PAX Ophthalmicana ?

Total Page:16

File Type:pdf, Size:1020Kb

PAX Ophthalmicana ? 1 Q PAX Ophthalmicana ? ? ? With respect to genetics, to what does the term Central Dogma refer? 2 A PAX Ophthalmicana DNA RNA Protein With respect to genetics, to what does the term Central Dogma refer? It refers to the two steps involved in transforming genetic information into protein 3 Q PAX Ophthalmicana DNA ? RNA Protein With respect to genetics, to what does the term Central Dogma refer? It refers to the two steps involved in transforming genetic information into protein: --The first step is the transcription of DNA code into RNA code 4 A PAX Ophthalmicana DNA Transcription RNA Protein With respect to genetics, to what does the term Central Dogma refer? It refers to the two steps involved in transforming genetic information into protein: --The first step is the transcription of DNA code into RNA code 5 Q PAX Ophthalmicana DNA Transcription RNA ? Protein With respect to genetics, to what does the term Central Dogma refer? It refers to the two steps involved in transforming genetic information into protein: --The first step is the transcription of DNA code into RNA code; followed by --the translation of the RNA code into a protein 6 A PAX Ophthalmicana DNA Transcription RNA Translation Protein With respect to genetics, to what does the term Central Dogma refer? It refers to the two steps involved in transforming genetic information into protein: --The first step is the transcription of DNA code into RNA code; followed by --the translation of the RNA code into a protein 7 Q PAX Ophthalmicana DNA In this context, what is a transcription factor? Transcription RNA Translation Protein With respect to genetics, to what does the term Central Dogma refer? It refers to the two steps involved in transforming genetic information into protein: --The first step is the transcription of DNA code into RNA code; followed by --the translation of the RNA code into a protein 8 A PAX Ophthalmicana DNA In this context, what is a transcription factor? Transcription A protein that regulates the transcription process for a specific gene RNA Translation Protein With respect to genetics, to what does the term Central Dogma refer? It refers to the two steps involved in transforming genetic information into protein: --The first step is the transcription of DNA code into RNA code; followed by --the translation of the RNA code into a protein 9 Q PAX Ophthalmicana DNA In this context, what is a transcription factor? Transcription A protein that regulates the transcription process for a specific gene RNA Do transcriptions factors play an important role in the genetic process? Translation Protein With respect to genetics, to what does the term Central Dogma refer? It refers to the two steps involved in transforming genetic information into protein: --The first step is the transcription of DNA code into RNA code; followed by --the translation of the RNA code into a protein 10 A PAX Ophthalmicana DNA In this context, what is a transcription factor? Transcription A protein that regulates the transcription process for a specific gene RNA Do transcriptions factors play an important role in the genetic process? Translation Indeed they do. In fact, about 10% of all genes in humans code for transcription factors! Protein With respect to genetics, to what does the term Central Dogma refer? It refers to the two steps involved in transforming genetic information into protein: --The first step is the transcription of DNA code into RNA code; followed by --the translation of the RNA code into a protein 11 Q PAX Ophthalmicana DNA In this context, what is a transcription factor? Transcription A protein that regulates the transcription process for a specific gene RNA Does transcriptionDo- factortranscriptions dysfunction factors play play a role an inimportant role ophthalmic dz? in the genetic process? TranslationIndeed it does—Indeeda number they of do. important In fact, aboutophthalmic 10% of all conditions can begenes traced in humansto transcription code for-factor transcription mutations factors! Protein With respect to genetics, to what does the term Central Dogma refer? It refers to the two steps involved in transforming genetic information into protein: --The first step is the transcription of DNA code into RNA code; followed by --the translation of the RNA code into a protein 12 A PAX Ophthalmicana DNA In this context, what is a transcription factor? Transcription A protein that regulates the transcription process for a specific gene RNA Does transcriptionDo- factortranscriptions dysfunction factors play play a role an inimportant role ophthalmic dz? in the genetic process? TranslationIndeed it does—Indeeda number they of do. important In fact, aboutophthalmic 10% of all conditions can begenes traced in humansto transcription code for-factor transcription mutations factors! Protein With respect to genetics, to what does the term Central Dogma refer? It refers to the two steps involved in transforming genetic information into protein: --The first step is the transcription of DNA code into RNA code; followed by --the translation of the RNA code into a protein 13 Q PAX Ophthalmicana DNA In this context, what is a transcription factor? Transcription A protein that regulates the transcription process for a specific gene RNA Does transcriptionDo- factortranscriptions dysfunction factors play play a role an inimportant role ophthalmic dz? in the genetic process? TranslationIndeed it does—Indeeda number they of do. important In fact, aboutophthalmic 10% of all conditions can begenes traced in humansto transcription code for-factor transcription mutations factors! Protein The Fundamentals book lists three transcription-factor (genes) With respect thatto genetics, are especially to what important does forthe the term eye Central—what are Dogma they? refer? It refers to the-- two steps involved in transforming genetic information into protein: --The first ste--p is the transcription of DNA code into RNA code; fo llowed by --the translation-- of the RNA code into a protein 14 A PAX Ophthalmicana DNA In this context, what is a transcription factor? Transcription A protein that regulates the transcription process for a specific gene RNA Does transcriptionDo- factortranscriptions dysfunction factors play play a role an inimportant role ophthalmic dz? in the genetic process? TranslationIndeed it does—Indeeda number they of do. important In fact, aboutophthalmic 10% of all conditions can begenes traced in humansto transcription code for-factor transcription mutations factors! Protein The Fundamentals book lists three transcription-factor (genes) With respect thatto genetics, are especially to what important does forthe the term eye Central—what are Dogma they? refer? It refers to the-- PAX2two steps involved in transforming genetic information into protein: --The first ste--pPAX3 is the transcription of DNA code into RNA code; fo llowed by --the translation--PAX6of the RNA code into a protein 15 Q PAX Ophthalmicana In the present context, what is the origin of the word PAX? Where does it come from? The Fundamentals book lists three transcription-factor (genes) that re especially important for the eye—what are they? --PAX2 --PAX3 --PAX6 16 A PAX Ophthalmicana In the present context, what is the origin of the word PAX? Where does it come from? It is a portmanteau of the term ‘PAired (homeo)boX’ The Fundamentals book refers to PAX genes both as ‘paired homeobox’ and ‘paired box’ genes The Fundamentals book lists three transcription-factor (genes) that re especially important for the eye—what are they? --PAX2 --PAX3 --PAX6 17 Q PAX Ophthalmicana In the present context, what is the origin of the word PAX? Where does it come from? It is a portmanteau of the term ‘PAired (homeo)boX’ Generally speaking, what are PAX genes involved in? The Fundamentals book lists three transcription-factor (genes) that re especially important for the eye—what are they? --PAX2 --PAX3 --PAX6 18 A PAX Ophthalmicana In the present context, what is the origin of the word PAX? Where does it come from? It is a portmanteau of the term ‘PAired (homeo)boX’ Generally speaking, what are PAX genes involved in? Morphogenesis The Fundamentals book lists three transcription-factor (genes) that re especially important for the eye—what are they? --PAX2 --PAX3 --PAX6 19 Q PAX Ophthalmicana In the present context, what is the origin of the word PAX? Where does it come from? It is a portmanteau of the term ‘PAired (homeo)boX’ Generally speaking, what are PAX genes involved in? Morphogenesis Of these three PAX genes, which is most important to the development of the eye? The Fundamentals book lists three transcription-factor (genes) that re especially important for the eye—what are they? --PAX2? --PAX3? --PAX6? 20 A PAX Ophthalmicana In the present context, what is the origin of the word PAX? Where does it come from? It is a portmanteau of the term ‘PAired (homeo)boX’ Generally speaking, what are PAX genes involved in? Morphogenesis Of these three PAX genes, which is most important to the development of the eye? PAX6. The Fundamentals book refers to it as “the master switch for eye development.” The Peds book says, “The PAX6 gene is the master control gene for eye morphogenesis.” The Fundamentals book lists three transcription-factor (genes) that re especially important for the eye—what are they? --PAX2 --PAX3 --PAX6! 21 PAX Ophthalmicana In the present context, what is the origin of the word PAX? Where does it come from? It is a portmanteau of the term ‘PAired (homeo)boX’ Generally speaking, what are PAX genes involved in? Morphogenesis Of these three PAX genes, which is most important to the development of the eye? PAX6. The Fundamentals book refers to it as “the master switch for eye development.” The Peds book says, “The PAX6 gene is the master control gene for eye morphogenesis.” The Fundamentals book lists three transcription-factor (genes) that re especially important for the eye—what are they? --PAX2 --PAX3 --PAX6! Next let’s take a closer look at PAX6 22 Q PAX Ophthalmicana There are four ocular abnormalities attributed to the PAX6 gene.
Recommended publications
  • The Proapoptotic Gene Interferon Regulatory Factor-1 Mediates the Antiproliferative Outcome of Paired Box 2 Gene and Tamoxifen
    Oncogene (2020) 39:6300–6312 https://doi.org/10.1038/s41388-020-01435-4 ARTICLE The proapoptotic gene interferon regulatory factor-1 mediates the antiproliferative outcome of paired box 2 gene and tamoxifen 1 1 1 2 3 3 Shixiong Wang ● Venkata S. Somisetty ● Baoyan Bai ● Igor Chernukhin ● Henri Niskanen ● Minna U. Kaikkonen ● 4,5 2 6,7 Meritxell Bellet ● Jason S. Carroll ● Antoni Hurtado Received: 13 November 2019 / Revised: 5 August 2020 / Accepted: 17 August 2020 / Published online: 25 August 2020 © The Author(s) 2020. This article is published with open access Abstract Tamoxifen is the most prescribed selective estrogen receptor (ER) modulator in patients with ER-positive breast cancers. Tamoxifen requires the transcription factor paired box 2 protein (PAX2) to repress the transcription of ERBB2/HER2. Now, we identified that PAX2 inhibits cell growth of ER+/HER2− tumor cells in a dose-dependent manner. Moreover, we have identified that cell growth inhibition can be achieved by expressing moderate levels of PAX2 in combination with tamoxifen treatment. Global run-on sequencing of cells overexpressing PAX2, when coupled with PAX2 ChIP-seq, identified common targets regulated by both PAX2 and tamoxifen. The data revealed that PAX2 can inhibit estrogen-induced gene transcription 1234567890();,: 1234567890();,: and this effect is enhanced by tamoxifen, suggesting that they converge on repression of the same targets. Moreover, PAX2 and tamoxifen have an additive effect and both induce coding genes and enhancer RNAs (eRNAs). PAX2–tamoxifen upregulated genes are also enriched with PAX2 eRNAs. The enrichment of eRNAs is associated with the highest expression of genes that positivity regulate apoptotic processes.
    [Show full text]
  • Albinism Terminology
    Albinism Terminology Oculocutaneous Albinism (OCA): Oculocutaneous (pronounced ock-you-low-kew- TAIN-ee-us) Albinism is an inherited genetic condition characterized by the lack of or diminished pigment in the hair, skin, and eyes. Implications of this condition include eye and skin sensitivities to light and visual impairment. Ocular Albinism (OA): Ocular Albinism is an inherited genetic condition, diagnosed predominantly in males, characterized by the lack of pigment in the eyes. Implications of this condition include eye sensitivities to light and visual impairment. Hermansky Pudlak Syndrome (HPS): Hermansky-Pudlak Syndrome is a type of albinism which includes a bleeding tendency and lung disease. HPS may also include inflammatory bowel disease or kidney disease. The severity of these problems varies much from person to person, and the condition can be difficult to diagnose with traditional blood tests Chediak Higashi Syndrome: Chediak Higashi Syndrome is a type of albinism in which the immune system is affected. Illnesses and infections are common from infancy and can be severe. Issues also arise with blood clotting and severe bleeding. Melanin: Melanin is pigment found in a group of cells called melanocytes in most organisms. In albinism, the production of melanin is impaired or completely lacking. Nystagmus: Nystagmus is an involuntary movement of the eyes in either a vertical, horizontal, pendular, or circular pattern caused by a problem with the visual pathway from the eye to the brain. As a result, both eyes are unable to hold steady on objects being viewed. Nystagmus may be accompanied by unusual head positions and head nodding in an attempt to compensate for the condition.
    [Show full text]
  • Partial Albinism (Heterochromia Irides) in Black Angus Cattle
    Partial Albinism (Heterochromia irides) in Black Angus Cattle C. A. Strasia, Ph.D.1 2 J. L. Johnson, D. V.M., Ph.D.3 D. Cole, D. V.M.4 H. W. Leipold, D.M.V., Ph.D.5 Introduction Various types of albinism have been reported in many Pathological changes in ocular anomalies of incomplete breeds of cattle throughout the world.4 We describe in this albino cattle showed iridal heterochromia grossly. paper a new coat and eye color defect (partial albinism, Histopathological findings of irides showed only the heterochromia irides) in purebred Black Angus cattle. In posterior layer fairly pigmented and usually no pigment in addition, the results of a breeding trial using a homozygous the stroma nor the anterior layer. The ciliary body showed affected bull on normal Hereford cows are reported. reduced amount of pigmentation and absence of corpora Albinism has been described in a number of breeds of nigra. Choroid lacked pigmentation. The Retina showed cattle.1,3-8,12,16,17 An albino herd from Holstein parentage disorganization. Fundus anomalies included colobomata of was described and no pigment was evident in the skin, eyes, varying sizes at the ventral aspect of the optic disc and the horns, and hooves; in addition, the cattle exhibited photo­ tapetum fibrosum was hypoplastic.12 In albino humans, the phobia. A heifer of black pied parentage exhibited a fundus is depigmented and the choroidal vessels stand out complete lack of pigment in the skin, iris and hair; however, strikingly. Nystagmus, head nodding and impaired vision at sexual maturity some pigment was present and referred to also may occur.
    [Show full text]
  • Wavelength of Light and Photophobia in Inherited Retinal Dystrophy
    www.nature.com/scientificreports OPEN Wavelength of light and photophobia in inherited retinal dystrophy Yuki Otsuka1, Akio Oishi1,2*, Manabu Miyata1, Maho Oishi1, Tomoko Hasegawa1, Shogo Numa1, Hanako Ohashi Ikeda1 & Akitaka Tsujikawa1 Inherited retinal dystrophy (IRD) patients often experience photophobia. However, its mechanism has not been elucidated. This study aimed to investigate the main wavelength of light causing photophobia in IRD and diference among patients with diferent phenotypes. Forty-seven retinitis pigmentosa (RP) and 22 cone-rod dystrophy (CRD) patients were prospectively recruited. We designed two tinted glasses: short wavelength fltering (SWF) glasses and middle wavelength fltering (MWF) glasses. We classifed photophobia into three types: (A) white out, (B) bright glare, and (C) ocular pain. Patients were asked to assign scores between one (not at all) and fve (totally applicable) for each symptom with and without glasses. In patients with RP, photophobia was better relieved with SWF glasses {“white out” (p < 0.01) and “ocular pain” (p = 0.013)}. In CRD patients, there was no signifcant diference in the improvement wearing two glasses (p = 0.247–1.0). All RP patients who preferred MWF glasses had Bull’s eye maculopathy. Meanwhile, only 15% of patients who preferred SWF glasses had the fnding (p < 0.001). Photophobia is primarily caused by short wavelength light in many patients with IRD. However, the wavelength responsible for photophobia vary depending on the disease and probably vary according to the pathological condition. Inherited retinal degenerations (IRDs) represent a diverse group of diseases characterized by progressive photo- receptor cell death that can lead to blindness 1.
    [Show full text]
  • What Is Hermansky-Pudlak Syndrome?
    American Thoracic Society PATIENT EDUCATION | INFORMATION SERIES What is Hermansky-Pudlak Syndrome? Hermansky-Pudlak Syndrome (HPS) is a rare inherited disease, named after two doctors in Czechoslovakia who, in 1959, recognized similar health conditions in two unrelated adults. Since the discovery of HPS, the condition has occurred all over the world but is most often seen in Puerto Rico. The most common health conditions with HPS are albinism, the tendency to Journal of Hematology bleed easily, and pulmonary fibrosis. A Figure 1. Normal platelet with dense bodies growing number of gene mutations have visualized by electron microscopy. been identified causing HPS (including numbers HPS1 to HPS10). What is albinism? Albinism is an inherited condition in which CLIP AND COPY AND CLIP reduced pigmentation (coloring) is present in the body. As a result, people with albinism are often fair-skinned with light hair. However, skin, hair, and eye color may vary, as some people with albinism may have dark brown hair and green or hazel/brown eyes. Journal of Hematology People with albinism all have low vision and Figure 2. Patient’s platelet with virtually absent dense bodies visualized by electron microscopy. varying degrees of nystagmus. All people who have HPS have albinism, but not all circulate in the blood stream and help the people with albinism have HPS. blood to clot. HPS patients have normal Skin problems—The reduction of numbers of platelets, but they are not pigmentation in the skin from albinism made correctly and do not function well, so results in an increased chance of developing the blood does not clot properly.
    [Show full text]
  • Common Eye Conditions
    COMMON EYE CONDITIONS AMBLYOPIA Reduced acuity because of non-use of eye or extreme difference in acuities. Eye may be patched or surgery to correct. NYSTAGMUS - Cause unknown Involuntary rhythmic side-to-side, up-and-down, or circular (oscillating), eye movement that may be faster in one direction than the other (may be more marked in one eye than the other), reduced acuity due to inability to fixate. STRABISMUS - Defects of eye muscle Eyes are not aligned correctly, images may not fuse, brain may suppress one image resulting in permanent acuity reduction in eye where image is suppressed. ALBINISM – Hereditary – congenital (may involve all or part of body – non-progressive) Lack of pigment in eye, decreased acuity, nystagmus, strabismus, photophobia, visual fields variable, retina and macular involvement. ANIRIDIA – Hereditary Underdeveloped or absent iris. Decreased acuity, photophobia, nystagmus, cataracts, under developed retina. Visual fields normal unless glaucoma develops. CATARACTS – Congenital, hereditary, traumatic, disease, or age related (normal part of aging process) Lens opacity (chemical change in lens protein), decreased visual acuity, nystagmus, photophobia (light sensitivity). DIABETIC RETINOPATHY – Pathologic Retinal changes, proliferative – growth of abnormal new blood vessels, hemorrhage, fluctuating visual acuity, loss of color vision, field loss, retinal detachment, total blindness. GLAUCOMA (Congenital or adult) – “SNEAK THIEF OF SIGHT” hereditary, traumatic, surgery High intraocular pressure (above 20-21 mm of mercury) – (in children often accompanied by hazy corneas and large eyes), often due to obstructions that prevent fluid drainage, resulting in damage to optic nerve. Excessive tearing, photophobia, uncontrolled blinking, decreased acuity, constricted fields. HEMIANOPSIA – (Half-vision) optic pathway malfunction pathologic or trauma (brain injury, stroke or tumor) Macular vision may or may not be affected.
    [Show full text]
  • Guidelines for Universal Eye Screening in Newborns Including RETINOPATHY of Prematurity
    GUIDELINES FOR UNIVERSAL EYE SCREENING IN NEWBORNS INCLUDING RETINOPATHY OF PREMATURITY RASHTRIYA BAL SWASthYA KARYAKRAM Ministry of Health & Family Welfare Government of India June 2017 MESSAGE The Ministry of Health & Family Welfare, Government of India, under the National Health Mission launched the Rashtriya Bal Swasthya Karyakram (RBSK), an innovative and ambitious initiative, which envisages Child Health Screening and Early Intervention Services. The main focus of the RBSK program is to improve the quality of life of our children from the time of birth till 18 years through timely screening and early management of 4 ‘D’s namely Defects at birth, Development delays including disability, childhood Deficiencies and Diseases. To provide a healthy start to our newborns, RBSK screening begins at birth at delivery points through comprehensive screening of all newborns for various defects including eye and vision related problems. Some of these problems are present at birth like congenital cataract and some may present later like Retinopathy of prematurity which is found especially in preterm children and if missed, can lead to complete blindness. Early Newborn Eye examination is an integral part of RBSK comprehensive screening which would prevent childhood blindness and reduce visual and scholastic disabilities among children. Universal newborn eye screening at delivery points and at SNCUs provides a unique opportunity to identify and manage significant eye diseases in babies who would otherwise appear healthy to their parents. I wish that State and UTs would benefit from the ‘Guidelines for Universal Eye Screening in Newborns including Retinopathy of Prematurity’ and in supporting our future generation by providing them with disease free eyes and good quality vision to help them in their overall growth including scholastic achievement.
    [Show full text]
  • Idiopathic Intracranial Hypertension
    IDIOPATHIC INTRACRANIAL HYPERTENSION William L Hills, MD Neuro-ophthalmology Oregon Neurology Associates Affiliated Assistant Professor Ophthalmology and Neurology Casey Eye Institute, OHSU No disclosures CASE - 19 YO WOMAN WITH HEADACHES X 3 MONTHS Headaches frontal PMHx: obesity Worse lying down Meds: takes ibuprofen for headaches Wake from sleep Pulsatile tinnitus x 1 month. Vision blacks out transiently when she bends over or sits down EXAMINATION Vision: 20/20 R eye, 20/25 L eye. Neuro: PERRL, no APD, EOMI, VF full to confrontation. Dilated fundoscopic exam: 360 degree blurring of disc margins in both eyes, absent SVP. Formal visual field testing: Enlargement of the blind spot, generalized constriction both eyes. MRI brain: Lumbar puncture: Posterior flattening of Opening pressure 39 the globes cm H20 Empty sella Normal CSF studies otherwise normal Headache improved after LP IDIOPATHIC INTRACRANIAL HYPERTENSION SYNDROME: Increased intracranial pressure without ventriculomegaly or mass lesion Normal CSF composition NOMENCLATURE Idiopathic intracranial hypertension (IIH) Benign intracranial hypertension Pseudotumor cerebri Intracranial hypertension secondary to… DIAGNOSTIC CRITERIA Original criteria have been updated to reflect new imaging modalities: 1492 Friedman and Jacobsen. Neurology 2002; 59: Symptoms and signs reflect only those of - increased ICP or papilledema 1495 Documented increased ICP during LP in lateral decubitus position Normal CSF composition No evidence of mass, hydrocephalus, structural
    [Show full text]
  • Management of Nystagmus in Children: a Review of the Literature and Current Practice in UK Specialist Services
    Eye https://doi.org/10.1038/s41433-019-0741-3 REVIEW ARTICLE Management of nystagmus in children: a review of the literature and current practice in UK specialist services 1,2 3 3 4 5 6 1,2 6 J. E. Self ● M. J. Dunn ● J. T. Erichsen ● I. Gottlob ● H. J. Griffiths ● C. Harris ● H. Lee ● J. Owen ● 7 1 8,9 10 J. Sanders ● F. Shawkat ● M. Theodorou ● J. P. Whittle ● Nystagmus UK Eye research group (NUKE) Received: 18 October 2019 / Accepted: 24 November 2019 © The Author(s) 2020. This article is published with open access Abstract Nystagmus is an eye movement disorder characterised by abnormal, involuntary rhythmic oscillations of one or both eyes, initiated by a slow phase. It is not uncommon in the UK and regularly seen in paediatric ophthalmology and adult general/ strabismus clinics. In some cases, it occurs in isolation, and in others, it occurs as part of a multisystem disorder, severe visual impairment or neurological disorder. Similarly, in some cases, visual acuity can be normal and in others can be severely degraded. Furthermore, the impact on vision goes well beyond static acuity alone, is rarely measured and may vary on a minute-to-minute, day-to-day or month-to-month basis. For these reasons, management of children with nystagmus in 1234567890();,: 1234567890();,: the UK is varied, and patients report hugely different experiences and investigations. In this review, we hope to shine a light on the current management of children with nystagmus across five specialist centres in the UK in order to present, for the first time, a consensus on investigation and clinical management.
    [Show full text]
  • Snps and Interaction Analyses of IRF6, MSX1 and PAX9 Genes in Patients with Non‑Syndromic Cleft Lip with Or Without Palate
    1228 MOLECULAR MEDICINE REPORTS 8: 1228-1234, 2013 SNPs and interaction analyses of IRF6, MSX1 and PAX9 genes in patients with non‑syndromic cleft lip with or without palate TAO SONG, DI WU, YONGQIAN WANG, HAIDONG LI, NINGBEI YIN and ZHENMIN ZHAO Center of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan, Beijing 100144, P.R. China Received March 31, 2013; Accepted July 23, 2013 DOI: 10.3892/mmr.2013.1617 Abstract. Non-syndromic cleft lip with or without cleft palate interactions between the IRF6 and PAX9 genes are potentially (NSCL/P) is a common congenital deformity, often associated important for susceptibility to NSCL/P. with missing or deformed teeth. The genes interferon regula- tory factor 6 (IRF6), muscle segment homeobox 1 (MSX1) and Introduction paired box gene 9 (PAX9) are important for the development of the maxillofacial region and dentition. The aim of this Non-syndromic cleft lip with or without cleft palate (NSCL/P) study was to explore how genetic variations in IRF6, MSX1 is a complex disorder with a multifactorial etiology involving and PAX9, as well as gene-gene interactions, are associated genetic and environmental factors. Through the use of a wide with NSCL/P. We investigated 9 IRF6 tag single nucleotide range of genetic approaches, various candidate genes and polymorphisms (SNPs), 2 MSX1 tag SNPs and 8 PAX9 tag chromosomal regions associated with NSCL/P have been SNPs selected from HapMap data from the Chinese popula- identified (1). However, these findings remain controversial, tion. The SNPs were examined for associations with NSCL/P due in part to phenomena such as genetic heterogeneity and in 204 patients and 226 controls.
    [Show full text]
  • PAX Genes in Development and Disease: the Role of PAX2 in Urogenital Tract Development
    Int. J. Dev. Biol. 46: 535-544 (2002) PAX genes in development and disease: the role of PAX2 in urogenital tract development MICHAEL R. ECCLES*,1, SHUJIE HE, MICHAEL LEGGE1, RAJIV KUMAR1, JODY FOX1, CHAOMING ZHOU, MICHELLE FRENCH and ROBERT W.S. TSAI1 Developmental Genetics Laboratory, Department of Pathology and 1Department of Biochemistry, University of Otago, Dunedin, New Zealand ABSTRACT PAX genes play an important role in fetal development. Moreover, heterozygous mutations in several PAX genes cause human disease. Here we review the role of PAX2 in kidney development, focusing on the morphological effects of PAX2 mutations. We discuss the role of PAX2 in the context of an inhibitory field model of kidney branching morphogenesis and summarize recent progress in this area. KEY WORDS: PAX genes, kidney development, Renal-Coloboma Syndrome Introduction on sequence homology, the presence or absence of an octapeptide domain, and either a homeodomain or partial homeodomain (Fig. 1) During development many thousands of genes are expressed (Dahl et al., 1997). The paired box and homeodomains encode DNA to control patterning of the developing embryo. In the early phase binding domains within the PAX proteins, so each protein is able to of development, very rapid cell proliferation and differentiation act as a transcription factor regulating the expression of a range of occurs, but this rapid growth is under the control of a host of downstream genes (Mansouri et al., 1996). An additional domain in developmental genes. Relatively little is yet known about the the PAX genes is the transactivation domain within the carboxyl processes that control patterning and how the precisely regulated terminus of each PAX protein, which is a serine- and threonine-rich number of cells required to form the complete organism is deter- domain responsible for transcriptional activation of target genes (Fig.
    [Show full text]
  • Triple Ptosis
    TRIPLE PTOSIS ABSTRACT This is a case in which aberrant regeneration after a remote facial palsy confounds the diagnosis of an early ipsilateral third nerve palsy. CASE HISTORY A 54 year old Caucasian male presented to the emergency department for an acute increase in left ptosis x 1 day. The patient had a previously existing left ptosis residual from a left lower motor neuron facial palsy in 2004. Initial assessment by the ER physician revealed left eye ptosis with accompanying left retrobulbar pain. Pupils and extraocular motilities were recorded as normal. Other cranial nerve testing was remarkable for left facial weakness involving the upper and lower face. No other focal neurological deficits observed. CBC, electrolytes plus and head CT were obtained. (See Laboratory/Radiology Studies). CT of the head without contrast revealed no acute intracranial hemorrhage, infarct or mass. The patient was admitted to neurology service for workup of recurrent left facial lower motor neuron palsy vs acute facial nerve palsy of infectious etiology vs. ptosis of unclear etiology (unlikely myasthenia gravis). The patient was consulted to optometry for an evaluation of the ptosis. OPTOMETRY CASE HISTORY The patient presented to the optometry clinic complaining of an exacerbation of longstanding left ptosis upon wakening x 1 day with accompanying significant left retrobulbar pain which started 3 days prior. He denied double vision, blurry vision, photophobia, eyelid swelling, variability of ptosis size. He noted no additional facial weakness from baseline and reported the ability to fully close the left eye. His wife who accompanied him to the exam claimed that the change in his facial appearance was limited to the left lid.
    [Show full text]