A Nonhuman Primate Model of Achromatopsia

Total Page:16

File Type:pdf, Size:1020Kb

A Nonhuman Primate Model of Achromatopsia The Journal of Clinical Investigation COMMENTARY Blinded by the light: a nonhuman primate model of achromatopsia Katherine E. Uyhazi and Jean Bennett Center for Advanced Retinal and Ocular Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA. sitely light-sensitive rod photoreceptors for both night- and daytime vision. How- Achromatopsia is an inherited retinal degeneration characterized by the ever, rods are specialized to function well loss of cone photoreceptor function. In this issue of the JCI, Moshiri et in dimly lit conditions, but are too sensitive al. characterize a naturally occurring model of the disease in the rhesus to work efficiently in bright light, resulting macaque caused by homozygous mutations in the phototransduction in glare. Rods also have low spatial resolu- enzyme PDE6C. Using retinal imaging, and electrophysiologic and tion, leading to decreased acuity. biochemical methods, the authors report a clinical phenotype nearly There are currently six known caus- identical to the human condition. These findings represent the first genetic ative genes of achromatopsia, almost all of nonhuman primate model of an inherited retinal disease, and provide an which are components of the phototrans- ideal testing ground for the development of novel gene replacement, gene duction cascade in cone photoreceptors editing, and cell replacement therapies for cone dystrophies. (3). Approximately 75% of affected individ- uals have mutations in cyclic nucleotide- gated channel beta 3 or alpha 3 (CNGB3 or CNGA3), while the remainder of cases are caused by mutations in the remaining four Color blindness vivors, one of whom was a heterozygous genes (GNAT2, PDE6C, PDE6H, or ATF6) On the remote South Pacific island of carrier of the disease (2). (3, 4). There is currently no treatment for Pingelap, 10% of the population is com- this condition. Patients are encouraged to pletely color blind. Fishermen fish at night Fifty shades of gray wear visors and red-tinted glasses or con- because they can see better in the moon- There are two main forms of achromatop- tact lenses to minimize photophobia in light. Affected families stay in cabins sia in humans: complete achromatopsia bright environments. There are even wear- during the day and wear sunglasses and (rod monochromacy or total color blind- able devices that allow patients to “hear squint when they venture outside. Tropical ness), an autosomal recessive disease colors” by converting color information sunlight is more of a curse than a paradise in which all three subtypes of cones are into sound waves (5), but to date there are to these inhabitants, as bright light turns absent, and incomplete achromatopsia, no approved therapies that improve visual their black and white world into an over- a milder form in which one or more cone acuity or color sensitivity. exposed blur that produces debilitating subtype has residual function. Unlike glare. Immortalized by Oliver Sacks in red-green color deficiency that affects up Monkey see, monkey do his 1997 book The Island of the Colorblind to eight percent of the male population, Much of our understanding of the patho- (1), the condition maskun — meaning “not achromatopsia results in severely reduced physiology of achromatopsia comes from see,” now known as achromatopsia — is visual acuity that often impairs the quality small animal models of the disease, an inherited retinal disease resulting in of life. Patients with complete achroma- including Cnga3- and Cngb3-KO mice (6). the loss of function of cone photorecep- topsia typically present with decreased One major limitation of these models, tors. While achromatopsia affects approx- visual acuity (~20/200), lack of color however, is that rodents have neither a spe- imately 1 in 50,000 people worldwide, its vision, abnormal repetitive eye move- cialized region of high-resolution vision extremely high prevalence in Pingelap can ments, and severe photophobia (Figure 1). (i.e., fovea) nor a cone photoreceptor– be traced to a typhoon in 1775 that deci- Because all three cone subtypes are dys- enriched macula, and thus do not accu- mated the population and left only 20 sur- functional, the retina relies on the exqui- rately represent the anatomy or function of the human central retina. The nonhu- man primate eye closely resembles the Related Article: p. 863 human eye, but research efforts have been limited by the lack of available disease Conflict of interest: JB is a scientific (non–equity-holding) founder of Spark Therapeutics, and founder of GenSight Biologics, models and expense. Limelight Bio, and Perch Therapeutics. She serves on scientific advisory boards for Acouos and Odylia Therapeutics and is the Prin- In this issue of the JCI, Moshiri and cipal Investigator of sponsored research agreements from Limelight Bio and Biogen. JB is a coinventor on a patent for a method to colleagues describe four related rhe- treat or slow the development of blindness, but waived any financial interest in this technology in 2002. JB is a coinventor on sev- eral other patents related to retinal gene therapy applications, as follows: 10,155,794; 9,567,376; 9,433,688; 9,249,425; 9,896,665; sus macaques at the California Primate 8,147,823; 5,012,815; 20180369415; 20180369412; 20180153962; 20170319058; 201700143505; 20160263246. Research Center with visual impairment Reference information: J Clin Invest. 2019;129(2):513–515. https://doi.org/10.1172/JCI126205. and clinical findings consistent with jci.org Volume 129 Number 2 February 2019 513 COMMENTARY The Journal of Clinical Investigation Figure 1. Complete achromatopsia typically results in poor visual acuity, lack of color vision, and severe photophobia due to inherited defects in cone photoreceptors. (A and B) Only primates have a macula, the region of the central retina enriched in cones and containing the cone-only fovea. Thus, avail- ability of a nonhuman primate model will facilitate both basic research and interventional studies. achromatopsia (7). The animals exhibited iology of the more frequent CNGB3- and disease. Expression of a corrective copy of behavioral changes, including impaired CNGA3-associated disease. the gene improves retinal morphology, cone navigation and tactile exploration of new survival, inflammatory responses, electro- environments that was worse in bright con- An AAVenue towards a cure physiological testing, and cone-mediated ditions such as outdoor daylight, reminis- Achromatopsia represents an attractive tar- visual behavior (15). Subsequently, several cent of the human disease. They had a pig- get for gene therapy in humans for several phase I/II human trials are in progress for mentary maculopathy, foveal thinning, and reasons. First, the underlying genetics and CNGB3- and CNGA3-related disease (16). hyper- and hypoautofluorescent changes causative mutations of the disease have Interestingly, not all cone-specific promot- surrounding the fovea. Full-field scotopic been well characterized in multiple ani- ers that rescue cone function in small ani- and photopic ERG testing showed normal mal models of the disease. Second, cone mal models are effective in primates (17). rod responses and absent cone responses. cells remain physically present, albeit non- Therefore, the model reported by Moshiri Whole-genome shotgun sequencing re­­ functional, in patients with achromatop- et al. represents an invaluable resource for vealed homozygous missense mutations sia and can be targeted with cone-specific vector optimization and preclinical trial (R565Q) in the catalytic domain of the promoters. Third, since cones are densely testing. Since the macaque eye is relatively gene encoding cone phosphodiesterase concentrated in the central macula, subret- similar in size, structure, and immune envi- 6C (PDE6C), a key component of the cone inal delivery of a viral vector would easily ronment to the human eye, this naturally phototransduction cascade, which results encompass the entire region necessary for occurring disease model provides a rare in the expression of a catalytically inac- functional improvement in central vision. opportunity to test the toxicity and dosage tive protein in vitro. Although mutations Lastly, although gene therapy rescue in titration of clinical vectors, as well as the in PDE6C account for less than one per- other animal models of achromatopsia structural and functional rescue of cone cent of human achromatopsia (4), and this showed better outcomes in younger animals photoreceptor cells after gene therapy. It particular mutation has not been reported compared with older animals (8, 9), the dis- would be especially interesting to assess in humans, this model nonetheless rep- ease is relatively stationary in humans and the immunogenicity of AAV treatments in resents a significant advance in the field as shows no direct correlation with age or gen- these macaques, as the immunoprivileged it shares a nearly identical phenotype with otype (10), thus there may be a large win- status of the eye may be altered in inher- the human disease and provides a biolog- dow of opportunity for treatment. ited retinal conditions that involve retinal ically relevant model of cone-mediated Several groups have shown remark- cell death, remodeling, and subsequent visual loss. Given the phenotypic similari- able improvement in cone function using loss of the immune barriers normally found ties between the different molecular sub- adeno-associated virus–mediated
Recommended publications
  • Ametropia and Emmetropization in CNGB3 Achromatopsia
    Retina Ametropia and Emmetropization in CNGB3 Achromatopsia Mette Kjøbæk Gundestrup Andersen1 and Line Kessel1,2 1Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark 2Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark Correspondence: Mette K.G. PURPOSE. Emmetropization is the process of adjusting ocular growth to the focal plane Andersen, Department of in order to achieve a clear image. Chromatic light may be involved as a cue to guide Ophthalmology, Copenhagen this process. Achromats are color blind and lack normal cone function; they are often University Hospital, described as being hyperopic, indicating a failure to emmetropize. We aim to describe Rigshospitalet-Glostrup, Valdemar the refraction and refractive development in a population of genetically characterized Hansens Vej 1-23, 2600 Glostrup, Denmark; achromats. [email protected]. METHODS. Refractive error data were collected retrospectively from 28 medical records CNGB3 Received: August 23, 2020 of c.1148delC homozygous achromats. The distribution of spherical equivalent Accepted: January 18, 2021 refractive error (SER) and spherical error was analyzed in adults. The refractive develop- Published: February 9, 2021 ment in children was analyzed by documenting astigmatic refractive error and calculating Citation: Andersen MKG, Kessel L. median SER in 1-year age groups and by analyzing the individual development when Ametropia and emmetropization in possible. CNGB3 Invest achromatopsia. RESULTS. The distribution of SER and spherical error resembled a Gaussian distribution, Ophthalmol Vis Sci. 2021;62(2):10. indicating that emmetropization was disturbed in achromats, but we found indication of https://doi.org/10.1167/iovs.62.2.10 some decrease in SER during the first years of childhood.
    [Show full text]
  • Renewed Momentum in Ocular Gene and Cell Therapy, Broadening Application to Chronic Diseases
    FEATURE Renewed momentum in ocular gene and cell therapy, broadening application to chronic diseases BY ROD MCNEIL Gene and cell therapies offer the prospect of ground-breaking new avenues for the treatment of diseases, reflected in a renewed explosion of interest and investment in retinal gene therapy. Rod McNeil reports recent clinical trial readouts across a diverse range of investigational ocular gene and cell therapy candidates. ene therapy is literally giving transfer clinical trials to date involving (VA) at 24 months in patients treated with sight to children who would subretinal and intravitreal delivery. The timrepigene emparvovec compared with otherwise not see,” said Dr majority of these studies use an adeno- untreated patients in the natural history GJean Bennett, delivering the associated virus (AAV) vector. study. At two years over 90% of patients “ treated with timrepigene emparvovec Charles L Schepens MD Lecture jointly with Prof Albert Maguire at the American Gene therapy for choroideremia maintained VA. In a subset of treated Academy of Ophthalmology 2019 Retina Investigational gene therapy timrepigene patients with moderate to severe VA loss, Subspecialty Day. Dr Bennett has developed emparvovec (BIIB111/AAV2-REP1, Biogen) 21% experienced a VA improvement of at gene transfer approaches to test treatment is an AAV2 vector administered by least 15 letters from baseline compared with strategies for retinal degenerative and subretinal injection being evaluated as a 1.0% of untreated patients. ocular neovascular diseases and her work treatment for choroideremia (CHM). Biogen led to the first approved gene therapy announced November 2019 completion GenSight Biologics targets novel product targeting a retinal disease of patient enrolment in the global phase gene therapies for LHON and worldwide.” 3 STAR clinical trial of 170 adult males retinitis pigmentosa patients Gene therapy has definitely arrived.
    [Show full text]
  • Albinism Terminology
    Albinism Terminology Oculocutaneous Albinism (OCA): Oculocutaneous (pronounced ock-you-low-kew- TAIN-ee-us) Albinism is an inherited genetic condition characterized by the lack of or diminished pigment in the hair, skin, and eyes. Implications of this condition include eye and skin sensitivities to light and visual impairment. Ocular Albinism (OA): Ocular Albinism is an inherited genetic condition, diagnosed predominantly in males, characterized by the lack of pigment in the eyes. Implications of this condition include eye sensitivities to light and visual impairment. Hermansky Pudlak Syndrome (HPS): Hermansky-Pudlak Syndrome is a type of albinism which includes a bleeding tendency and lung disease. HPS may also include inflammatory bowel disease or kidney disease. The severity of these problems varies much from person to person, and the condition can be difficult to diagnose with traditional blood tests Chediak Higashi Syndrome: Chediak Higashi Syndrome is a type of albinism in which the immune system is affected. Illnesses and infections are common from infancy and can be severe. Issues also arise with blood clotting and severe bleeding. Melanin: Melanin is pigment found in a group of cells called melanocytes in most organisms. In albinism, the production of melanin is impaired or completely lacking. Nystagmus: Nystagmus is an involuntary movement of the eyes in either a vertical, horizontal, pendular, or circular pattern caused by a problem with the visual pathway from the eye to the brain. As a result, both eyes are unable to hold steady on objects being viewed. Nystagmus may be accompanied by unusual head positions and head nodding in an attempt to compensate for the condition.
    [Show full text]
  • Stem Cells Set Their Sights on Retinitis Pigmentosa
    INSIGHT elife.elifesciences.org OPHTHALMOLOGY Stem cells set their sights on retinitis pigmentosa Skin cells from a patient with a form of inherited blindness have been reprogrammed into retinal cells and successfully transplanted into mice. JEANNETTE L BENNICELLI AND JEAN BENNETT loss to identify the genetic mutations leading Related research article Tucker BA, to their blindness; the Iowa team also generate induced pluripotent stem cells (iPSCs) from these Mullins RF, Streb LM, Anfinson K, Eyestone individuals to create patient-specific models of ME, Kaalberg E, Riker MJ, Drack AV, Braun disease. Now, in eLife, Stone and co-workers— TA, Stone EM. 2013. Patient-specific including Budd Tucker as first author—report that iPSC-derived photoreceptor precursor they have used stem cell technology to create a personalized model of a recessive form of retinitis cells as a means to investigate retinitis pigmentosa, and that they have also successfully pigmentosa. eLife 2:e00824. doi: 10.7554/ transplanted the cells into mice (Tucker et al., eLife.00824 2013). These results are an important step toward Image Photoreceptors derived from human autologous transplantation, the regeneration of tissues damaged by disease using stem cells stem cells can colonize a mouse retina derived from the patient’s own cells (Figure 1). (arrow) In addition to benefiting basic research, these findings represent a means to develop specific understanding of, and treatment for, a range of genetic conditions—in particular, the large set of nherited blindness encompasses a wide highly idiosyncratic syndromes that constitute spectrum of pathologies that can be caused inherited blindness. Iby mutations in more than 220 genes.
    [Show full text]
  • Colour Vision Deficiency
    Eye (2010) 24, 747–755 & 2010 Macmillan Publishers Limited All rights reserved 0950-222X/10 $32.00 www.nature.com/eye Colour vision MP Simunovic REVIEW deficiency Abstract effective "treatment" of colour vision deficiency: whilst it has been suggested that tinted lenses Colour vision deficiency is one of the could offer a means of enabling those with commonest disorders of vision and can be colour vision deficiency to make spectral divided into congenital and acquired forms. discriminations that would normally elude Congenital colour vision deficiency affects as them, clinical trials of such lenses have been many as 8% of males and 0.5% of femalesFthe largely disappointing. Recent developments in difference in prevalence reflects the fact that molecular genetics have enabled us to not only the commonest forms of congenital colour understand more completely the genetic basis of vision deficiency are inherited in an X-linked colour vision deficiency, they have opened the recessive manner. Until relatively recently, our possibility of gene therapy. The application of understanding of the pathophysiological basis gene therapy to animal models of colour vision of colour vision deficiency largely rested on deficiency has shown dramatic results; behavioural data; however, modern molecular furthermore, it has provided interesting insights genetic techniques have helped to elucidate its into the plasticity of the visual system with mechanisms. respect to extracting information about the The current management of congenital spectral composition of the visual scene. colour vision deficiency lies chiefly in appropriate counselling (including career counselling). Although visual aids may Materials and methods be of benefit to those with colour vision deficiency when performing certain tasks, the This article was prepared by performing a evidence suggests that they do not enable primary search of Pubmed for articles on wearers to obtain normal colour ‘colo(u)r vision deficiency’ and ‘colo(u)r discrimination.
    [Show full text]
  • Partial Albinism (Heterochromia Irides) in Black Angus Cattle
    Partial Albinism (Heterochromia irides) in Black Angus Cattle C. A. Strasia, Ph.D.1 2 J. L. Johnson, D. V.M., Ph.D.3 D. Cole, D. V.M.4 H. W. Leipold, D.M.V., Ph.D.5 Introduction Various types of albinism have been reported in many Pathological changes in ocular anomalies of incomplete breeds of cattle throughout the world.4 We describe in this albino cattle showed iridal heterochromia grossly. paper a new coat and eye color defect (partial albinism, Histopathological findings of irides showed only the heterochromia irides) in purebred Black Angus cattle. In posterior layer fairly pigmented and usually no pigment in addition, the results of a breeding trial using a homozygous the stroma nor the anterior layer. The ciliary body showed affected bull on normal Hereford cows are reported. reduced amount of pigmentation and absence of corpora Albinism has been described in a number of breeds of nigra. Choroid lacked pigmentation. The Retina showed cattle.1,3-8,12,16,17 An albino herd from Holstein parentage disorganization. Fundus anomalies included colobomata of was described and no pigment was evident in the skin, eyes, varying sizes at the ventral aspect of the optic disc and the horns, and hooves; in addition, the cattle exhibited photo­ tapetum fibrosum was hypoplastic.12 In albino humans, the phobia. A heifer of black pied parentage exhibited a fundus is depigmented and the choroidal vessels stand out complete lack of pigment in the skin, iris and hair; however, strikingly. Nystagmus, head nodding and impaired vision at sexual maturity some pigment was present and referred to also may occur.
    [Show full text]
  • Wavelength of Light and Photophobia in Inherited Retinal Dystrophy
    www.nature.com/scientificreports OPEN Wavelength of light and photophobia in inherited retinal dystrophy Yuki Otsuka1, Akio Oishi1,2*, Manabu Miyata1, Maho Oishi1, Tomoko Hasegawa1, Shogo Numa1, Hanako Ohashi Ikeda1 & Akitaka Tsujikawa1 Inherited retinal dystrophy (IRD) patients often experience photophobia. However, its mechanism has not been elucidated. This study aimed to investigate the main wavelength of light causing photophobia in IRD and diference among patients with diferent phenotypes. Forty-seven retinitis pigmentosa (RP) and 22 cone-rod dystrophy (CRD) patients were prospectively recruited. We designed two tinted glasses: short wavelength fltering (SWF) glasses and middle wavelength fltering (MWF) glasses. We classifed photophobia into three types: (A) white out, (B) bright glare, and (C) ocular pain. Patients were asked to assign scores between one (not at all) and fve (totally applicable) for each symptom with and without glasses. In patients with RP, photophobia was better relieved with SWF glasses {“white out” (p < 0.01) and “ocular pain” (p = 0.013)}. In CRD patients, there was no signifcant diference in the improvement wearing two glasses (p = 0.247–1.0). All RP patients who preferred MWF glasses had Bull’s eye maculopathy. Meanwhile, only 15% of patients who preferred SWF glasses had the fnding (p < 0.001). Photophobia is primarily caused by short wavelength light in many patients with IRD. However, the wavelength responsible for photophobia vary depending on the disease and probably vary according to the pathological condition. Inherited retinal degenerations (IRDs) represent a diverse group of diseases characterized by progressive photo- receptor cell death that can lead to blindness 1.
    [Show full text]
  • Clinical and Genetic Investigation of a Large Tunisian Family with Complete Achromatopsia: Identification of a New Nonsense Mutation in GNAT2 Gene
    Journal of Human Genetics (2011) 56, 22–28 & 2011 The Japan Society of Human Genetics All rights reserved 1434-5161/11 $32.00 www.nature.com/jhg ORIGINAL ARTICLE Clinical and genetic investigation of a large Tunisian family with complete achromatopsia: identification of a new nonsense mutation in GNAT2 gene Farah Ouechtati1,2,7, Ahlem Merdassi2,7, Yosra Bouyacoub1,2, Leila Largueche2, Kaouther Derouiche2, Houyem Ouragini1, Sonia Nouira1, Leila Tiab3,4, Karim Baklouti2, Ahmed Rebai5, Daniel F Schorderet3,4,6, Francis L Munier3,4,6, Leonidas Zografos4,6, Sonia Abdelhak1 and Leila El Matri2 Complete achromatopsia is a rare autosomal recessive disease associated with CNGA3, CNGB3, GNAT2 and PDE6C mutations. This retinal disorder is characterized by complete loss of color discrimination due to the absence or alteration of the cones function. The purpose of the present study was the clinical and the genetic characterization of achromatopsia in a large consanguineous Tunisian family. Ophthalmic evaluation included a full clinical examination, color vision testing and electroretinography. Linkage analysis using microsatellite markers flanking CNGA3, CNGB3, GNAT2 and PDE6C genes was performed. Mutations were screened by direct sequencing. A total of 12 individuals were diagnosed with congenital complete achromatopsia. They are members of six nuclear consanguineous families belonging to the same large consanguineous family. Linkage analysis revealed linkage to GNAT2. Mutational screening of GNAT2 revealed three intronic variations c.119À69G4C, c.161+66A4T and c.875À31G4C that co-segregated with a novel mutation p.R313X. An identical GNAT2 haplotype segregating with this mutation was identified, indicating a founder mutation. All patients were homozygous for the p.R313X mutation.
    [Show full text]
  • Gene Therapy for Inherited Retinal Diseases
    1278 Review Article on Novel Tools and Therapies for Ocular Regeneration Page 1 of 13 Gene therapy for inherited retinal diseases Yan Nuzbrokh1,2,3, Sara D. Ragi1,2, Stephen H. Tsang1,2,4 1Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA; 2Jonas Children’s Vision Care, New York, NY, USA; 3Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, NY, USA; 4Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA Contributions: (I) Conception and design: All authors; (II) Administrative support: SH Tsang; (III) Provision of study materials or patients: SH Tsang; (IV) Collection and assembly of data: All authors; (V) Manuscript writing: All authors; (VI) Final approval of manuscript: All authors. Correspondence to: Stephen H. Tsang, MD, PhD. Harkness Eye Institute, Columbia University Medical Center, 635 West 165th Street, Box 212, New York, NY 10032, USA. Email: [email protected]. Abstract: Inherited retinal diseases (IRDs) are a genetically variable collection of devastating disorders that lead to significant visual impairment. Advances in genetic characterization over the past two decades have allowed identification of over 260 causative mutations associated with inherited retinal disorders. Thought to be incurable, gene supplementation therapy offers great promise in treating various forms of these blinding conditions. In gene replacement therapy, a disease-causing gene is replaced with a functional copy of the gene. These therapies are designed to slow disease progression and hopefully restore visual function. Gene therapies are typically delivered to target retinal cells by subretinal (SR) or intravitreal (IVT) injection.
    [Show full text]
  • What Is Hermansky-Pudlak Syndrome?
    American Thoracic Society PATIENT EDUCATION | INFORMATION SERIES What is Hermansky-Pudlak Syndrome? Hermansky-Pudlak Syndrome (HPS) is a rare inherited disease, named after two doctors in Czechoslovakia who, in 1959, recognized similar health conditions in two unrelated adults. Since the discovery of HPS, the condition has occurred all over the world but is most often seen in Puerto Rico. The most common health conditions with HPS are albinism, the tendency to Journal of Hematology bleed easily, and pulmonary fibrosis. A Figure 1. Normal platelet with dense bodies growing number of gene mutations have visualized by electron microscopy. been identified causing HPS (including numbers HPS1 to HPS10). What is albinism? Albinism is an inherited condition in which CLIP AND COPY AND CLIP reduced pigmentation (coloring) is present in the body. As a result, people with albinism are often fair-skinned with light hair. However, skin, hair, and eye color may vary, as some people with albinism may have dark brown hair and green or hazel/brown eyes. Journal of Hematology People with albinism all have low vision and Figure 2. Patient’s platelet with virtually absent dense bodies visualized by electron microscopy. varying degrees of nystagmus. All people who have HPS have albinism, but not all circulate in the blood stream and help the people with albinism have HPS. blood to clot. HPS patients have normal Skin problems—The reduction of numbers of platelets, but they are not pigmentation in the skin from albinism made correctly and do not function well, so results in an increased chance of developing the blood does not clot properly.
    [Show full text]
  • Scheie Vision Department of Opthalmology
    summer 2018 scheie vision Department of Opthalmology Like Watching a Miracle: From Landmark Gene Therapy to the Stage of America’s Got Talent IN THIS ISSUE A MESSAGE FROM THE CHAIR Dear Friends, VISION Penn Medicine’s Department of Ophthalmology, Scheie Eye Institute, is dedicated to cutting edge research, 02 Like Watching a Miracle providing the highest quality of care in Philadelphia and around the world, and training the next generation 04 Landmark FDA Approval of ophthalmologists. Our faculty and staff strive to cultivate an environment of continued learning and 08 Studying Individual Photoreceptors mentoring, where young minds with great potential grow and thrive. Our alumni go on to lead impactful 10 Intraocular Bleeding from careers, maintaining relationships with peers and mentors and returning to the Annual Alumni Meeting Blood Clot Meds? each spring. This event is always a reminder of the outstanding accomplishments of Scheie’s alumni, 11 New Options for Dry Eye students, staff, and faculty, and their daily commitment to improving the lives of patients and colleagues. This issue of Scheie Vision covers the people behind SCHEIE COMMUNITY Scheie’s advances and mission of excellence. We 13 Beautiful Inside and Out feature Lang Lourng Ung, an ophthalmic technician who brings inspirational resilience and passion to working with patients; Sonul Mehta, MD, who travels 15 Faces of Scheie around the world to provide ophthalmic care in underserved communities; Jessica Morgan, PhD, whose 19 Eye Care Across the World research on photoreceptor function has tremendous implications for the diagnosis and treatment of retinal 20 Remembering Walker Kirby disease; and Jean Bennett, MD, PhD, and Al Maguire, MD, who have demonstrated unwavering commitment for over 25 years to making it possible for blind 21 144th Anniversary Weekend children to see.
    [Show full text]
  • Common Eye Conditions
    COMMON EYE CONDITIONS AMBLYOPIA Reduced acuity because of non-use of eye or extreme difference in acuities. Eye may be patched or surgery to correct. NYSTAGMUS - Cause unknown Involuntary rhythmic side-to-side, up-and-down, or circular (oscillating), eye movement that may be faster in one direction than the other (may be more marked in one eye than the other), reduced acuity due to inability to fixate. STRABISMUS - Defects of eye muscle Eyes are not aligned correctly, images may not fuse, brain may suppress one image resulting in permanent acuity reduction in eye where image is suppressed. ALBINISM – Hereditary – congenital (may involve all or part of body – non-progressive) Lack of pigment in eye, decreased acuity, nystagmus, strabismus, photophobia, visual fields variable, retina and macular involvement. ANIRIDIA – Hereditary Underdeveloped or absent iris. Decreased acuity, photophobia, nystagmus, cataracts, under developed retina. Visual fields normal unless glaucoma develops. CATARACTS – Congenital, hereditary, traumatic, disease, or age related (normal part of aging process) Lens opacity (chemical change in lens protein), decreased visual acuity, nystagmus, photophobia (light sensitivity). DIABETIC RETINOPATHY – Pathologic Retinal changes, proliferative – growth of abnormal new blood vessels, hemorrhage, fluctuating visual acuity, loss of color vision, field loss, retinal detachment, total blindness. GLAUCOMA (Congenital or adult) – “SNEAK THIEF OF SIGHT” hereditary, traumatic, surgery High intraocular pressure (above 20-21 mm of mercury) – (in children often accompanied by hazy corneas and large eyes), often due to obstructions that prevent fluid drainage, resulting in damage to optic nerve. Excessive tearing, photophobia, uncontrolled blinking, decreased acuity, constricted fields. HEMIANOPSIA – (Half-vision) optic pathway malfunction pathologic or trauma (brain injury, stroke or tumor) Macular vision may or may not be affected.
    [Show full text]