Preliminary Phytochemical Screening and GC-MS Profiling of Hiptage

Total Page:16

File Type:pdf, Size:1020Kb

Preliminary Phytochemical Screening and GC-MS Profiling of Hiptage Meenaa Venkataramani et al. / Journal of Pharmacy Research 2012,5(5),2895-2899 Research Article Available online through ISSN: 0974-6943 http://jprsolutions.info Preliminary phytochemical screening and GC-MS profiling of Hiptage benghalensis (L.)kurz Meenaa Venkataramani* and Sasikumar Chinnagounder1 *PG and Research Department of Biotechnology, Nehru Memorial College (Autonomous), Puthanampatti, Tiruchirapalli, Tamilnadu. India 1Head, PG and Research Department of Biotechnology, Nehru Memorial College (Autonomous), Puthanampatti, Tiruchirapalli, Tamilnadu. India Received on:11-02-2012; Revised on: 17-03-2012; Accepted on:19-04-2012 ABSTRACT The present study is focused on the preliminary phytochemical screening of various leaf extracts of Hiptage benghalensis and also in analyzing the phytocomponents using Gas chromatography-Mass Spectroscopy. The preliminary phytochemical screening revealed the presence of Coumarins, Sterols, Lignin, Saponins, Flavanoids, Alkaloids, Tannins, Terpenes and Protein in various leaf extracts of the plant under study and the GC-MS investigation of the chloroform fraction of the plant retrieved a total of 55 components which have been reported and discussed below. Keywords: Phytochemical screening, Gas Chromatography–Mass Spectroscopy, Hiptage benghalensis. INTRODUCTION The Indian subcontinent is a vast repository of medicinal plants that are used also to quench thirst. According to some researches the therapeutic actions of in traditional medical treatments(1).Chemical principles from natural sources this plant may be due to the presence of mangiferin (13), which is known to be have become much simpler and have contributed significantly to the develop- anti-inflammatory, hepatoprotective, antioxidant, and antimicrobial (14),(15). ment of new drugs from medicinal plants (2-3). Biologically active compounds The pharmacological potentials of H.benghalensis Kurz and the various from natural sources have always been of great interest to scientists working phytocomponents attributing to it still remain unexplored. Hence the present on infectious diseases. Research to find out scientific evidence for claims of investigation focuses on the preliminary phytochemical screening of aque- plants used for Indian Ayurvedic system of medicine has been intensified. In ous, ethanol, methanol and chloroform leaf extracts of H.benghalensis col- recent years the thirst to investigate on the bioactive components of the lected from Kolli hills, Tamilnadu and analysis of the phytoconstituents by plants has been incredibly focused on. Chromatographic separation with Gas chromatography and Mass Spectroscopy. mass spectrometry for the chemical characterization and composition analy- sis of botanicals has been growing rapidly in popularity in recent years. MATERIALS AND METHODS: Even though global herbal resources have a great potential as natural drugs Plant Material and are of great commercial importance, they are very often procured and Aerial parts of the selected plant were collected from the Eastern Ghats, processed without any scientific evaluation, and launched onto the market Tamilnadu. The taxonomic identification and authentication of the plant was without any mandatory safety and toxicology studies (4-5). The lack of phar- certified (PARC/2012/1238) by Prof.Dr.P.Jayaraman, Director, Institute of macological and clinical data on the majority of herbal medicinal products is Herbal Botany, Plant Anatomy Research Centre, Chennai. a major impediment to the integration of herbal medicines into conventional medicinal practice. For valid integration, pharmacological studies must be Extraction of Plant material conducted on those plants lacking such data (6,7,8). The list of many such The collected leaves were dried, coarsely powdered using electrical grinder undocumented, unexploited and uncharacterized plants of medical impor- and were subjected to cold and hot extractions. A definite quantity of the tance have been brought to light by many researchers and one such unex- powder was weighed (1:3) and soaked in the respective solvents for 2 days at plored plant is Hiptage benghalensis. room temperature with intermittent shaking and on the 3rd day, extracts were separated using Whatman No.1 filter paper. The hot extraction of the plant Hiptage benghalensis (L) Kurz. belongs to the family Malphigiaceae. It is a was carried over subsequently and with sufficient volume of various organic large, woody climber found in India, Burma, Malaysia, Thailand, China and solvents in the order of increasing polarity. The collected extracts were used the Philippines (9-11). The bark, leaves and flower of H.benghalensis are aro- for further analysis. All chemicals and solvents used for different studies matic. They are useful in conditions of burning sensation, wounds, ulcers, were of analytical grade. inflammations, leprosy, scabies, cough and rheumatism (12). The plant has tremendous therapeutic potential with every part of the plant being used Preliminary Phytochemical Screening of various extracts medicinally. The leaves of H.benghalensis (L.) Kurz are used in treating skin Preliminary phytochemical screening of various extracts was carried out as diseases in Burma and the bark is used to heal wounds in Indonesia. In India, per the standard textual procedure (16). H.benghalensis (L.) Kurz is widely used to treat cough, asthma, leprosy and Test for Saponins: *Corresponding author. The substance was shaken well with water. Meenaa Venkataramani Test for Tannins: PG and Research Department of Biotechnology, The substance was mixed with basic lead acetate solution. Nehru Memorial College (Autonomous), Puthanampatti, Tiruchirapalli, Tamilnadu. India. Test for Steroids: (Liebermann burchard test) The sample was taken in a test tube. Added few drops of glacial acetic acid, Journal of Pharmacy Research Vol.5 Issue 5.May 2012 2895-2899 Meenaa Venkataramani et al. / Journal of Pharmacy Research 2012,5(5),2895-2899 , 18-JAN-2012 + 10:26:22 Vm chloroform extract 18 01 12 Scan EI+ 17.40;191 31.24 TIC 100 21.36;43 24.79;88 57 1.34e9 23.36 32.90 43 57 18.45 29.40 43 57 34.46 22.12 57 % 43 27.67 71 16.28 29.69 43 21.12 25.67 69 5.39 43 91 9.09 14.89 32.20 43 6.15 19.16 22.67 7.74 41 12.01 164 99 43 222 43 43 128 1 Time 5.56 7.56 9.56 11.56 13.56 15.56 17.56 19.56 21.56 23.56 25.56 27.56 29.56 31.56 33.56 Chromatogram (x-axis = Retention time; y-axis = % intensity/% abundance/ concentration) Figure1: Chromatogram representing the peak areas of Phytocomponents matched with the NIST Library acetic anhydride and 1ml of concentrated Sulphuric acid was added along the extract of the plant was performed using PerkinElmer Clarus 500 equipped sides of the test tube. with a column type Capillary Column Elite-5 (5%Phenyl 95% dimethylpolysiloxane), with a column length of 30 m /0.25mm and a film Test for Terpenoids: (Salkowshi test) thickness of 250µm respectively. The extracts were diluted (1µl/ml) and 1µl The substance was warmed with tin and thionyl chloride. was taken as the injection volume. They were injected in the split mode with 10:1 ratio. The oven was programmed at 50ºC @ 8ºC/min to 220ºC (2min) @ Test for Flavonoids: (Shinado’s test) 8ºC/min to 290ºC (10min) and the injector was maintained at 290ºC. Helium To the substance, added alcohol, few magnesium turnings and few drops of was used as a carrier gas with a constant flow at 1 ml/min. The ionization concentrated hydrochloric acid and boiled for 5 minutes. voltage was 70eV. The constituents were identified after comparison with those available in the computer library (NIST) attached to the GC-MS in- Test for Coumarin: strument and the results obtained are reported. A small quantity of substance was mixed with few drops of 10% sodium hydroxide. RESULTS AND DISCUSSION: Preliminary phytochemical screening of various leaf extracts of the plant Test for Quinones: Hiptage benghalensis revealed the presence of Coumarins, Sterols, Lignin, The substance was mixed with few drops of concentrated sulphuric acid. Saponins, Flavanoids, Alkaloids, Tannins, Terpenes and Protein (Table – 1). Several investigations have been attributed to study the phytochemical Test for Lignins: compounds in H.benghalensis and it was found that the results of the present The substance was mixed with alcoholic solution of phloroglucinol and added phytochemical analysis conducted in this study are in accordance to those few drops of concentrated hydrochloric acid. previous reports on the plant (17)(18)(19)(20). Test for alkaloids: Table 1: Phytochemical screening of leaf extracts of Hiptage 1. To the substance few drops of acetic acid was added, followed by benghalensis Dragendroff’s reagent and shaken well. S.NO Test for Chloroform Methanol Ethanol Water 2. The substance was mixed with little amount of dilute hydrochloric acid extract extract extract extract and Mayer’s reagent. 1 Coumarin + - + + Test for Sugars: 2 Sterol + + + - 3 Quinone - - - - The substance was mixed with anthrone and 1 drop of concentrated Sulphuric 4 Lignin + + - + acid and warmed gently. 5 Saponin + + + - 6 Flavonoid - + + + Test for Proteins: 7 Gum - - - - 8 Alkaloid + + + + The substance was mixed with saturated solution of picric acid. 9 Protein + + + + 10 Terpenoid + + + - Gas Chromatography – Mass Spectroscopy analysis 11 Tannin - + + + The Gas chromatography –Mass Spectroscopy analysis of the chloroform + Positive, - Negative. Journal of Pharmacy Research Vol.5 Issue 5.May 2012 2895-2899 Meenaa Venkataramani et al. / Journal of Pharmacy Research 2012,5(5),2895-2899 Table 2: Phytocomponents identified in the Chloroform fraction of Hiptage benghalensis by GC-MS S.No. Peak Name Retention Peak %Peak time area area 1 Name: 5,9-Dodecadien-2-one, 6,10-dimethyl-, (E,E))- 5.39 7370377 0.9609 Formula: C14H24O MW: 208 2. Name: Cyclopentanol, 2-methyl-, acetate, cis- 6.15 3335318 0.4349 Formula: C8H14O2 MW: 142 3. Name: 5-Hepten-2-one, 6-methyl- 7.74 2385087 0.311 Formula: C8H14O MW: 126 4. Name: Pentane, 1-(1-butenyloxy)-, (Z)- 8.49 177112 0.0231 Formula: C9H18O MW: 142 5. Name: D-Limonene 8.7 2713036 0.3537 Formula: C10H16 MW: 136 6.
Recommended publications
  • Two New Species of Hiptage (Malpighiaceae) from Yunnan, Southwest of China
    A peer-reviewed open-access journal PhytoKeys 110: 81–89 (2018) Two new species of Hiptage... 81 doi: 10.3897/phytokeys.110.28673 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Two new species of Hiptage (Malpighiaceae) from Yunnan, Southwest of China Bin Yang1,2, Hong-Bo Ding1,2, Jian-Wu Li1,2, Yun-Hong Tan1,2 1 Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar 2 Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Aca- demy of Sciences, Menglun, Mengla, Yunnan 666303, PR China Corresponding author: Yun-Hong Tan ([email protected]) Academic editor: Alexander Sennikov | Received 27 July 2018 | Accepted 30 September 2018 | Published 5 November 2018 Citation: Yang B, Ding H-B, Li J-W, Tan Y-H (2018) Two new species of Hiptage (Malpighiaceae) from Yunnan, Southwest of China. PhytoKeys 110: 81–89. https://doi.org/10.3897/phytokeys.110.28673 Abstract Hiptage pauciflora Y.H. Tan & Bin Yang and Hiptage ferruginea Y.H. Tan & Bin Yang, two new species of Malpighiaceae from Yunnan, South-western China are here described and illustrated. Morphologically, H. pauciflora Y.H. Tan & Bin Yang is similar to H. benghalensis (L.) Kurz and H. multiflora F.N. Wei; H. ferruginea Y.H. Tan & Bin Yang is similar to H. calcicola Sirirugsa. The major differences amongst these species are outlined and discussed. A diagnostic key to the two new species of Hiptage and their closely related species is provided. Keywords Hiptage, Malpighiaceae, samara, Yunnan, China Introduction Hiptage Gaertn. (Gaertner 1791) is one of the largest genera of Malpighiaceae with about 30 species of woody lianas and shrubs growing in forests of tropical South Asia, Indo-China Peninsula, Indonesia, Philippines and Southern China, including Hainan and Taiwan islands (Chen and Funston 2008, Ren et al.
    [Show full text]
  • A Compilation and Analysis of Food Plants Utilization of Sri Lankan Butterfly Larvae (Papilionoidea)
    MAJOR ARTICLE TAPROBANICA, ISSN 1800–427X. August, 2014. Vol. 06, No. 02: pp. 110–131, pls. 12, 13. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia & Taprobanica Private Limited, Homagama, Sri Lanka http://www.sljol.info/index.php/tapro A COMPILATION AND ANALYSIS OF FOOD PLANTS UTILIZATION OF SRI LANKAN BUTTERFLY LARVAE (PAPILIONOIDEA) Section Editors: Jeffrey Miller & James L. Reveal Submitted: 08 Dec. 2013, Accepted: 15 Mar. 2014 H. D. Jayasinghe1,2, S. S. Rajapaksha1, C. de Alwis1 1Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, Sri Lanka 2 E-mail: [email protected] Abstract Larval food plants (LFPs) of Sri Lankan butterflies are poorly documented in the historical literature and there is a great need to identify LFPs in conservation perspectives. Therefore, the current study was designed and carried out during the past decade. A list of LFPs for 207 butterfly species (Super family Papilionoidea) of Sri Lanka is presented based on local studies and includes 785 plant-butterfly combinations and 480 plant species. Many of these combinations are reported for the first time in Sri Lanka. The impact of introducing new plants on the dynamics of abundance and distribution of butterflies, the possibility of butterflies being pests on crops, and observations of LFPs of rare butterfly species, are discussed. This information is crucial for the conservation management of the butterfly fauna in Sri Lanka. Key words: conservation, crops, larval food plants (LFPs), pests, plant-butterfly combination. Introduction Butterflies go through complete metamorphosis 1949). As all herbivorous insects show some and have two stages of food consumtion.
    [Show full text]
  • Medicinal Practices of Sacred Natural Sites: a Socio-Religious Approach for Successful Implementation of Primary
    Medicinal practices of sacred natural sites: a socio-religious approach for successful implementation of primary healthcare services Rajasri Ray and Avik Ray Review Correspondence Abstract Rajasri Ray*, Avik Ray Centre for studies in Ethnobiology, Biodiversity and Background: Sacred groves are model systems that Sustainability (CEiBa), Malda - 732103, West have the potential to contribute to rural healthcare Bengal, India owing to their medicinal floral diversity and strong social acceptance. *Corresponding Author: Rajasri Ray; [email protected] Methods: We examined this idea employing ethnomedicinal plants and their application Ethnobotany Research & Applications documented from sacred groves across India. A total 20:34 (2020) of 65 published documents were shortlisted for the Key words: AYUSH; Ethnomedicine; Medicinal plant; preparation of database and statistical analysis. Sacred grove; Spatial fidelity; Tropical diseases Standard ethnobotanical indices and mapping were used to capture the current trend. Background Results: A total of 1247 species from 152 families Human-nature interaction has been long entwined in has been documented for use against eighteen the history of humanity. Apart from deriving natural categories of diseases common in tropical and sub- resources, humans have a deep rooted tradition of tropical landscapes. Though the reported species venerating nature which is extensively observed are clustered around a few widely distributed across continents (Verschuuren 2010). The tradition families, 71% of them are uniquely represented from has attracted attention of researchers and policy- any single biogeographic region. The use of multiple makers for its impact on local ecological and socio- species in treating an ailment, high use value of the economic dynamics. Ethnomedicine that emanated popular plants, and cross-community similarity in from this tradition, deals health issues with nature- disease treatment reflects rich community wisdom to derived resources.
    [Show full text]
  • Hiptage Benghalensis Click on Images to Enlarge
    Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Hiptage benghalensis Click on images to enlarge Family Malpighiaceae Scientific Name Hiptage benghalensis (L.) Kurz Kurz, W.S. (1874) J. Asiat. Soc. Bengal, Pt. 2, Nat. Hist. 24: 136. Common name Flowers. Copyright CSIRO Madan masta Weed * Stem Vine stem diameters to 3 cm recorded. Fruits. Copyright CSIRO Leaves Leaf blades about 7.5-14 x 5-8.5 cm, quite stiff when fully developed, petioles about 0.8-3 cm long, shallowly grooved on the upper surface. Leaf blade margin slightly indented at the marginal glands which are visible on the underside of the leaf blade, about 8 glands on each side. Two large red spotted or green glands present on the lower surface, one on either side of the midrib near the base of the leaf blade. Underside of the leaf blade clothed in small, translucent, medifixed hairs which are visible with a lens. Minute 'oil dots' visible with a lens on the underside of the leaf blade but difficult to discern on older leaves. Stipules about 0.5-0.75 mm long, triangular, hairy. Flowers Scale bar 10mm. Copyright CSIRO Inflorescence about 8-15 cm long. Pedicels about 15 mm long with a bract at the base and another about halfway up. A large dark pink and green leaf-shaped gland about 7 mm long attached to the pedicel and the base of the calyx.
    [Show full text]
  • 100 of the World's Worst Invasive Alien Species
    100 OF THE WORLD’S WORST INVASIVE ALIEN SPECIES A SELECTION FROM THE GLOBAL INVASIVE SPECIES DATABASE Published by Contribution to the Global Invasive Species Programme (GISP) In Association with SPECIES SURVIVAL COMMISSION Citation Lowe S., Browne M., Boudjelas S., De Poorter M. (2000) 100 of the World’s Worst Invasive Alien Species A selection from the Global Invasive Species Database. Published by The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), 12pp. First published as special lift-out in Aliens 12, December 2000. Updated and reprinted version: November 2004. Electronic version available at: www.issg.org/booklet.pdf For information, or copies of the booklet in English, French or Spanish, please contact: ISSG Office: School of Geogra- phy and Environmental Sciences (SGES) University of Auckland (Tamaki Campus) Private Bag 92019 Auckland, New Zealand Phone: #64 9 3737 599 x85210 Fax: #64 9 3737 042 E-mail: [email protected] Development of the 100 of the World’s Worst Invasive Alien Spe- cies list has been made possible by Cover image: Brown tree snake the support of the Fondation (Boiga irregularis). d’Entreprise TOTAL (1998 - 2000). Photo: Gordon Rodda Printed in New Zealand by: Hollands Printing Ltd Contact: Otto van Gulik Email: [email protected] 2 Biological Invasion What happens when a species is in- The list of “100 of the World’s precedented rate. A number of the troduced into an ecosystem where Worst Invasive Alien Species” in invasive alien species featured in it doesn’t occur naturally? Are eco- this booklet illustrates the incred- this booklet are contributing to systems flexible and able to cope ible variety of species that have the these losses.
    [Show full text]
  • Hiptage Benghalensis (L.) Kurz
    www.sciencevision.org Sci Vis 12 (1), 8-10 January-March 2012 Research Note ISSN (print) 0975-6175 ISSN (online) 2229-6026 Phytochemical analysis of the methanol extract of root bark of Hiptage benghalensis (L.) Kurz Lalnundanga*, Lalchawimawii Ngente and R. Lalrinkima Department of Forestry, Mizoram University, Aizawl 796 004, India Received 7 November 2011 | Revised 31 January 2012| Accepted 12 March 2012 ABSTRACT Extraction of the root bark of Hiptage benghalensis was done with Soxhlet apparatus using metha- nol by hot continuous extraction for 35 hrs. The extract was concentrated and dried using rotary vacuum evaporator and the extracts were used for testing the phytochemical content. The prelimi- nary phytochemical group test revealed the presence of alkaloids, tannins and reducing sugars. Key words: Alkaloids; herbal medicines; phytochemical; reducing sugars; tannins. INTRODUCTION day antibiotics.3,4 The most ideal phyto-chemical analysis is Herbal medicines have the ability to affect fresh plant tissues and the plant material un- body systems. The effects are dependent on der investigation should be plunged into boil- the chemical constituents present in the plant ing alcohol within a minute of collection. Al- used. Scientists first started extracting and ternatively, plants may be dried before extrac- isolating chemicals from plants in the 18th tion under controlled conditions or in shade century,1 since then it is a growing inventory to avoid occurrence of any chemical changes. and that has to look into at herbs and their It should be dried as quickly as possible, with- effects in terms of the active constituents they out using high temperature preferably in a contain.
    [Show full text]
  • MALPIGHIACEAE 1. ASPIDOPTERYS A. Jussieu Ex Endlicher, Gen. Pl
    MALPIGHIACEAE 金虎尾科 jin hu wei ke Chen Shukun (陈书坤)1; A. Michele Funston2 Shrubs, small trees, or woody lianas, pubescence a mix of medifixed (T-shaped) and simple hairs, monoecious or andro-dioecious. Leaves usually opposite, rarely alternate or 3-whorled, petiolate, simple, entire, glands often present either on petiole or on lower surface of leaves; stipules free and deciduous, or connate and ± persistent, sometimes reduced or absent. Inflorescences terminal or axillary, racemose, corymbose or umbellate, solitary or in panicles; pedicels articulate, 2-bracteolate at point of attachment. Flowers bisexual or staminate (in Ryssopterys), actinomorphic or zygomorphic. Sepals 5, polysepalous or gamosepalous, imbricate, rarely valvate, one or more large glandular at bases of outside members, rarely eglandular. Petals 5, typically clawed, margin ciliate, dentate or fimbriate. Disk inconspicuous. Stamens 10, obdiplostemonous, sometimes diadelphous with one stamen distinctly larger than others; filaments usually connate at base; anthers introrse, longitudinally dehiscent. Ovary superior, 3-locular, placenta axile, 1-ovuled, pendulous and semianatropous in each locule; styles 3, or connate into 1, persistent. Fruit a schizocarp, carpels 3 or fewer, 1 seed per carpel; schizocarp splitting into winged samaras, indehiscent. Seed embryo large, erect or rarely curved; endosperm lacking. About 65 genera and ca. 1280 species: tropical and subtropical regions, mainly American; four genera and 21 species (12 endemic) in China. Two cultivated species were described in FRPS (43(3): 129. 1997): Malpighia coccigera Linnaeus, grown in Guangdong and Hainan, and Thyrallis gracilis Kuntze, grown in Guangdong and Yunnan (Xishuangbanna). Chen Shukun & Chen Pangyu. 1997. Malpighiaceae. In: Chen Shukun, ed., Fl. Reipubl. Popularis Sin.
    [Show full text]
  • Long-Term Morphological Stasis Maintained by a Plant–Pollinator Mutualism
    Long-term morphological stasis maintained by a plant–pollinator mutualism Charles C. Davisa,1, Hanno Schaefera,b, Zhenxiang Xia, David A. Baumc, Michael J. Donoghued,1, and Luke J. Harmone aDepartment of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA 02138; bDepartment of Ecology and Ecosystem Management, Technische Universitaet Muenchen, D-85354 Freising, Germany; cDepartment of Botany, University of Wisconsin–Madison, Madison, WI 53706; dDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520; and eDepartment of Biological Sciences, University of Idaho, Moscow, ID 83844 Contributed by Michael J. Donoghue, February 27, 2014 (sent for review April 28, 2012) Many major branches in the Tree of Life are marked by stereotyped Neotropical representatives that produce floral oils and are vis- body plans that have been maintained over long periods of time. ited by these three oil-collecting bee tribes. None of them, One possible explanation for this stasis is that there are genetic or however, are as diverse as Malpighiaceae, which are also the developmental constraints that restrict the origin of novel body oldest of the seven oil-bee–pollinated clades (17). plans. An alternative is that basic body plans are potentially quite Malpighiaceae provide a natural test of the role of intrinsic labile, but are actively maintained by natural selection. We present versus extrinsic factors in generating morphological stasis; this is evidence that the conserved floral morphology of a species-rich particularly relevant in the context of Anderson’s earlier hy- flowering plant clade, Malpighiaceae, has been actively main- pothesis outlined above, but also more generally in the context of tained for tens of millions of years via stabilizing selection imposed developmental constraints that have been hypothesized to limit by their specialist New World oil-bee pollinators.
    [Show full text]
  • Taxonomic Challenges For, and Of, Plant Invasions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lincoln University Research Archive Invited Review Hitting the right target: taxonomic challenges for, and of, plant invasions Petr Pysˇek1,2*, Philip E. Hulme3, Laura A. Meyerson4, Gideon F. Smith5,6,7, James S. Boatwright8, Downloaded from Neil R. Crouch9,10, Estrela Figueiredo7,11, Llewellyn C. Foxcroft12,13,Vojteˇch Jarosˇ´ık1,2, David M. Richardson13, Jan Suda14,15 and John R. U. Wilson13,16 1 Institute of Botany, Department of Invasion Ecology, Academy of Sciences of the Czech Republic, CZ-252 43 Pru˚honice, Czech Republic 2 Department of Ecology, Faculty of Science, Charles University in Prague, Vinicˇna´ 7, CZ-128 44 Prague, Czech Republic 3 The Bio-Protection Research Centre, Lincoln University, PO Box 84, Canterbury, New Zealand 4 Department of Natural Resources Science, University of Rhode Island, 1 Greenhouse Road, Kingston, RI 02881, USA http://aobpla.oxfordjournals.org/ 5 South African National Biodiversity Institute, Biosystematics Research and Biodiversity Collections Division, Private Bag X101, Pretoria 0001, South Africa 6 H. G. W. J. Schweickerdt Herbarium, Department of Plant Science, University of Pretoria, Pretoria 0002, South Africa 7 Centre for Functional Ecology, Departamento de Cieˆncias da Vida, Universidade de Coimbra, 3001-455 Coimbra, Portugal 8 Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Belville 7535, Cape Town, South Africa 9 Ethnobotany Unit, South African
    [Show full text]
  • Molecular Systematics of Malpighiaceae: Evidence from Plastid Rbcl and Matk Sequences1
    American Journal of Botany 88(10): 1847±1862. 2001. MOLECULAR SYSTEMATICS OF MALPIGHIACEAE: EVIDENCE FROM PLASTID RBCL AND MATK SEQUENCES1 KENNETH M. CAMERON,2,6 MARK W. C HASE,3 WILLIAM R. ANDERSON,4 AND HAROLD G. HILLS5 2The Lewis B. and Dorothy Cullman Program for Molecular Systematics Studies, The New York Botanical Garden, Bronx, New York 10458-5126 USA; 3Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK; 4University of Michigan Herbarium, North University Building, Ann Arbor, Michigan 48109-1057 USA; and 5Molecular Biology Building, Iowa State University, Ames, Iowa 50011-3260 USA Phylogenetic analyses of DNA nucleotide sequences from the plastid genes rbcL and matK were employed to investigate intergeneric relationships within Malpighiaceae. Cladistic relationships generated from the independent data matrices for the family are generally in agreement with those from the combined matrix. At the base of Malpighiaceae are several clades mostly representing genera from a paraphyletic subfamily Byrsonimoideae. Intergeneric relationships among these byrsonimoid malpighs are well supported by the bootstrap, and the tribe Galphimeae is monophyletic. There is also a well-supported clade of genera corresponding to tribes Banisterieae plus Gaudichaudieae present in all trees, and many of the relationships among these banisterioid malpighs are well supported by the bootstrap. However, tribes Hiraeae and Tricomarieae (the hiraeoid malpighs) are paraphyletic and largely unresolved. Species of Mascagnia are distributed throughout these hiraeoid clades, con®rming the suspected polyphyly of this large genus. Optimization of selected morphological characters on these trees demonstrates clear phylogenetic trends such as the evolution of globally symmetrical from radially symmetrical pollen, increased modi®cation and sterilization of stamens, and switch from base chromosome number n 5 6ton 5 10.
    [Show full text]
  • FULL ACCOUNT FOR: Hiptage Benghalensis Global Invasive Species Database (GISD) 2021. Species Profile Hiptage Benghalensis. Avail
    FULL ACCOUNT FOR: Hiptage benghalensis Hiptage benghalensis System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Magnoliopsida Polygalales Malpighiaceae Common name chandravalli (Sanskrit, India), kamuka (Sanskrit, India), haldavel (Malayalam, India), liane de cerf (French), benghalen-Liane (German), hiptage (English), madhumalati (Malayalam, India), adimurtte (Kanarese, India), kampti (Hindi, India), Madhavi (Kanarese, India), ragotpiti (Gujrati, India), atimukta (Hindi, India), madhalata (Hindi, India), madhavi (Gujrati, India), madmalati (Hindi, India), vasantduti (Kanarese, India), adirganti (Kanarese, India) Synonym Banisteria benghalensis , L. Triopteris jamaicensis , L. Hiptage madablota , Gaertn. Banisteria benghalensis , L. Banisteria tetraptera , Sonnerat Banisteria unicapsularis , Lam. Gaertnera indica , J.F.Gmel. Gaertnera obtusifolia , (DC.) Roxb. Gaertnera racemosa , Vahl Hiptage benghalensis , (L.) Kurz forma typica Nied. Hiptage benghalensis , (L.) Kurz forma macroptera (Merr.) Nied. Hiptage benghalensis , (L.) Kurz forma latifoliaNied. Hiptage macroptera , Merr. Hiptage javanica , Blume Hiptage madablota , Gaertn. Hiptage malaiensis , Nied. Hiptage obtusifolia , DC. Hiptage pinnata , Elmer Hiptage teysmannii , Arènes Molina racemosa , Cav. Succowia fimbriata , Dennst. Hieracium floribundum , Wimm. & Grab. (pro sp.) [caespitosum lactucella] Hiptage benghalensis , (L.) Kurz forma cochinchinensis Pierre Similar species Summary Hiptage benghalensis is a native of India, Southeast Asia and the Philippines. The genus name, Hiptage, is derived from the Greek \"hiptamai\" which means \"to fly\" and refers to its unique three-winged fruit known as \"samara\". Due to the beautiful unique form of its flowers, it is often cultivated as a tropical ornamental in gardens. It has been recorded as being a weed in Australian rainforests and is extremely invasive on Mauritius and Réunion, where it thrives in dry lowland forests, forming impenetrable thickets and smothering native vegetation. Global Invasive Species Database (GISD) 2021.
    [Show full text]
  • SMP Paper.Docx
    A Study of Native Malpighiaceae in Singapore Focusing on The Pollination and Breeding Systems In Comparison with Neotropical Species Lieu Tze Ern Samuel1, Joshua Dinesh Thambiah1, Siew Jin En Ryan1, and Jeffrey Lee2 1Raffles Institution, 1 Raffles Institution Lane, Singapore 575954 2Raffles Science Institute,1 Raffles Institution Lane, Singapore 575594 Abstract We studied the methods of pollination of the native Malpighiaceae in Singapore: Aspidopterys concava, Hiptage sericea and Tristellateia australasiae. Data on pollinators were recorded by in situ observations and pollinators were analysed for identification. Breeding system experiments were conducted by isolating inflorescences in bags. Herbarium data on phenology and distribution were compiled. Flowers of T. australasiae and other Old World Malpighiaceae do not possess floral oils to attract pollinators like their counterparts in the New World. These species are not autogamous nor agamospermous. Instead, they depend on pollen-collecting stingless bees of the Apidae family for pollination. We found that A. concava is distributed mostly in the northern part of the island, whereas T. australasiae is found scattered throughout. No living or preserved specimen of H. sericea were found, but we speculate that a close species, H. benghalensis may be native rather than introduced as believed. The flowering period was determined to be April and September for A. concava, August for H. benghalensis, and January to February/July to September for T. australasiae. Introduction The Malpighiaceae, with 1200 species in 66 genera[1], is predominantly a tropical plant family, with approximately 85% of the species occurring in the New World[2]. The family exhibits a strong association between floral morphology and insect pollinator attraction[3], and it has in fact been suggested that for Malpighiaceae, specialized plant-pollinator mutualisms may account for all or part of its exceptional diversification rate[4].
    [Show full text]