Taxonomic Challenges For, and Of, Plant Invasions

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomic Challenges For, and Of, Plant Invasions View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lincoln University Research Archive Invited Review Hitting the right target: taxonomic challenges for, and of, plant invasions Petr Pysˇek1,2*, Philip E. Hulme3, Laura A. Meyerson4, Gideon F. Smith5,6,7, James S. Boatwright8, Downloaded from Neil R. Crouch9,10, Estrela Figueiredo7,11, Llewellyn C. Foxcroft12,13,Vojteˇch Jarosˇ´ık1,2, David M. Richardson13, Jan Suda14,15 and John R. U. Wilson13,16 1 Institute of Botany, Department of Invasion Ecology, Academy of Sciences of the Czech Republic, CZ-252 43 Pru˚honice, Czech Republic 2 Department of Ecology, Faculty of Science, Charles University in Prague, Vinicˇna´ 7, CZ-128 44 Prague, Czech Republic 3 The Bio-Protection Research Centre, Lincoln University, PO Box 84, Canterbury, New Zealand 4 Department of Natural Resources Science, University of Rhode Island, 1 Greenhouse Road, Kingston, RI 02881, USA http://aobpla.oxfordjournals.org/ 5 South African National Biodiversity Institute, Biosystematics Research and Biodiversity Collections Division, Private Bag X101, Pretoria 0001, South Africa 6 H. G. W. J. Schweickerdt Herbarium, Department of Plant Science, University of Pretoria, Pretoria 0002, South Africa 7 Centre for Functional Ecology, Departamento de Cieˆncias da Vida, Universidade de Coimbra, 3001-455 Coimbra, Portugal 8 Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Belville 7535, Cape Town, South Africa 9 Ethnobotany Unit, South African National Biodiversity Institute, PO Box 52099, 4007 Berea Road, Durban, South Africa 10 School of Chemistry, University of KwaZulu-Natal, Durban 4041, South Africa 11 Department of Botany, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031, South Africa 12 Conservation Services, South African National Parks, Skukuza 1350, South Africa at Lincoln University Library on November 11, 2015 13 Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa 14 Department of Botany, Faculty of Science, Charles University in Prague, Bena´tska´ 2, CZ-128 01 Prague, Czech Republic 15 Institute of Botany, Laboratory of Flow Cytometry, Academy of Sciences of the Czech Republic, CZ-252 43 Pru˚honice, Czech Republic 16 South African National Biodiversity Institute, Kirstenbosch Research Centre, Invasive Species Programme, Claremont 7735, South Africa Received: 5 June 2013; Accepted: 10 September 2013; Published: 19 September 2013 Citation:Pysˇek P, Hulme PE, Meyerson LA, Smith GF, Boatwright JS, Crouch NR, Figueiredo E, Foxcroft LC, Jarosˇ´ıkV,RichardsonDM, Suda J, Wilson JRU. 2013. Hitting the right target: taxonomic challenges for, and of, plant invasions. AoB PLANTS 5: plt042; doi:10.1093/aobpla/ plt042 Abstract. This paper explores how a lack of taxonomic expertise, and by implication a dearth of taxonomic products such as identification tools, has hindered progress in understanding and managing biological invasions. It also explores how the taxonomic endeavour could benefit from studies of invasive species. We review the literature on the current situation in taxonomy with a focus on the challenges of identifying alien plant species and explore how this has affected the study of biological invasions. Biosecurity strategies, legislation dealing with invasive species, quarantine, weed sur- veillance and monitoring all depend on accurate and rapid identification of non-native taxa. However, such identifica- tion can be challenging because the taxonomic skill base in most countries is diffuse and lacks critical mass. Taxonomic resources are essential for the effective management of invasive plants and incorrect identifications can impede eco- logical studies. On the other hand, biological invasions have provided important tests of basic theories about species concepts. Better integration of classical alpha taxonomy and modern genetic taxonomic approaches will improve the accuracy of species identification and further refine taxonomic classification at the level of populations and * Corresponding author’s e-mail address: [email protected] Published by Oxford University Press on behalf of the Annals of Botany Company. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/3.0/),whichpermitsunrestricted reuse,distribution,andreproductioninanymedium,provided theoriginalworkisproperlycited. AoB PLANTS www.aobplants.oxfordjournals.org & The Authors 2013 1 Pysˇek et al. — Taxonomic challenges for, and of, plant invasions genotypes in the field and laboratory. Modern taxonomy therefore needs to integrate both classical and new concepts and approaches. In particular, differing points of view between the proponents of morphological and molecular approaches should be negotiated because a narrow taxonomic perspective is harmful; the rigour of taxonomic deci- sion-making clearly increases if insights from a variety of different complementary disciplines are combined and con- fronted. Taxonomy plays a critical role in the study of plant invasions and in turn benefits from the insights gained from these studies. Keywords: Biological invasions; detecting new invasions; DNA barcoding; invasive plants; karyology; management; species identification; taxonomy. Introduction techniques, classical (alpha) taxonomy is still useful and necessary in the 21st century. It is unlikely to lose this pos- Downloaded from The decline in taxonomic expertise substantially com- ition since biology, especially biodiversity science, will promises rigorous studies in all fields of biodiversity or always need taxonomists to do ‘real’ taxonomy (Godfray biogeography, including invasion biology (Smith et al. 2007), including the verification of the identity of organ- 2008a; Pysˇek and Richardson 2010). Most regions of the isms for which genetic data have been deposited into world have been colonized by species from many other GenBank (i.e. garbage in, garbage out; see for example http://aobpla.oxfordjournals.org/ parts of the globe, and identifying many of these non- Shen et al. 2013). Additionally, many regions globally are native species is a major challenge. Expertise in taxonomy unlikely to have easy access to such genetic data. In (i.e. discovery, description and revision of taxa, and by im- ecology, taxonomy is one of the fundamental units of cur- plication determining the correct name of an organism) is rency (Gotelli 2004). The reliable identification of taxa crucial for implementing effective quarantine measures, (native or alien) paves the way for the study of organisms, monitoring invasions and their pathways, and ensuring potentially sheds light on many aspects of their biology, that the time to first detection for new invaders is allows reference to the same taxa from other localities, minimized. Additionally, resources are required for broad- and makes comparisons with congeners and other taxa based public participation in invasive species manage- at Lincoln University Library on November 11, 2015 possible. Incorrect identification of plant invaders as a ment and for providing information to horticulturalists, result of inaccurate taxonomic services could lead to a foresters and others who utilize, and often financially misunderstanding of the dynamics of biological invasions. benefit from, alien species. Two conclusions of the Global Moreover, alien species management is an international Invasive Species Programme (GISP) were that ‘in most and multi-sectoral endeavour that requires accurate sci- countries it will be found that more research will be entific names for global information sharing (Smith et al. needed on taxonomy and identification of species, and 2008a). that there will often be a shortage of knowledge about This paper explores the ongoing and critical role of tax- natural distributions’ (Wittenberg and Cock 2001). We onomy in the study of plant invasions and specifically suggest that a decade after the completion of the first examines how the lack of taxonomic expertise can phase of GISP, this prediction has proved correct and the impede progress in understanding and managing inva- problem has reached critical proportions. More capacity sions. The converse is equally true: we argue that tax- in the taxonomy of plants and animals, both native and onomy can also benefit from insights from biological alien, is urgently needed (Smith et al. 2008b; Smith and invasions, a perspective that has not been sufficiently Figueiredo 2009) because misidentification using both explored and emphasized in the literature. Finally, we morphological and genetic data can have serious conse- suggest that classical taxonomy and modern genetic quences. Furthermore, rapid identification of alien speci- approaches must work in tandem, not only to improve the mens can drastically reduce the time taken to respond to accuracy of species identification but also to potentially new or potential invasions. refine classifications at the levels of organism, population A fundamental role of taxonomists in both taxonomic and genotype in the field and laboratory. and non-taxonomic studies is to provide the correct scien- tific names by using the best available knowledge of the organisms submitted for identification. This service is Systemic Problems with Taxonomy provided to a range of clients—biologists, environmen- Isthe current scope of taxonomyand nomenclature facing tal managers, agronomists and environmental impact
Recommended publications
  • Two New Species of Hiptage (Malpighiaceae) from Yunnan, Southwest of China
    A peer-reviewed open-access journal PhytoKeys 110: 81–89 (2018) Two new species of Hiptage... 81 doi: 10.3897/phytokeys.110.28673 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Two new species of Hiptage (Malpighiaceae) from Yunnan, Southwest of China Bin Yang1,2, Hong-Bo Ding1,2, Jian-Wu Li1,2, Yun-Hong Tan1,2 1 Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar 2 Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Aca- demy of Sciences, Menglun, Mengla, Yunnan 666303, PR China Corresponding author: Yun-Hong Tan ([email protected]) Academic editor: Alexander Sennikov | Received 27 July 2018 | Accepted 30 September 2018 | Published 5 November 2018 Citation: Yang B, Ding H-B, Li J-W, Tan Y-H (2018) Two new species of Hiptage (Malpighiaceae) from Yunnan, Southwest of China. PhytoKeys 110: 81–89. https://doi.org/10.3897/phytokeys.110.28673 Abstract Hiptage pauciflora Y.H. Tan & Bin Yang and Hiptage ferruginea Y.H. Tan & Bin Yang, two new species of Malpighiaceae from Yunnan, South-western China are here described and illustrated. Morphologically, H. pauciflora Y.H. Tan & Bin Yang is similar to H. benghalensis (L.) Kurz and H. multiflora F.N. Wei; H. ferruginea Y.H. Tan & Bin Yang is similar to H. calcicola Sirirugsa. The major differences amongst these species are outlined and discussed. A diagnostic key to the two new species of Hiptage and their closely related species is provided. Keywords Hiptage, Malpighiaceae, samara, Yunnan, China Introduction Hiptage Gaertn. (Gaertner 1791) is one of the largest genera of Malpighiaceae with about 30 species of woody lianas and shrubs growing in forests of tropical South Asia, Indo-China Peninsula, Indonesia, Philippines and Southern China, including Hainan and Taiwan islands (Chen and Funston 2008, Ren et al.
    [Show full text]
  • Medicinal Practices of Sacred Natural Sites: a Socio-Religious Approach for Successful Implementation of Primary
    Medicinal practices of sacred natural sites: a socio-religious approach for successful implementation of primary healthcare services Rajasri Ray and Avik Ray Review Correspondence Abstract Rajasri Ray*, Avik Ray Centre for studies in Ethnobiology, Biodiversity and Background: Sacred groves are model systems that Sustainability (CEiBa), Malda - 732103, West have the potential to contribute to rural healthcare Bengal, India owing to their medicinal floral diversity and strong social acceptance. *Corresponding Author: Rajasri Ray; [email protected] Methods: We examined this idea employing ethnomedicinal plants and their application Ethnobotany Research & Applications documented from sacred groves across India. A total 20:34 (2020) of 65 published documents were shortlisted for the Key words: AYUSH; Ethnomedicine; Medicinal plant; preparation of database and statistical analysis. Sacred grove; Spatial fidelity; Tropical diseases Standard ethnobotanical indices and mapping were used to capture the current trend. Background Results: A total of 1247 species from 152 families Human-nature interaction has been long entwined in has been documented for use against eighteen the history of humanity. Apart from deriving natural categories of diseases common in tropical and sub- resources, humans have a deep rooted tradition of tropical landscapes. Though the reported species venerating nature which is extensively observed are clustered around a few widely distributed across continents (Verschuuren 2010). The tradition families, 71% of them are uniquely represented from has attracted attention of researchers and policy- any single biogeographic region. The use of multiple makers for its impact on local ecological and socio- species in treating an ailment, high use value of the economic dynamics. Ethnomedicine that emanated popular plants, and cross-community similarity in from this tradition, deals health issues with nature- disease treatment reflects rich community wisdom to derived resources.
    [Show full text]
  • Hiptage Benghalensis Click on Images to Enlarge
    Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Hiptage benghalensis Click on images to enlarge Family Malpighiaceae Scientific Name Hiptage benghalensis (L.) Kurz Kurz, W.S. (1874) J. Asiat. Soc. Bengal, Pt. 2, Nat. Hist. 24: 136. Common name Flowers. Copyright CSIRO Madan masta Weed * Stem Vine stem diameters to 3 cm recorded. Fruits. Copyright CSIRO Leaves Leaf blades about 7.5-14 x 5-8.5 cm, quite stiff when fully developed, petioles about 0.8-3 cm long, shallowly grooved on the upper surface. Leaf blade margin slightly indented at the marginal glands which are visible on the underside of the leaf blade, about 8 glands on each side. Two large red spotted or green glands present on the lower surface, one on either side of the midrib near the base of the leaf blade. Underside of the leaf blade clothed in small, translucent, medifixed hairs which are visible with a lens. Minute 'oil dots' visible with a lens on the underside of the leaf blade but difficult to discern on older leaves. Stipules about 0.5-0.75 mm long, triangular, hairy. Flowers Scale bar 10mm. Copyright CSIRO Inflorescence about 8-15 cm long. Pedicels about 15 mm long with a bract at the base and another about halfway up. A large dark pink and green leaf-shaped gland about 7 mm long attached to the pedicel and the base of the calyx.
    [Show full text]
  • 100 of the World's Worst Invasive Alien Species
    100 OF THE WORLD’S WORST INVASIVE ALIEN SPECIES A SELECTION FROM THE GLOBAL INVASIVE SPECIES DATABASE Published by Contribution to the Global Invasive Species Programme (GISP) In Association with SPECIES SURVIVAL COMMISSION Citation Lowe S., Browne M., Boudjelas S., De Poorter M. (2000) 100 of the World’s Worst Invasive Alien Species A selection from the Global Invasive Species Database. Published by The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), 12pp. First published as special lift-out in Aliens 12, December 2000. Updated and reprinted version: November 2004. Electronic version available at: www.issg.org/booklet.pdf For information, or copies of the booklet in English, French or Spanish, please contact: ISSG Office: School of Geogra- phy and Environmental Sciences (SGES) University of Auckland (Tamaki Campus) Private Bag 92019 Auckland, New Zealand Phone: #64 9 3737 599 x85210 Fax: #64 9 3737 042 E-mail: [email protected] Development of the 100 of the World’s Worst Invasive Alien Spe- cies list has been made possible by Cover image: Brown tree snake the support of the Fondation (Boiga irregularis). d’Entreprise TOTAL (1998 - 2000). Photo: Gordon Rodda Printed in New Zealand by: Hollands Printing Ltd Contact: Otto van Gulik Email: [email protected] 2 Biological Invasion What happens when a species is in- The list of “100 of the World’s precedented rate. A number of the troduced into an ecosystem where Worst Invasive Alien Species” in invasive alien species featured in it doesn’t occur naturally? Are eco- this booklet illustrates the incred- this booklet are contributing to systems flexible and able to cope ible variety of species that have the these losses.
    [Show full text]
  • MALPIGHIACEAE 1. ASPIDOPTERYS A. Jussieu Ex Endlicher, Gen. Pl
    MALPIGHIACEAE 金虎尾科 jin hu wei ke Chen Shukun (陈书坤)1; A. Michele Funston2 Shrubs, small trees, or woody lianas, pubescence a mix of medifixed (T-shaped) and simple hairs, monoecious or andro-dioecious. Leaves usually opposite, rarely alternate or 3-whorled, petiolate, simple, entire, glands often present either on petiole or on lower surface of leaves; stipules free and deciduous, or connate and ± persistent, sometimes reduced or absent. Inflorescences terminal or axillary, racemose, corymbose or umbellate, solitary or in panicles; pedicels articulate, 2-bracteolate at point of attachment. Flowers bisexual or staminate (in Ryssopterys), actinomorphic or zygomorphic. Sepals 5, polysepalous or gamosepalous, imbricate, rarely valvate, one or more large glandular at bases of outside members, rarely eglandular. Petals 5, typically clawed, margin ciliate, dentate or fimbriate. Disk inconspicuous. Stamens 10, obdiplostemonous, sometimes diadelphous with one stamen distinctly larger than others; filaments usually connate at base; anthers introrse, longitudinally dehiscent. Ovary superior, 3-locular, placenta axile, 1-ovuled, pendulous and semianatropous in each locule; styles 3, or connate into 1, persistent. Fruit a schizocarp, carpels 3 or fewer, 1 seed per carpel; schizocarp splitting into winged samaras, indehiscent. Seed embryo large, erect or rarely curved; endosperm lacking. About 65 genera and ca. 1280 species: tropical and subtropical regions, mainly American; four genera and 21 species (12 endemic) in China. Two cultivated species were described in FRPS (43(3): 129. 1997): Malpighia coccigera Linnaeus, grown in Guangdong and Hainan, and Thyrallis gracilis Kuntze, grown in Guangdong and Yunnan (Xishuangbanna). Chen Shukun & Chen Pangyu. 1997. Malpighiaceae. In: Chen Shukun, ed., Fl. Reipubl. Popularis Sin.
    [Show full text]
  • Preliminary Phytochemical Screening and GC-MS Profiling of Hiptage
    Meenaa Venkataramani et al. / Journal of Pharmacy Research 2012,5(5),2895-2899 Research Article Available online through ISSN: 0974-6943 http://jprsolutions.info Preliminary phytochemical screening and GC-MS profiling of Hiptage benghalensis (L.)kurz Meenaa Venkataramani* and Sasikumar Chinnagounder1 *PG and Research Department of Biotechnology, Nehru Memorial College (Autonomous), Puthanampatti, Tiruchirapalli, Tamilnadu. India 1Head, PG and Research Department of Biotechnology, Nehru Memorial College (Autonomous), Puthanampatti, Tiruchirapalli, Tamilnadu. India Received on:11-02-2012; Revised on: 17-03-2012; Accepted on:19-04-2012 ABSTRACT The present study is focused on the preliminary phytochemical screening of various leaf extracts of Hiptage benghalensis and also in analyzing the phytocomponents using Gas chromatography-Mass Spectroscopy. The preliminary phytochemical screening revealed the presence of Coumarins, Sterols, Lignin, Saponins, Flavanoids, Alkaloids, Tannins, Terpenes and Protein in various leaf extracts of the plant under study and the GC-MS investigation of the chloroform fraction of the plant retrieved a total of 55 components which have been reported and discussed below. Keywords: Phytochemical screening, Gas Chromatography–Mass Spectroscopy, Hiptage benghalensis. INTRODUCTION The Indian subcontinent is a vast repository of medicinal plants that are used also to quench thirst. According to some researches the therapeutic actions of in traditional medical treatments(1).Chemical principles from natural sources this plant may be due to the presence of mangiferin (13), which is known to be have become much simpler and have contributed significantly to the develop- anti-inflammatory, hepatoprotective, antioxidant, and antimicrobial (14),(15). ment of new drugs from medicinal plants (2-3). Biologically active compounds The pharmacological potentials of H.benghalensis Kurz and the various from natural sources have always been of great interest to scientists working phytocomponents attributing to it still remain unexplored.
    [Show full text]
  • Long-Term Morphological Stasis Maintained by a Plant–Pollinator Mutualism
    Long-term morphological stasis maintained by a plant–pollinator mutualism Charles C. Davisa,1, Hanno Schaefera,b, Zhenxiang Xia, David A. Baumc, Michael J. Donoghued,1, and Luke J. Harmone aDepartment of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA 02138; bDepartment of Ecology and Ecosystem Management, Technische Universitaet Muenchen, D-85354 Freising, Germany; cDepartment of Botany, University of Wisconsin–Madison, Madison, WI 53706; dDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520; and eDepartment of Biological Sciences, University of Idaho, Moscow, ID 83844 Contributed by Michael J. Donoghue, February 27, 2014 (sent for review April 28, 2012) Many major branches in the Tree of Life are marked by stereotyped Neotropical representatives that produce floral oils and are vis- body plans that have been maintained over long periods of time. ited by these three oil-collecting bee tribes. None of them, One possible explanation for this stasis is that there are genetic or however, are as diverse as Malpighiaceae, which are also the developmental constraints that restrict the origin of novel body oldest of the seven oil-bee–pollinated clades (17). plans. An alternative is that basic body plans are potentially quite Malpighiaceae provide a natural test of the role of intrinsic labile, but are actively maintained by natural selection. We present versus extrinsic factors in generating morphological stasis; this is evidence that the conserved floral morphology of a species-rich particularly relevant in the context of Anderson’s earlier hy- flowering plant clade, Malpighiaceae, has been actively main- pothesis outlined above, but also more generally in the context of tained for tens of millions of years via stabilizing selection imposed developmental constraints that have been hypothesized to limit by their specialist New World oil-bee pollinators.
    [Show full text]
  • Molecular Systematics of Malpighiaceae: Evidence from Plastid Rbcl and Matk Sequences1
    American Journal of Botany 88(10): 1847±1862. 2001. MOLECULAR SYSTEMATICS OF MALPIGHIACEAE: EVIDENCE FROM PLASTID RBCL AND MATK SEQUENCES1 KENNETH M. CAMERON,2,6 MARK W. C HASE,3 WILLIAM R. ANDERSON,4 AND HAROLD G. HILLS5 2The Lewis B. and Dorothy Cullman Program for Molecular Systematics Studies, The New York Botanical Garden, Bronx, New York 10458-5126 USA; 3Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK; 4University of Michigan Herbarium, North University Building, Ann Arbor, Michigan 48109-1057 USA; and 5Molecular Biology Building, Iowa State University, Ames, Iowa 50011-3260 USA Phylogenetic analyses of DNA nucleotide sequences from the plastid genes rbcL and matK were employed to investigate intergeneric relationships within Malpighiaceae. Cladistic relationships generated from the independent data matrices for the family are generally in agreement with those from the combined matrix. At the base of Malpighiaceae are several clades mostly representing genera from a paraphyletic subfamily Byrsonimoideae. Intergeneric relationships among these byrsonimoid malpighs are well supported by the bootstrap, and the tribe Galphimeae is monophyletic. There is also a well-supported clade of genera corresponding to tribes Banisterieae plus Gaudichaudieae present in all trees, and many of the relationships among these banisterioid malpighs are well supported by the bootstrap. However, tribes Hiraeae and Tricomarieae (the hiraeoid malpighs) are paraphyletic and largely unresolved. Species of Mascagnia are distributed throughout these hiraeoid clades, con®rming the suspected polyphyly of this large genus. Optimization of selected morphological characters on these trees demonstrates clear phylogenetic trends such as the evolution of globally symmetrical from radially symmetrical pollen, increased modi®cation and sterilization of stamens, and switch from base chromosome number n 5 6ton 5 10.
    [Show full text]
  • FULL ACCOUNT FOR: Hiptage Benghalensis Global Invasive Species Database (GISD) 2021. Species Profile Hiptage Benghalensis. Avail
    FULL ACCOUNT FOR: Hiptage benghalensis Hiptage benghalensis System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Magnoliopsida Polygalales Malpighiaceae Common name chandravalli (Sanskrit, India), kamuka (Sanskrit, India), haldavel (Malayalam, India), liane de cerf (French), benghalen-Liane (German), hiptage (English), madhumalati (Malayalam, India), adimurtte (Kanarese, India), kampti (Hindi, India), Madhavi (Kanarese, India), ragotpiti (Gujrati, India), atimukta (Hindi, India), madhalata (Hindi, India), madhavi (Gujrati, India), madmalati (Hindi, India), vasantduti (Kanarese, India), adirganti (Kanarese, India) Synonym Banisteria benghalensis , L. Triopteris jamaicensis , L. Hiptage madablota , Gaertn. Banisteria benghalensis , L. Banisteria tetraptera , Sonnerat Banisteria unicapsularis , Lam. Gaertnera indica , J.F.Gmel. Gaertnera obtusifolia , (DC.) Roxb. Gaertnera racemosa , Vahl Hiptage benghalensis , (L.) Kurz forma typica Nied. Hiptage benghalensis , (L.) Kurz forma macroptera (Merr.) Nied. Hiptage benghalensis , (L.) Kurz forma latifoliaNied. Hiptage macroptera , Merr. Hiptage javanica , Blume Hiptage madablota , Gaertn. Hiptage malaiensis , Nied. Hiptage obtusifolia , DC. Hiptage pinnata , Elmer Hiptage teysmannii , Arènes Molina racemosa , Cav. Succowia fimbriata , Dennst. Hieracium floribundum , Wimm. & Grab. (pro sp.) [caespitosum lactucella] Hiptage benghalensis , (L.) Kurz forma cochinchinensis Pierre Similar species Summary Hiptage benghalensis is a native of India, Southeast Asia and the Philippines. The genus name, Hiptage, is derived from the Greek \"hiptamai\" which means \"to fly\" and refers to its unique three-winged fruit known as \"samara\". Due to the beautiful unique form of its flowers, it is often cultivated as a tropical ornamental in gardens. It has been recorded as being a weed in Australian rainforests and is extremely invasive on Mauritius and Réunion, where it thrives in dry lowland forests, forming impenetrable thickets and smothering native vegetation. Global Invasive Species Database (GISD) 2021.
    [Show full text]
  • Floral Symmetry Genes and the Origin and Maintenance of Zygomorphy in a Plant- Pollinator Mutualism
    Floral symmetry genes and the origin and maintenance of zygomorphy in a plant- pollinator mutualism Wenheng Zhang, Elena M. Kramer, and Charles C. Davis1 Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA 02138 Edited by Michael J. Donoghue, Yale University, New Haven, CT, and approved February 10, 2010 (received for review September 8, 2009) The evolution of floral zygomorphy is an important innovation in provides the bees access to oil glands, which are borne in pairs on flowering plants and is thought to arise principally from special- the abaxial surface of the sepals. The stereotypical floral mor- ization on various insect pollinators. Floral morphology of neo- phology of New World Malpighiaceae, despite tremendous var- tropical Malpighiaceae is distinctive and highly conserved, especially iation in vegetative and fruit morphology, led Anderson (9) to with regard to symmetry, and is thought to be caused by selection hypothesize that floral uniformity in the group results from their by its oil-bee pollinators. We sought to characterize the genetic specialization on these oil-bee pollinators. basis of floral zygomorphy in Malpighiaceae by investigating Interpreting the origin and maintenance of this unique floral CYCLOIDEA2-like (CYC2-like) genes, which are required for estab- morphology in a comparative evolutionary framework, however, lishing symmetry in diverse core eudicots. We identified two copies has remained elusive, in large part because of our lack of of CYC2-like genes in Malpighiaceae, which resulted from a gene understanding of the closest phylogenetic relatives of Malpigh- duplication in the common ancestor of the family. A likely role for iaceae.
    [Show full text]
  • International Journal of Universal Pharmacy and Bio
    148 | P a g e International Standard Serial Number (ISSN): 2319-8141 International Journal of Universal Pharmacy and Bio Sciences 5(1): January-February 2016 INTERNATIONAL JOURNAL OF UNIVERSAL PHARMACY AND BIO SCIENCES IMPACT FACTOR 2.093*** ICV 5.13*** Pharmaceutical Sciences RESEARCH ARTICLE …………!!! MICROMORPHOLOGICAL, MICROMETRIC INCLUDING HISTOCHEMICAL EVALUATION OF LEAF MADHAVILATA (HIPTAGE BENGHALENSIS) LINN. (KURZ) Madhavi Patel1, Harisha C.R2. 1Lecturer, Dravyaguna Department, Indian institute of Ayurvedic pharmaceutical sciences, Gujarat Ayurved University, Jamnagar, Gujarat, India. 2Head, of Pharmacognosy, I.P.G.T. & R.A., Gujarat Ayurved University, Jamnagar, Gujarat, India. ABSTRACT KEYWORDS: Hiptage benghalensis Linn. (Kurz). belonging to family Hiptage benghalensis Malpighiaceae. Commonly known as Madhavilata is a plant used by Linn. (Kurz.), Leaf, the indigenous people for the treatment of wound and obesity in Madhavilata, Malpighiaceae. India. Till date there is no pharmacognostical scientific work has For Correspondence: been done properly on its leaves. In the present study detailed Madhavi Patel * pharmacognostical evaluation has been done. Results showed that Address: Lecturer, Dravyaguna presence of rosette, cluster crystals and starch grains in petiole, Department, Indian single layer of palisade parenchyma, annular, pitted, spiral vessels in institute of Ayurvedic leaf, stomatal index i.e. 39 in lower epidermis. Powder microscopy pharmaceutical sciences, Gujarat Ayurved of sun dried powder showed cluster and rosette crystals, tannin University, Jamnagar, content and oil globules. Gujarat, India. Full Text Available On www.ijupbs.com 149 | P a g e International Standard Serial Number (ISSN): 2319-8141 INTRODUCTION: The exploration of traditional knowledge for cures to common diseases is attractive, but also overwhelming. Hiptage benghalensis Linn.
    [Show full text]
  • 100 of the World's Worst Invasive Alien Species
    100 OF THE WORLD’S WORST INVASIVE ALIEN SPECIES A SELECTION FROM THE GLOBAL INVASIVE SPECIES DATABASE Published by Contribution to the Global Invasive Species Programme (GISP) In Association with SPECIES SURVIVAL COMMISSION Citation Lowe S., Browne M., Boudjelas S., De Poorter M. (2000) 100 of the World’s Worst Invasive Alien Species A selection from the Global Invasive Species Database. Published by The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), 12pp. First published as special lift-out in Aliens 12, December 2000. Updated and reprinted version: November 2004. Electronic version available at: www.issg.org/booklet.pdf For information, or copies of the booklet in English, French or Spanish, please contact: ISSG Office: School of Geogra- phy and Environmental Sciences (SGES) University of Auckland (Tamaki Campus) Private Bag 92019 Auckland, New Zealand Phone: #64 9 3737 599 x85210 Fax: #64 9 3737 042 E-mail: [email protected] Development of the 100 of the World’s Worst Invasive Alien Spe- cies list has been made possible by Cover image: Brown tree snake the support of the Fondation (Boiga irregularis). d’Entreprise TOTAL (1998 - 2000). Photo: Gordon Rodda Printed in New Zealand by: Hollands Printing Ltd Contact: Otto van Gulik Email: [email protected] 2 Biological Invasion What happens when a species is in- The list of “100 of the World’s precedented rate. A number of the troduced into an ecosystem where Worst Invasive Alien Species” in invasive alien species featured in it doesn’t occur naturally? Are eco- this booklet illustrates the incred- this booklet are contributing to systems flexible and able to cope ible variety of species that have the these losses.
    [Show full text]