Development of Photoactivatable Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Development of Photoactivatable Compounds MASARYK UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY Development of Photoactivatable Compounds Ph.D. Thesis Lenka Filipová SUPERVISOR: prof. RNDr. Petr Klán, Ph.D. BRNO 2018 Bibliographic Entry Author: Mgr. Lenka Filipová Masaryk University, Faculty of Science Department of Chemistry Title of Dissertation: Development of Photoactivatable Compounds Degree Programne: Chemistry Field of Study: Organic chemistry Supervisor: prof. RNDr. Petr Klán, Ph.D. Masaryk University, Faculty of Science Department of Chemistry Academic Year: 2018/2019 Number of Pages: 129 pages + 109 pages of appendices Keywords: reverse micelles, azobenzene, strained alkynes, cyclopropenone, Cu-free click reaction, photoCORMs, heptamethine cyanine dyes, Zincke reaction Bibliografický záznam Autor: Mgr. Lenka Filipová Masarykova univerzita, Přírodovědecká fakulta Ústav chemie Název práce: Vývoj fotoaktivovatelných sloučenin Studijní program: Chemie Studijní obor: Organická chemie Školitel: prof. RNDr. Petr Klán, Ph.D. Akademický rok: 2018/2019 Počet stran: 129 stran + 109 stran příloh Klíčová slova: reverzní micely, azobenzen, napnuté alkyny, cyclopropenon, Cu-free Click reakce, photoCORMy, barviva heptamethine cyaninová, Zincke reakce Abstract My dissertation thesis was focused on the synthesis of new photoactivatable compounds and studying their photochemical properties and behavior. The results summarized in this thesis have been published or will be submitted for the publication in the near future. The introductory part of the dissertation thesis provides previously published information related to the studied projects, including properties and behavior of reverse micelles, photoisomerization of azobenzene derivatives, click chemistry of strained alkynes, followed by application of cyclopropenones for photochemical generation of strained alkynes. Finally, the role of carbon monoxide as a signaling molecule and its potential biological effects are described. Previously reported carbon monoxide releasing molecules are also shown. In the last section of this chapter, preparation and applications of heptamethine cyanine dyes are summarized In the next chapter, Results and Disccusion, results of three research projects are summarized. The first of them is focused on the development of new photoactivatable amphiphiles and their utilization in preparation of reverse micelles. Properties of photoresponsive amphiphiles and the formation reverse micelles were studied by NMR spectroscopy at both room and sub-zero temperatures. The second project was focused on photochemically initiated Cu-free click reaction, which is widely used in the conjugation of biomolecules in the absence of metals used as catalysts. A new silacyclopropenone was developed and used in a subsequent, photoinduced Cu-free click reaction with azides and tetrazines. The third project was focused on the synthesis of new heptamethine cyanine dyes. During development of new photoactivatable compounds absorbing at higher wavelengths, Zincke reaction was utilized in the synthesis of various cyanine dyes substituted on the heptamethine chain. This method allowed the installation of different functional groups and synthesis of heptamethine cyanine dyes inaccessible by known methods. In the last part of thesis, the publications and experimental data are appended. Abstrakt Má doktorská práce byla zaměřena na syntézu nových fotoaktivovatelných sloučenin a studium jejich fotochemických vlastností. Získané výsledky popsané v této práci již byly publikovány nebo jsou sepsány a připraveny k publikaci. V úvodní kapitole jsou shrnuty dříve publikované relevantní informace, týkající se studovaných projektů, zahrnujících vlastnosti a chování reverzních micel, photoisomerizace azobenzenových derivatů, click reakce a využití napjatých alkynů a cyclopropenonů pro fotochemickou tvorbu napjatých alkynů. Dále je popsána tvorba oxidu uhelnatého jako signální molekuly v biologických systémech a jeho biologické účinky. V této části se diskutují známé molekuly uvolňující oxid uhelnatý. V poslední části této kapitoly jsou shrnuty poznatky o cyaninových barvivech, způsoby jejich přípravy a jejich využití. V následující kapitole Výsledky a diskuze jsou ukázány a shrnuty výsledky tří výzkumných projektů. První z nich se věnuje vývoji nových fotoaktivovatelných amfifilů a jejich využití při tvorbě reverzních micel. Vlastnosti samotného amfifilu a z něj vytvořených reverzních micel byly studovovány především pomocí NMR spektroskopie za laboratorní a nízké teploty. Druhý projekt se věnuje click reakci probíhající za nepřítomnosti mědi, reakci, která je využívána pro spojování biomolekul v nepřítomnosti kovů používaných jako katalyzátory. Nový silacyclopropenon byl vyvinut a použit ve světlem iniciované click reakci s azidy a tetraziny jako reagenty. Třetí projekt se zabývá syntézou nových různě substituovaných heptamethinových cyaninových barviv pomocí Zinckeho reakce. Tato metoda umožňuje instalaci mnoha funkčních skupin a syntézu cyaninových barviv, která dosud nebyla dostupná známými metodami. V poslední části práce jsou přiloženy publikace a experimentální data. Acknowledgement I would like to thank prof. Petr Klán for his supervision and opportunity to work in his group. I am grateful for fruitful discussions, support, motivation and especially for his trust in my abilities. Much thanks goes to my partner Peter. I cannot express by words how grateful I am to have you, but I hope you know it. You helped me during my entire doctoral studies, even despite the large distance between us. It was not always easy, but you stayed with me every time and endured my bad mood or crying. You are my teacher, my best friend and my husband soon. I am so grateful that we can work together and share our laboratory experience, as well as our life together. We are perfect collaborators, not only in the laboratory but also in our lives, and I hope that our collaboration will last forever. I truly and deeply love you. I thank to my current colleagues, namely Estelita, Marina, Qiuyun, Andreas, Sadegh, Mišo, Tomáš and Marek for their fruitful discussions not only about chemistry and for creating an inspiring atmosphere and fun during the work. I never experienced so nice, kind and funny group of people who like each other and work together. I am grateful that all of you are my colleagues and especially my friends. I also thank my colleagues and friends which I met during my study, Tombo and Lulu. Thanks to Luboš for technical support and providing us with everything which we ever needed in laboratory. Last but not at least I thank to my family for their support during my study, especially when they could not comprehend how I could study chemistry. Without you I would never be the person which I am today. V neposlední řadě děkuji své rodině za jejich podporu během celého studia, obzvlášť když nikdy nechápali, jak mohu studovat zrovna chemii. Vím, že to se mnou často nebylo jednoduché, ale vy jste tu vždy byli pro mě, snažili se mi všemožně pomáhat a být mi oporou. Bez vás bych nikdy nebyla tou osobou, kterou jsem dnes. “Without theory to guide him the experimenter is as lost as a sailor setting out without compass or rudder.” ‒ Leonardo da Vinci “I put my heart and my soul into my work, and I lost my mind in the process.” ‒ Vincent van Gogh © Lenka Filipová, Masaryk University, Brno 2018 Table of Contents Table of Contents Table of Contents ................................................................................................................................. 8 1. Literature Part ............................................................................................................................. 11 1.1. Introduction ........................................................................................................................ 11 1.2. Amphiphiles and its Aggregates in the Solution........................................................... 11 1.2.1. Reverse Micelles (RMs) ............................................................................................. 13 1.2.2. Mechanism of Micelle Formation ............................................................................ 15 1.2.3. Determination of Critical Micelle Concentration (CMC) ..................................... 16 1.2.4. Size of Reverse Micellar Aggregates ....................................................................... 17 1.2.5. Utilization of Reverse Micelles ................................................................................. 17 1.2.6. Reverse Micelles at Subzero Temperatures ............................................................ 17 1.3. Photoswitchable Molecules .............................................................................................. 20 1.3.1. Azobenzene Photochemistry .................................................................................... 20 1.3.2. Preparation of Azobenzene and its Derivatives .................................................... 21 1.3.3. Azobenzene Derivatives ........................................................................................... 22 1.3.4. Azobenzene Moiety Incorporated into a Self-Assembly ...................................... 22 1.4. Click Chemistry .................................................................................................................. 24 1.4.1. Bioorthogonal Click Reaction (Cu-free Click Reaction) ........................................ 25 1.4.2. Strained Alkynes .......................................................................................................
Recommended publications
  • Subject Index
    455 Subject Index Aminohydroxylation, 364 a-Aminoketone, 281 4-Aminophenol, 18 A Aminothiophene, 158 Abnormal Claisen rearrangement, 1 a-Aminothiophenols, 184 Acrolein, 378 Ammonium ylide, 383 2-(Acylamino)-toluenes, 245 Angeli-Rimini hydroxamic acid Acylation, 100, 145, 200 synthesis, 9 Acyl azides, 98 ~-Anomer, 225 Acylium ion, 145, 149, 175, 177 Anomeric center, 211 a-Acyloxycarboxamides, 298 Anomeric effect, 135 a-Acyloxyketones, 17 ANRORC mechanism, 10 a-Acyloxythioethers, 327 Anthracenes, 51 Acyl transfer, 17, 42, 228, 298, 305, Anti-Markovnikov addition, 219 327,345 Amdt-Eistert homologation, 11 AIBN, 22, 23, 415 Aryl-acetylene, 66 Alder ene reaction, 2 Arylation, 253 Alder's endo rule, Ill 0-Aryliminoethers, 67 Aldol condensation, 3, 14, 26, 34, 2-Arylindoles, 38 69, 130, 147, 172, 305, Aryl migration, 31 340,396,412 Autoxidation, 69, 115, 118 Aldosylamine, 8 Auwers reaction, 13 Alkyl migration, 16, 132, 315, 443 Axial, 347 Alkylation, 144, 145 Azalactone, I 00 N-Aikylation, 162 Azides, 125, 330 Alkylidene carbene, 151 Azirine, 6, 7, 281 Allan-Robinson reaction, 4, 228 Azulene, 310 Allene, 119 1t-Allyl complex, 414 B Allylation, 213, 414 Baeyer-Drewson Allylstannane, 213 indigo synthesis, 14 Allylsilanes, 349 Baeyer-Villiger oxidation, 16, 53 Alper carbonylation, 6 Baker-Venkataraman Alpine-borane®, 262 rearrangement, 17 Aluminum phenolate, 149 Balz-Schiemann reaction, 354 Amadori rearrangement, 8 Bamberger rearrangement, 18 Amide acetal, 74 Bamford-Stevens reaction, 19 Amides, 28, 67,276,339, 356 Bargellini reaction, 20 Amidine,
    [Show full text]
  • Table of Contents
    Table of Contents Foreword VII Preface IX Abbreviations XIX Alder ene reaction 1 Aldol condensation 3 Algar—Flynn-Oyamada reaction 6 Allan-Robinson reaction 8 Arndt-Eistert homologation 10 Baeyer-Villiger oxidation 12 Baker-Venkataraman rearrangement 14 Bamford—Stevens reaction 16 Barbier coupling reaction 18 Bartoli indole synthesis 20 Barton radical decarboxylation 22 Barton-McCombie deoxygenation 24 Barton nitrite photolysis 26 Batcho-Leimgruber indole synthesis 28 Baylis—Hillman reaction 30 Beckmann rearrangement 33 Abnormal Beckmann rearrangement 34 Benzilic acid rearrangement 36 Benzoin condensation 38 Bergman cyclization 40 Biginelli pyrimidone synthesis 42 Birch reduction 44 Bischler-Möhlau indole synthesis 46 Bischler—Napieralski reaction 48 Blaise reaction 50 Blum-Ittah aziridine synthesis 52 Boekelheide reaction 54 Boger pyridine synthesis 56 Borch reductive amination 58 Borsche-Drechsel cyclization 60 Boulton—Katritzky rearrangement 62 Bouveault aldehyde synthesis 64 Bouveault-Blanc reduction 65 Bradsher reaction 66 Brook rearrangement 68 Brown hydroboration 70 Bucherer carbazole synthesis 72 Bibliografische Informationen digitalisiert durch http://d-nb.info/995654522 XII Bucherer reaction 74 Bucherer-Bergs reaction 76 Büchner ring expansion 78 Buchwald-Hartwig amination 80 Burgess dehydrating reagent 84 Burke boronates 87 Cadiot-Chodkiewicz coupling 90 Camps quinoline synthesis 92 Cannizzaro reaction 94 Carroll rearrangement 96 Castro-Stephens coupling 98 Chan alkyne reduction 100 Chan-Lam C-X coupling reaction 102 Chapman
    [Show full text]
  • Syntheses of Strychnine, Norfluorocurarine, Dehydrodesacetylretuline, and Valparicine Enabled by Intramolecular Cycloadditions of Zincke Aldehydes David B
    Featured Article pubs.acs.org/joc Syntheses of Strychnine, Norfluorocurarine, Dehydrodesacetylretuline, and Valparicine Enabled by Intramolecular Cycloadditions of Zincke Aldehydes David B. C. Martin, Lucas Q. Nguyen, and Christopher D. Vanderwal* 1102 Natural Sciences II, Department of Chemistry, University of California, Irvine, California, 92697-2025 *S Supporting Information ABSTRACT: A full account of the development of the base- mediated intramolecular Diels−Alder cycloadditions of trypt- amine-derived Zincke aldehydes is described. This important complexity-generating transformation provides the tetracyclic core of many indole monoterpene alkaloids in only three steps from commercially available starting materials and played a key role in short syntheses of norfluorocurarine (five steps), dehydrodesacetylretuline (six steps), valparicine (seven steps), and strychnine (six steps). Reasonable mechanistic possibilities for this reaction, a surprisingly facile dimerization of the products, and an unexpected cycloreversion to regenerate Zincke aldehydes under specific conditions are also discussed. ■ INTRODUCTION in the toolbox of the classical organic chemist (e.g., Hofmann elimination, Emde degradation, von Braun reaction, Polonovski The current state-of-the-art of organic chemistry owes much to 3−5 the study of alkaloids, and the Strychnos family is certainly reaction). The similarities (and differences) among exemplary. The Strychnos alkaloids (Figure 1) were the subject members of the Strychnos and related alkaloid classes (Aspidosperma, Iboga, Corynanthe)́ would lead to biogenetic hypotheses that could be experimentally probed in vivo or in the chemistry laboratory.6 Since the 1940s, the intricate architectures of these alkaloids have challenged chemists to develop new methods and tactics to achieve ever more efficient, stereocontrolled syntheses.7,8 To this day, they remain a testing ground for strategies in alkaloid synthesis.
    [Show full text]
  • Name Reactions
    Name Reactions Fourth Expanded Edition Jie Jack Li Name Reactions A Collection of Detailed Mechanisms and Synthetic Applications Fourth Expanded Edition 123 Jie Jack Li, Ph.D. Discovery Chemistry Bristol-Myers Squibb Company 5 Research Parkway Wallingford, CT 06492 USA [email protected] ISBN 978-3-642-01052-1 e-ISBN 978-3-642-01053-8 DOI 10.1007/978-3-642-01053-8 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009931220 c Springer-Verlag Berlin Heidelberg 2009 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design:KunkelLopka¨ GmbH Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) To Vivien Foreword I don't have my name on anything that I don't really do. –Heidi Klum Can the organic chemists associated with so-called “Named Reactions” make the same claim as supermodel Heidi Klum? Many scholars of chemistry do not hesitate to point out that the names associated with “name reactions” are often not the actual inventors.
    [Show full text]
  • One Step Copper-Catalyzed Functionalization of Pyridines with Alkynes and Organoindium Reagents
    One Step Copper-Catalyzed Functionalization of Pyridines with Alkynes and Organoindium Reagents A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of M.Sc. By Ramsay E. Beveridge April 2007 Department of Chemistry McGill University Montreal, Quebec, Canada © Ramsay E. Beveridge 2007 This thesis is dedicated to all of the wonderful teachers that I’ve had who provided inspiration for the study of chemistry: Prof. B.A. Arndtsen, Mr. Charles “Chuck” Eisner, Prof. J. Roscoe, Prof. J.T. Banks, Prof. J. Clyburne, Prof. R.A. Gossage, and in particular to my high school chemistry teacher Ms. McDonald. ABSTRACT The copper-catalyzed synthesis of functionalized pyridines and partially reduced pyridine derivatives has been developed and the results are presented herein. These studies have shown that pyridines (and related aromatic heterocycles) in the presence of chloroformates will undergo effective coupling with terminal alkynes and organoindium reagents using simple copper (I) salt catalysts to give good yields of dihydropyridine products. In addition, performing these reactions in tandem with base or oxidative additives has led to the copper-catalyzed one-pot preparation of substituted aromatic pyridines. RÉSUMÉ Une méthode catalytique médiée par le cuivre pour la synthèse des dérivés de pyridines ainsi que celles partiellement réduites est décrite dans le texte qui suit. Cette étude démontre que les pyridines (et autres hétérocycles aromatiques reliés), lorsque quaternisées in-situ par des réactifs tel que les chloroformates, celles-ci peuvent être couplées avec des alcynes terminaux ou des réactifs organo-indium au moyen de simple sels de cuivre (I) pour générer, bon rendement, des dihydropyridines.
    [Show full text]
  • Subject Index a Abnormal Beckmann Rearrangement, 34 Abnormal Chichibabin Reaction, 108 Abnormal Claisen Rearrangement, 121 Aceti
    599 Subject Index acyl halide, 234 acyl malonic ester, 263 A acyl transfer, 14, 322, 424, 452 abnormal Beckmann rearrangement, 34 2-acylamidoketones, 472 abnormal Chichibabin reaction, 108 acylation, 8, 51, 234, 235, 296, 322, 332, abnormal Claisen rearrangement, 121 440 acetic anhydride, 54, 167, 204, 424, 440, O-acylation, 332 442, 452 acylbenzenesulfonylhydrazines, 334 2-acetamido acetophenone, 92 acylglycine, 205 acetone cyanohydrin, 534 acylium ion, 234, 240, 253, 319 acetonitrile as a reactant, 168 acyl-o-aminobiphenyls, 371 α-acetylamino-alkyl methyl ketone, 167 α-acyloxycarboxamide, 415 acetylation, 311 α-acyloxyketone, 14 acetylenic alcohols, 100 α-acyloxythioether, 452 Į,ȕ-acetylenic esters, 225 adamantane-like structure, 432 acid chloride, 11, 461, 476 1,4-addition of a nucleophile, 355 acid scavenger, 202 addition of Pd-H, 373 acid-catalyzed acylation, 296 cis-addition, 496 acid-catalyzed alkyl group migration, 1,6-addition/elimination, 596 566 ADDP, 366 acid-catalyzed condensation, 131, 133 adduct formation, 365 acid-catalyzed cyclization, 409 adenosine, 370 acid-catalyzed electrocyclic formation of aglycon, 221 cyclopentenone, 383 AIBN, 22, 23, 24, 25, 200, 546, 586, acid-catalyzed reaction, 490 587 acid-catalyzed rearrangement, 436, 480 air oxidation, 194 acidic alcohol, 339 Al(Oi-Pr)3, 345 acidic amide hydrolysis, 534 alcohol activation, 365 acidic methylene moiety, 337 aldehyde cyanohydrin, 229 acid-labile acetal, 572 Alder ene reaction, 1, 2, 111 acid-mediated cyclization, 444 Alder’s endo rule, 184 acid-promoted rearrangement,
    [Show full text]