PC2 (16.8%) -0.2 P K -0.4 Results and Discussion -0.6 First, we comprehensively compared the characteristics of -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 element accumulation in leaves by comparing the ionomes of young PC1 (45.7%) and mature leaves among species, varieties, and cultivars using the principal component analysis (PCA). PCA provides a dimension Figure 1: Principal component analysis (PCA) of elements in the young leaves reduction method for ionome data and is widely used in ionomics [11]. of plants analyzed in this study. Scores on PC1 and PC2 with all elements included (A) and the corresponding loading plot (B). Bok choy 1: cv. Fuyushomi, The PCA scores were then presented according to the combinations Bok choy 2: cv. Shikizanmai, Komatsuna 1: cv. Shoten, Komatsuna 2: cv. of PC1 and PC2. In the score plots of both young and mature leaves, Hitomikomatsuna, Turnip 1: cv. Taibyohikari, Turnip 2: cv. Fukukomachi, Crown Brassicaceae (bok choy, komatsuna, and turnip) and Asteraceae daisy 1: cv. Kiwamechuba, and Crown daisy 2: cv. Chubashingiku. (crown daisy) were separately plotted along PC1 (Figures 1,2, both significant atP < 0.01, Student’s t-test). Moreover, different varieties of 4 Bok choy 1 B. rapa were separately plotted along PC2, and a significant difference Bok choy 2 2 Komatsuna 1 (P < 0.05, Tukey’s multiple comparison test) between turnip and the Komatsuna 2 other B. rapa varieties was observed. These differences in PC2 might 0 Crown daisy 1 Crown daisy 2 be because of their phylogenetic distance [12]. Differences in the Turnip 1 -2 Turnip 2 ionome profile between two different commercial cultivars were small PC2 (15.9%) for all species/varieties (Figures 1,2, closed and opened symbols). The -4 : %`V loading plot shows which variables (element concentrations) had -6 the greater discriminating power to each PC1 and PC2. Results of -6 -4 -2 0 2 4 6 8 loading plots for both young and mature leaves indicated that the PC1 (56.3%) concentrations of Ca, Sr, Ba, and Mo negatively contributed, whereas 0.6 those of many other elements positively contributed to the PC1 score 0.4 K (Figures 1,2). The concentrations of elements with higher negative (Ca, Sr, Ba, and Mo) or positive (Na, Ni, Cu, and As) contributions Rb 0.2 P B V Al to PC1 are shown in Figure 3. As expected, Ca, Sr, Ba, and Mo Mo Cr Na 0.0 Cd Ca As Ba Zn concentrations were higher in Brassicaceae, whereas Na, Ni, Cu, and Sr Cu PC2 (15.9%) -0.2 Cs Ni as concentrations were higher in crown daisy. Because Ca, Sr, and Mg Mn Fe Ba are homologous elements, the same absorption and transport -0.4 Li Co mechanisms may be involved in the accumulation of these elements.
Recommended publications
  • Catalogue August 13Th 2021
    Catalogue October 10th 2021 www.southernharvest.com.au ph:03 6229 6795 mb:0439 460 411 Powered by TCPDF (www.tcpdf.org) Welcome to Southern Harvest. We are a family-run business that is all about growing - growing healthy, interesting food to share with family and friends, as well as native and cottage plants that bring colour, fragrance and habitat to the garden. Southern Harvest supplies you with quality cottage garden, native and vegetable and herb packet seed, with speedy service and advice. Nestled on 5 acres at the foothills of Mt Wellington in southern Tasmania, our winters are cold with regular frosts, so we value (and specialise in) plants for cool climates. We know the pleasure and reward of growing a bit of colour for the winterbare garden, as well as having something to take straight from the garden to the kitchen on those dark winter nights. Our daughters, Poppy and Bea, who inspired our logo, are a constant reminder of the joy and good health that gardens can bring to the young, the old and everyone between. We also grow organic garlic that we sell through Salamanca Market or over the internet. We stock a wide range of seeds both old and new varieties, we especially love heirloom (or heritage) seeds and the history associated with them.Check the website to see if the seeds are in stock. The catalogue is still under construction. We will have extensive growing notes appearing under each of the headings/categories soon to help make it easier for you. Enjoy the catalogue.
    [Show full text]
  • Tomato & Fennel Ragu
    TOMATO & FENNEL RAGU From our garden: fennel, marjoram, fennel fronds, purple cauliflower NOTES TO STUDENTS and VOLUNTEERS: 1. Please focus on your chopping skills. 2. Prepare the recipe in the order as outlined below to ensure it is cooked within the allocated time. Equipment Ingredients Colander 1 fennel Chopping board ¼ purple cauliflower Large knife 1 stalk celery Vegetable peeler 1 clove of garlic Can opener 2 tablespoons olive oil Large Saucepan with lid 1 large can whole tomatoes Wooden spoon ½ cup vegetable stock Scissors Bay leaf Large mixing bowl Small bunch marjoram Small mixing bowl Fennel fronds for garnish Serving bowls Serving spoons What to do: Peel and finely chop the garlic. Wash and finely slice the fennel. Wash and cut the cauliflower into small florets. Wash the celery and slice finely. Heat the olive oil in a large heavy-based saucepan over medium heat. Add the garlic, celery and fennel. Cook, stirring, for 3 to 4 minutes or until vegetables have softened. Add the cauliflower. Cook, stirring, for 1 minute or until combined. Add the bay leaf, vegetable stock and tomatoes (and juice) to the saucepan. Cover. Cook, stirring occasionally for 20 minutes or until vegetables start to soften. Pick, wash and roughly chop the marjoram. Add to the pot and stir to combine. Pick the fennel fronds, wash and roughly chop. Divide the ragu into serving bowls and garnish with chopped fennel fronds. .
    [Show full text]
  • Nutritional Guidance in Sakado Folate Project
    Chapter 4 Nutritional Guidance in Sakado Folate Project Notification of thethe C677T GenotypeGenotype of of Methylenetetrahydrofolate Reductase IncreasedIncreased both both Serum Serum Folate Folate and and the the Intake Intake of ofGreen Green Veg‐ etablesVegetables MayumiMayumi Yurimoto, Yurimoto, Mami Hiraoka,Mami Hiraoka, MitsuyoMitsuyo Kageyama, Kageyama, Yoshiko Kontai,Yoshiko Kontai, ChiharuChiharu Nishijima, Nishijima, KaoriKaori Sakamoto Sakamoto and YasuoYasuo Kagawa Kagawa Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.74396 Abstract Background: Serum folate levels are lower in TT homozygotes of the single-nucleotide polymorphism (rs1801133) of methylenetetrahydrofolate reductase (MTHFR) than in CC homozygotes and CT heterozygotes. Objective: To improve folate status, the genotype was notified to each subject to motivate them to eat more green-yellow vegetables. Design: Genotype, dietary folate intake, and blood biochemistry were determined and statistically analyzed for 404 subjects (109 males, mean 58.9 years; 295 females, mean 61.8 years). Their serum folate and total homocysteine (tHcy) concentrations were mea- sured before and after receiving nutritional guidance and genotype notification. Results: The frequencies of the CC, CT, and TT MTHFR genotypes were 35.4, 49.7, and 14.8%, respectively. TT homozygote participants significantly increased their intake of green-yellow vegetables (p < 0.01) and of food-derived folate (p < 0.05) following nutritional guidance. The increase in serum folate (p < 0.001) and the decrease in tHcy (p < 0.001) in TT homozygotes following nutritional guidance were more than twice that of the CC homozygote and CT heterozygote participants. An increase in broccoli, spinach and Komatsuna intake was observed following nutritional guidance, irrespective of the season.
    [Show full text]
  • Mineral Biofortification of Vegetables As a Tool to Improve Human Diet
    foods Review Mineral Biofortification of Vegetables as a Tool to Improve Human Diet Camila Vanessa Buturi 1, Rosario Paolo Mauro 1,* , Vincenzo Fogliano 2, Cherubino Leonardi 1 and Francesco Giuffrida 1 1 Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia, 5-95123 Catania, Italy; [email protected] (C.V.B.); [email protected] (C.L.); [email protected] (F.G.) 2 Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Vegetables represent pillars of good nutrition since they provide important phytochemicals such as fiber, vitamins, antioxidants, as well as minerals. Biofortification proposes a promising strategy to increase the content of specific compounds. As minerals have important functionalities in the human metabolism, the possibility of enriching fresh consumed products, such as many vegetables, adopting specific agronomic approaches, has been considered. This review discusses the most recent findings on agronomic biofortification of vegetables, aimed at increasing in the edible portions the content of important minerals, such as calcium (Ca), magnesium (Mg), iodine (I), zinc (Zn), selenium (Se), iron (Fe), copper (Cu), and silicon (Si). The focus was on selenium and iodine biofortification thus far, while for the other mineral elements, aspects related to vegetable typology, genotypes, chemical form, and application protocols are far from being well defined. Even if agronomic fortification is considered an easy to apply technique, the approach is complex considering several interactions occurring at crop level, as well as the bioavailability of different minerals for the consumer.
    [Show full text]
  • (Glebionis Carinatum) and Crown Daisy (G. Coronaria) Using Ovule Culture
    Plant Biotechnology 25, 535–539 (2008) Original Paper Intergeneric hybridization of marguerite (Argyranthemum frutescens) with annual chrysanthemum (Glebionis carinatum) Special Issue and crown daisy (G. coronaria) using ovule culture Hisao Ohtsuka1,*, Zentaro Inaba2 1 Shizuoka Research Institute of Agriculture and Forestry, Iwata, Shizuoka 438-0803, Japan; 2 Shizuoka Research Institute of Agriculture and Forestry/Izu Agricultural Research Center, Higashiizu, Shizuoka 413-0411, Japan * E-mail: [email protected] Tel: ϩ81-538-36-1553 Fax: ϩ81-538-37-8466 Received August 20, 2008; accepted November 10, 2008 (Edited by T. Handa) Abstract To diversify flower color and growth habit of marguerite (Argyranthemum frutescens), intergeneric crossing was carried out using marguerite as the seed parent and annual chrysanthemum (Glebionis carinatum) or crown daisy (G. coronaria) as the pollen parent. After cross-pollination, seedlings were successfully obtained by applying ovule culture. Ovule culture-derived plants showed novel characteristics in flower shape and color (orange, reddish brown, or wisteria pink) that are not observed in marguerite. Some also showed novel flowering habits such as perpetual flowering. The results indicate that these ovule culture-derived plants were intergeneric hybrids and that the hybrids obtained in the present study may be useful for further breeding of marguerite, especially for introducing valuable characteristics such as a wide range of flower color. Key words: Argyranthemum, Glebionis, intergeneric hybridization, ovule culture. Marguerite (Argyranthemum frutescens) is a perennial germplasm for the breeding of marguerite, but most of plant native to the Canary Islands, Spain (Bramwell et them have white flowers and diversity in flower color and al. 2001) and Madeira, Portugal (Press et al.
    [Show full text]
  • Materials for Beating Flea Beetles in Brassicas
    Materials for Beating Flea Beetles in Brassicas Ruth Hazzard, Extension Vegetable Program, University of Massachusetts – Amherst, Department of Plant, Soil and Insect Science, Agricultural Engineering Building, Amherst MA 01003-9295, 413-545-3696 [email protected] Early spring plantings of Brassica crops are often hit hard by flea beetles. Crucifer and striped flea beetles feed on Brassica crops as well as weeds that are in the same family, such as yellow rocket or wild mustard. The crucifer flea beetle (Phyllotreta cruciferae) is uniformly black and shiny, about 2 mm in length, while the striped flea beetle (Phyllotreta striolata) has two yellow stripes on its back. Other species of flea beetles attack other crop families: solanaceous crops such as eggplant, potato, and tomato, or sweet corn. These beetles may look very similar to those found on Brassicas, but if they are feeding on a different crop group, they are almost certainly a different species of flea beetle. While this article will discuss biorational insecticides that will suppress flea beetle, it is important for growers to be familiar with the life cycle of flea beetles and to combine insecticides with many cultural practices to reduce damage and keep populations from building up to unmanageable levels. Feeding damage and crop preference. Flea beetle adults feed on leaves and stems, resulting in numerous ‘shot-holes’. Heavy feeding can kill plants, especially seedlings, and moderate damage can reduce plant size, delay maturity, reduce yield, or render crops unmarketable. Flea beetle larvae feed on roots. The impact of their feeding damage on crop yield is not well understood.
    [Show full text]
  • Environmental and Genetic Variation in Essential Mineral Nutrients and Nutritional Value Among Brassica Vegetables
    Journal of Agricultural Science; Vol. 10, No. 7; 2018 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Environmental and Genetic Variation in Essential Mineral Nutrients and Nutritional Value Among Brassica Vegetables Moo Jung Kim1, Tyler J. Simpson1, Yu-Chun Chiu1, Talon M. Becker2, John A. Juvik3 & Kang-Mo Ku1 1 Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, USA 2 Extension-Commercial Agriculture, University of Illinois at Urbana-Champaign, Benton, IL, USA 3 Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA Correspondence: Kang-Mo Ku, Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26505, USA. Tel: 1-304-293-2549. E-mail: [email protected] Received: March 20, 2018 Accepted: April 28, 2018 Online Published: June 15, 2018 doi:10.5539/jas.v10n7p1 URL: https://doi.org/10.5539/jas.v10n7p1 Abstract Dietary minerals play an important role in human nutrition and proper metabolism. We grew various Brassica crops under field conditions in 2012 and 2013 and analyzed 8 essential minerals from edible tissues of those crops. Among the investigated crops, pak choi (Brassica rapa), mustard greens (B. juncea; B. nigra), and komatsuna (B. rapa) were generally high in most minerals, according to dry weight-based concentrations. The percentage recommended daily intake (RDA) or adequate intake (AI) values, calculated using fresh weight-based concentrations, suggest that Brassica vegetables are a good source of iron, calcium, and manganese, providing > 20% of %RDA/AI depending on crop. Kale (B. oleracea; B. napus) was generally higher in %RDA/AI, in particular for calcium (Ca), phosphorous (P), magnesium (Mg), and manganese (Mn).
    [Show full text]
  • The Gradual Loss of African Indigenous Vegetables in Tropical America: a Review
    The Gradual Loss of African Indigenous Vegetables in Tropical America: A Review 1 ,2 INA VANDEBROEK AND ROBERT VOEKS* 1The New York Botanical Garden, Institute of Economic Botany, 2900 Southern Boulevard, The Bronx, NY 10458, USA 2Department of Geography & the Environment, California State University—Fullerton, 800 N. State College Blvd., Fullerton, CA 92832, USA *Corresponding author; e-mail: [email protected] Leaf vegetables and other edible greens are a crucial component of traditional diets in sub-Saharan Africa, used popularly in soups, sauces, and stews. In this review, we trace the trajectories of 12 prominent African indigenous vegetables (AIVs) in tropical America, in order to better understand the diffusion of their culinary and ethnobotanical uses by the African diaspora. The 12 AIVs were selected from African reference works and preliminary reports of their presence in the Americas. Given the importance of each of these vegetables in African diets, our working hypothesis was that the culinary traditions associated with these species would be continued in tropical America by Afro-descendant communities. However, a review of the historical and contemporary literature, and consultation with scholars, shows that the culinary uses of most of these vegetables have been gradually lost. Two noteworthy exceptions include okra (Abelmoschus esculentus) and callaloo (Amaranthus viridis), although the latter is not the species used in Africa and callaloo has only risen to prominence in Jamaica since the 1960s. Nine of the 12 AIVs found refuge in the African- derived religions Candomblé and Santería, where they remain ritually important. In speculating why these AIVs did not survive in the diets of the New World African diaspora, one has to contemplate the sociocultural, economic, and environmental forces that have shaped—and continue to shape—these foodways and cuisines since the Atlantic slave trade.
    [Show full text]
  • Intergeneric and Interspecific Hybridizations Among Glebionis Coronaria, G
    Chromosome Botany (2015) 10 (3):85-87 ©Copyright 2015 by the International Society of Chromosome Botany Intergeneric and interspecific hybridizations among Glebionis coronaria, G. segetum and Leucanthemum vulgare Kiichi Urushibata and Katsuhiko Kondo* Laboratory of Plant Genetics and Breeding Science, Department of Agriculture, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi City 243-0034, Japan; *Present Address: Research Institute of Evolutionary Biology, 2-4-28 Kamiyouga, Setagaya-Ku, Tokyo 158-0098, Japan *Author for correspondence: [email protected] Received May 05, 2015; accepted May 29, 2015 ABSTRACT: Cross-hybridizations between Glebionis coronalia (L.) Spach and G. segetum (L.) Fourr., G. coronalia and Leucanthemum vulgare Lam. and G. segetum and L. vulgare by using ovule culture were successfully made the hybrid seedlings. RAPD primer OPA20 was found to isolate respective bands specific to G. coronalia, G. segetum, and L. vulgare. The F1 hybrids between G. coronalia and L. vulgare and G. segetum and L. vulgare showed morphologically rather the maternal-side leaf characters. KEYWORDS: Glebionis coronalia, Glebionis segetum, Intergeneric hybrids, Interspecific hybrids, Leucanthemum vulgare The Asteraceae is evolutionally the most advanced family ovaries were placed and planted on 1/2 MS medium in the plant kingdom and has the largest tribe Anthemideae, supplemented with 3.0 (w/v)% sucrose, 0.2 (w/v)% gelrite, so-called Chrysanthemum sensu lato (Kondo et al. 2010) 0.2mg/l IAA and adjusted at pH 5.8 (Murashige and that were considered to be evolved during the glacial Skoog 1962). epoch (Bremer and Humphries 1993; Kondo et al. 2003, 2009; Pellicer et al.
    [Show full text]
  • Crithmum Maritimum L.)
    UNIVERSIDAD POLITÉCNICA DE CARTAGENA Máster en Técnicas Avanzadas en Investigación y Desarrollo Agrario y Alimentario Effect of salinity and methyl jasmonate on the production and quality of sea fennel (Crithmum maritimum L.) HAFİSE VAROL INDEX ABSTRACT 1. INTRODUCTION 1.1 The Importance of Baby Leaf as a Ready-To-Eat Food 1.2 Baby Leaf Growing Media 1.3 Floating System 1.4 Seeds and Sowing of Baby Leaf 1.5 Irrigation and Fertilization of Baby Leaf 1.6 Pest and Diseases of Baby Leaf 1.7 Post-Harvest Handling of Baby Leaf 1.8 Halophytes 1.8.1 Crithmum maritimum 1.8.2 Bioactive Compounds in C. maritimum 1.8.3 Mineral Contents of C. maritimum 1.8.4 Effects of Salt Stress in C. maritimum 1.8.5 Effect of Methyl Jasmonate (MeJa) under Salt Stress 1.8.6 Effects of MeJa as Elicitor of Phytochemicals 2. OBJECTIVES 3. MATERIAL and METODS 3.1 Cultivation and Experiment Designs 3.2 Experiment 1: Effect of Salinity on Postharvest 3.3 Experiment 2: Effect of MEJa in Salt-Stressed Plants 3.4 Fresh and Dry Weights of Shoots and Roots 3.5 Root Parameters 3.6 Colour 3.7 Sensory and Visual Quality Analysis 3.8 Contents of Mineral 3.9 Phenolic Compounds 3.10 Chlorophylls and Carotenoids 3.11 Flavonoids 3.12 Antioxidant Capacity 3.13 Shelf Life During Storage Analysis 3.14 Statistics 4. RESULTS 4.1 Experiment 1: Effect of Salinity on Growth Postharvest Parameters of C. maritimum 4.1.1 Biomass, Leaf Area and Root Growth Parameters 4.1.2 Mineral Ion Concentrations (Anions and Cations) 4.1.3 Postharvest Quality 4.1.3.1 Weightloss Percantage of C.maritimum Plants 4.1.3.2 L, a and b Values 4.1.3.3 HUE Values 4.1.3.4 Chromaticity Values 4.1.3.5 CO2 and O2 Values of C.
    [Show full text]
  • Homegrown Chinese Vegetables for the Houston Area Emily Chen Dunbar
    Homegrown Chinese Vegetables for the Houston Area Emily Chen Dunbar I love vegetables. As a child growing up in the countryside of Taiwan, I watched the rice farmers and their water buffaloes plow the fields. My brothers and I loved to chase each other up the narrow paths between the rice patties. After the farmer harvested the rice, the field became our playground. We would pick up pieces of dried clay and shape them into small square pieces to build an oven. We collected and burned dry hay to heat up the oven until the clay became red. While it heated, we would swipe some sweet potatoes from a nearby field and put them into the oven. After stomping down on the clay roof, the hot clay buried the potatoes and cooked them. After one hour we eager kids went back for the most delicious, baked sweet potatoes known to mankind. Even now, the sweet, earthy, hot flavors remain in my mind. I realized how much that I enjoyed eating and cooking on the day my husband pointed out that I scheduled my daily activities around shopping and cooking. Many Chinese people have this same trait. A typical meal for a Chinese housewife includes steamed rice with 3 dishes and a soup. One of the dishes would always be a stir-fried, green-leaf vegetable; another might be shredded meat with some kind of vegetable. Most soups also included vegetables. For Chinese people, vegetables are the major food source. I have grown Chinese vegetables in Houston for many years. I also often trade vegetables with my Chinese friends.
    [Show full text]
  • Host Range and Impact of Dichrorampha Aeratana, the First Potential Biological Control Agent for Leucanthemum Vulgare in North America and Australia
    insects Article Host Range and Impact of Dichrorampha aeratana, the First Potential Biological Control Agent for Leucanthemum vulgare in North America and Australia Sonja Stutz 1,* , Rosemarie De Clerck-Floate 2 , Hariet L. Hinz 1, Alec McClay 3 , Andrew J. McConnachie 4 and Urs Schaffner 1 1 CABI, Rue des Grillons 1, CH-2800 Delémont, Switzerland; [email protected] (H.L.H.); [email protected] (U.S.) 2 Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403—1 Ave. S., Lethbridge, AB T1J 4B1, Canada; rosemarie.declerck-fl[email protected] 3 12 Roseglen Private, Ottawa, ON K1H 1B6, Canada; [email protected] 4 Weed Research Unit, New South Wales Department of Primary Industries, Biosecurity and Food Safety, Orange, NSW 2800, Australia; [email protected] * Correspondence: [email protected] Simple Summary: Oxeye daisy, a Eurasian member of the daisy family, has become invasive in several parts of the world, including North America and Australia. We investigated whether a root-feeding moth found closely associated with oxeye daisy in Europe could be used as a biological control agent for the plant when weedy. We found that the moth could develop on 11 out of 74 plant species that we tested in laboratory conditions when it was given no choice of plants. When the Citation: Stutz, S.; De Clerck-Floate, moths were given a choice of food plants outdoors, we found its larvae only on the ornamentals R.; Hinz, H.L.; McClay, A.; Shasta daisy and creeping daisy. Larval feeding had no impact on the weight and number of flowers McConnachie, A.J.; Schaffner, U.
    [Show full text]