Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Table of Contents Table of Contents Foreword VII Preface IX Abbreviations XIX Alder ene reaction 1 Aldol condensation 3 Algar—Flynn-Oyamada reaction 6 Allan-Robinson reaction 8 Arndt-Eistert homologation 10 Baeyer-Villiger oxidation 12 Baker-Venkataraman rearrangement 14 Bamford—Stevens reaction 16 Barbier coupling reaction 18 Bartoli indole synthesis 20 Barton radical decarboxylation 22 Barton-McCombie deoxygenation 24 Barton nitrite photolysis 26 Batcho-Leimgruber indole synthesis 28 Baylis—Hillman reaction 30 Beckmann rearrangement 33 Abnormal Beckmann rearrangement 34 Benzilic acid rearrangement 36 Benzoin condensation 38 Bergman cyclization 40 Biginelli pyrimidone synthesis 42 Birch reduction 44 Bischler-Möhlau indole synthesis 46 Bischler—Napieralski reaction 48 Blaise reaction 50 Blum-Ittah aziridine synthesis 52 Boekelheide reaction 54 Boger pyridine synthesis 56 Borch reductive amination 58 Borsche-Drechsel cyclization 60 Boulton—Katritzky rearrangement 62 Bouveault aldehyde synthesis 64 Bouveault-Blanc reduction 65 Bradsher reaction 66 Brook rearrangement 68 Brown hydroboration 70 Bucherer carbazole synthesis 72 Bibliografische Informationen digitalisiert durch http://d-nb.info/995654522 XII Bucherer reaction 74 Bucherer-Bergs reaction 76 Büchner ring expansion 78 Buchwald-Hartwig amination 80 Burgess dehydrating reagent 84 Burke boronates 87 Cadiot-Chodkiewicz coupling 90 Camps quinoline synthesis 92 Cannizzaro reaction 94 Carroll rearrangement 96 Castro-Stephens coupling 98 Chan alkyne reduction 100 Chan-Lam C-X coupling reaction 102 Chapman rearrangement 105 Chichibabin pyridine synthesis 107 Chugaev reaction 110 Ciamician—Dennsted rearrangement 112 Claisen condensation 113 Claisen isoxazole synthesis 115 Claisen rearrangement 117 /?ara-Claisen rearrangement 119 Abnormal Claisen rearrangement 121 Eschenmoser-Claisen amide acetal rearrangement 123 Ireland-Claisen (silyl ketene acetal) rearrangement 125 Johnson-Claisen (orthoester) rearrangement 127 Clemmensen reduction 129 Combes quinoline synthesis 131 Conrad-Limpach reaction 133 Cope elimination reaction 135 Cope rearrangement 137 Anionic oxy-Cope rearrangement 138 Oxy-Cope rearrangement 140 Siloxy-Cope rearrangement 141 Corey-Bakshi-Shibata (CBS) reagent 143 Corey-Chaykovsky reaction 146 Corey-Fuchs reaction 148 Corey—Kim oxidation 150 Corey-Nicolaoumacrolactonization 152 Corey-Seebach reaction 154 Corey-Winter olefin synthesis 156 Criegee glycol cleavage 159 Criegee mechanism of ozonolysis 161 Curtius rearrangement 162 Dakin oxidation 165 Dakin—West reaction 167 Darzens condensation 169 XIII Delépine aminé synthesis 171 de Mayo reaction 173 Demjanov rearrangement 175 Tiffeneau-Demjanov rearrangement 177 Dess-Martin periodinane oxidation 179 Dieckmann condensation 182 Diels-Alder reaction 184 Inverse electronic demand Diels-Alder reaction 186 Hetero-Diels-Alder reaction 187 Dienone-phenol rearrangement 190 Di-rc-methane rearrangement 192 Doebner quinoline synthesis 194 Doebner-von Miller reaction 196 Dötz reaction 198 Dowd-Beckwith ring expansion 200 Dudley reagent 202 Erlenmeyer-Plöchl azlactone synthesis 204 Eschenmoser's salt 206 Eschenmoser-Tanabe fragmentation 208 Eschweiler-Clarke reductive alkylation of amines 210 Evans aldol reaction 212 Favorskii rearrangement 214 Quasi-Favorskii rearrangement 217 Feist-Bénary turan synthesis 218 Ferner carbocyclization 220 Ferner glycal allylic rearrangement 222 Fiesselmann thiophene synthesis 225 Fischer indole synthesis 227 Fischer oxazole synthesis 229 Fleming-Kumada oxidation 231 Tamao-Kumada oxidation 233 Friedel-Crafts reaction 234 Friedel-Crafts acylation reaction 234 Friedel-Crafts alkylation reaction 236 Friedländer quinoline synthesis 238 Fries rearrangement 240 Fukuyama amine synthesis 243 Fukuyama reduction 245 Gabriel synthesis 246 Ing-Manske procedure 249 Gabriel-Colman rearrangement 250 Gassman indole synthesis 251 Gattermann-Koch reaction 253 Gewald aminothiophene synthesis 254 Glaser coupling 257 Eglinton coupling 259 XIV Gomberg-Bachmann reaction 262 Gould-Jacobs reaction 263 Grignard reaction 266 Grob fragmentation 268 Guareschi—Thorpe condensation 270 Hajos- Wiechert reaction 271 Haller-Bauer reaction 273 Hantzsch dihydropyridine synthesis 274 Hantzsch pyrrole synthesis 276 Heck reaction 277 Heteroaryl Heck reaction 280 Hegedus indole synthesis 281 Hell-Volhard-Zelinsky reaction 282 Henry nitroaldol reaction 284 Hinsberg synthesis of thiophene derivatives 286 Hiyama cross-coupling reaction 288 Hofmann rearrangement 290 Hofmann-Löffier-Freytag reaction 292 Horner-Wadsworth—Emmons reaction 294 Houben-Hoesch synthesis 296 Hunsdiecker-Borodin reaction 298 Jacobsen-Katsuki epoxidation 300 Japp—Klingemann hydrazone synthesis 302 Jones oxidation 304 Collins-Sarett oxidation 305 PCC oxidation 306 PDC oxidation 307 Julia-Kocienski olefination 309 Julia—Lythgoe olefination 311 Kahne glycosidation 313 Knoevenagel condensation 315 Knorr pyrazole synthesis 317 Koch-Haafcarbonylation 319 Koenig-Knorr glycosidation 320 Kostanecki reaction 322 Kröhnke pyridine synthesis 323 Kumada cross-coupling reaction 325 Lawesson's reagent 328 Leuckart-Wallach reaction 330 Lossen rearrangement 332 McFadyen—Stevens reduction 334 McMurry coupling 335 Mannich reaction 337 Martin's sulfurane dehydrating reagent 339 Masamune—Roush conditions 341 Meerwein's salt 343 XV Meerwein-Ponndorf-Verley reduction 345 Meisenheimer complex 347 [1,2]-Meisenheimer rearrangement 349 [2,3]-Meisenheimer rearrangement 350 Meyers oxazoline method 351 Meyer-Schuster rearrangement 353 Michael addition 355 Michaelis- Arbuzov phosphonate synthesis 357 Midland reduction 359 Minisci reaction 361 Mislow-Evans rearrangement 363 Mitsunobu reaction 365 Miyaura borylation 368 Moffatt oxidation 370 Morgan-Walls reaction 371 Mori-Ban indole synthesis 373 Mukaiyama aldol reaction 375 Mukaiyama Michael addition 377 Mukaiyama reagent 379 Myers—Saito cyclization 382 Nazarov cyclization 383 Neber rearrangement 385 Nef reaction 387 Negishi cross-coupling reaction 389 Nenitzescu indole synthesis 391 Newman-Kwart reaction 393 Nicholas reaction 395 Nicolaou dehydrogenation 397 Noyori asymmetric hydrogénation 399 Nozaki-Hiyama-Kishi reaction 401 Nysted reagent 403 Oppenauer oxidation 404 Overman rearrangement 406 Paal thiophene synthesis 408 Paal-Knorr turan synthesis 409 Paal-Knorr pyrrole synthesis 411 Parham cyclization 413 Passerini reaction 415 Paterno-Büchi reaction 417 Pauson-Khand reaction 419 Payne rearrangement 421 Pechmann coumarin synthesis 423 Perkin reaction 424 Petasis reaction 426 Petasis reagent 428 Peterson olefination 430 XVI Pictet-Gams isoquinoline synthesis 432 Pictet-Spengler tetrahydroisoquinoline synthesis 434 Pinacol rearrangement 436 Pinner reaction 438 Polonovski reaction 440 Polonovski-Potier rearrangement 442 Pomeranz-Fritsch reaction 444 Schlittler-Müller modification 446 Prévost frans-dihydroxylation 447 Prins reaction 448 Pschorr cyclization 450 Pummerer rearrangement 452 Ramberg-Bäcklund reaction 454 Reformatsky reaction 456 Regitz diazo synthesis 458 Reimer-Tiemann reaction 460 Reissert reaction 461 Reissert indole synthesis 463 Ring-closing metathesis (RCM) 465 Ritter reaction 468 Robinson annulation 470 Robinson-Gabriel synthesis 472 Robinson-Schöpf reaction 474 Rosenmund reduction 476 Rubottom oxidation 478 Rupe rearrangement 480 Saegusa oxidation 482 Sakurai allylation reaction 484 Sandmeyer reaction 486 Schiemann reaction 488 Schmidt rearrangement 490 Schmidt's trichloroacetimidate glycosidation reaction 492 Shapiro reaction 494 Sharpless asymmetric amino hydroxylation 496 Sharpless asymmetric dihydroxylation 499 Sharpless asymmetric epoxidation 502 Sharpless olefin synthesis 505 Simmons-Smith reaction 507 Skraup quinoline synthesis 509 Smiles rearrangement 511 Truce-Smile rearrangement 513 Sommelet reaction 515 Sommelet-Hauser rearrangement 517 Sonogashira reaction 519 Staudinger ketene cycloaddition 521 Staudinger reduction 523 XVII Stetter reaction 525 Still-Gennari phosphorate reaction 527 Stille coupling 529 Stille-Kelly reaction 531 Stobbe condensation 532 Strecker amino acid synthesis 534 Suzuki-Miyaura coupling 536 Swern oxidation 538 Takai reaction 540 Tebbe olefination 542 TEMPO oxidation 544 Thorpe-Ziegler reaction 546 Tsuji-Trost allylation 548 Ugi reaction 551 Ullmann coupling 554 van Leusen oxazole synthesis 556 Vilsmeier-Haack reaction 558 Vinylcyclopropane—cyclopentene rearrangement 560 von Braun reaction 562 Wacker oxidation 564 Wagner-Meerwein rearrangement 566 Weiss-Cook reaction 568 Wharton reaction 570 White reagent 572 Willgerodt-Kindler reaction 576 Wittig reaction 578 Schlosser modification of the Wittig reaction 580 [1,2]-Wittig rearrangement 582 [2,3]-Wittig rearrangement 584 Wohl-Ziegler reaction 586 Wolff rearrangement 588 Wolff-Kishner reduction 590 Woodward cis-dihydroxylation 592 Yamaguchi esterification 594 Zincke reaction 596 Subject Index 599.
Recommended publications
  • Expanding the Scope of Thiophene Based Semiconductors: Perfluoroalkylated Materials and Fused Thienoacenes
    Expanding the Scope of Thiophene Based Semiconductors: Perfluoroalkylated Materials and Fused Thienoacenes Hayden Thompson Black A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry Chapel Hill 2012 Approved By: Dr. Valerie Sheares Ashby Dr. James Cahoon Dr. Carrie Donley Dr. Wei You Dr. Malcolm Forbes ABSTRACT HAYDEN THOMPSON BLACK: Expanding the Scope of Thiophene Based Semiconductors: Perfluoroalkylated Materials and Fused thienoacenes (Under the direction of Valerie Sheares Ashby) Thiophene based semiconductors with new molecular and macromolecular structures were explored for applications in field effect transistors. Perfluoroalkylation was studied both as a means for controlling the self-assembly properties of polythiophenes, as well as modifying the molecular orbital energies of a series of oligothiophenes. End-perfluoroalkylation of poly(3-hexylthiophene) resulted in interesting self-assembly of the polymer into a bilayer vesicle. Similar fluorophilic assembly may be useful for controlling blend morphologies in heterojunction based devices. On the other hand, perfluoroalkylation of small molecule thiophene semiconductors leads to low lying LUMO levels, and can be used to promote electron injection for n-type transistor devices. This strategy was employed in combination with a π-electron deficient benzothiadiazole to afford a new n-type semiconductor with an exceptionally low LUMO. Monoperfluoroalkylated oligothiophenes were also synthesized and studied in field effect transistors for the first time. In addition, two new fused thienoacene compounds were synthesized and their crystal structures were analyzed. The fused compounds showed exceptional π-π stacking and assembled into well defined one-dimensional microcrystals from the vapor phase.
    [Show full text]
  • Thiophene-Based Aldehyde Derivatives for Functionalizable
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Thiophene-based aldehyde derivatives for functionalizable & adhesive semiconducting polymers Emin Istif, Daniele Mantione, Lorenzo Vallan, Georges Hadziioannou, Cyril Brochon, Eric Cloutet, Eleni Pavlopoulou To cite this version: Emin Istif, Daniele Mantione, Lorenzo Vallan, Georges Hadziioannou, Cyril Brochon, et al.. Thiophene-based aldehyde derivatives for functionalizable & adhesive semiconducting polymers. ACS Applied Materials & Interfaces, Washington, D.C. : American Chemical Society, 2020, 10.1021/ac- sami.9b21058. hal-02467037 HAL Id: hal-02467037 https://hal.archives-ouvertes.fr/hal-02467037 Submitted on 4 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thiophene-based aldehyde derivatives for functionalizable & adhesive semiconducting polymers Emin Istif,† Daniele Mantione,†* Lorenzo Vallan,† Georges Hadziioannou,† Cyril Brochon,† Eric Cloutet,†* and Eleni Pavlopoulou†* †Laboratoire de Chimie des Polymères Organiques (LCPO - UMR 5629), Bordeaux INP, Université de Bordeaux, CNRS, 16 Av. Pey-Berland, 33607, Pessac, France. Keywords EDOT-Aldehyde, thiophene-Aldehyde, PEDOT, conductive polymers, adhesion, electrode materials Abstract The pursuit for novelty in the field of (bio)electronics demands for new and better performing (semi)conductive materials.
    [Show full text]
  • House Fly Attractants and Arrestante: Screening of Chemicals Possessing Cyanide, Thiocyanate, Or Isothiocyanate Radicals
    House Fly Attractants and Arrestante: Screening of Chemicals Possessing Cyanide, Thiocyanate, or Isothiocyanate Radicals Agriculture Handbook No. 403 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE Contents Page Methods 1 Results and discussion 3 Thiocyanic acid esters 8 Straight-chain nitriles 10 Propionitrile derivatives 10 Conclusions 24 Summary 25 Literature cited 26 This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. ¿/áepé4áaUÁí^a¡eé —' ■ -"" TMK LABIL Mention of a proprietary product in this publication does not constitute a guarantee or warranty by the U.S. Department of Agriculture over other products not mentioned. Washington, D.C. Issued July 1971 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 25 cents House Fly Attractants and Arrestants: Screening of Chemicals Possessing Cyanide, Thiocyanate, or Isothiocyanate Radicals BY M. S. MAYER, Entomology Research Division, Agricultural Research Service ^ Few chemicals possessing cyanide (-CN), thio- cyanate was slightly attractive to Musca domes- eyanate (-SCN), or isothiocyanate (~NCS) radi- tica, but it was considered to be one of the better cals have been tested as attractants for the house repellents for Phormia regina (Meigen).
    [Show full text]
  • Subject Index
    455 Subject Index Aminohydroxylation, 364 a-Aminoketone, 281 4-Aminophenol, 18 A Aminothiophene, 158 Abnormal Claisen rearrangement, 1 a-Aminothiophenols, 184 Acrolein, 378 Ammonium ylide, 383 2-(Acylamino)-toluenes, 245 Angeli-Rimini hydroxamic acid Acylation, 100, 145, 200 synthesis, 9 Acyl azides, 98 ~-Anomer, 225 Acylium ion, 145, 149, 175, 177 Anomeric center, 211 a-Acyloxycarboxamides, 298 Anomeric effect, 135 a-Acyloxyketones, 17 ANRORC mechanism, 10 a-Acyloxythioethers, 327 Anthracenes, 51 Acyl transfer, 17, 42, 228, 298, 305, Anti-Markovnikov addition, 219 327,345 Amdt-Eistert homologation, 11 AIBN, 22, 23, 415 Aryl-acetylene, 66 Alder ene reaction, 2 Arylation, 253 Alder's endo rule, Ill 0-Aryliminoethers, 67 Aldol condensation, 3, 14, 26, 34, 2-Arylindoles, 38 69, 130, 147, 172, 305, Aryl migration, 31 340,396,412 Autoxidation, 69, 115, 118 Aldosylamine, 8 Auwers reaction, 13 Alkyl migration, 16, 132, 315, 443 Axial, 347 Alkylation, 144, 145 Azalactone, I 00 N-Aikylation, 162 Azides, 125, 330 Alkylidene carbene, 151 Azirine, 6, 7, 281 Allan-Robinson reaction, 4, 228 Azulene, 310 Allene, 119 1t-Allyl complex, 414 B Allylation, 213, 414 Baeyer-Drewson Allylstannane, 213 indigo synthesis, 14 Allylsilanes, 349 Baeyer-Villiger oxidation, 16, 53 Alper carbonylation, 6 Baker-Venkataraman Alpine-borane®, 262 rearrangement, 17 Aluminum phenolate, 149 Balz-Schiemann reaction, 354 Amadori rearrangement, 8 Bamberger rearrangement, 18 Amide acetal, 74 Bamford-Stevens reaction, 19 Amides, 28, 67,276,339, 356 Bargellini reaction, 20 Amidine,
    [Show full text]
  • Heterocyclic Chemistrychemistry
    HeterocyclicHeterocyclic ChemistryChemistry Professor J. Stephen Clark Room C4-04 Email: [email protected] 2011 –2012 1 http://www.chem.gla.ac.uk/staff/stephenc/UndergraduateTeaching.html Recommended Reading • Heterocyclic Chemistry – J. A. Joule, K. Mills and G. F. Smith • Heterocyclic Chemistry (Oxford Primer Series) – T. Gilchrist • Aromatic Heterocyclic Chemistry – D. T. Davies 2 Course Summary Introduction • Definition of terms and classification of heterocycles • Functional group chemistry: imines, enamines, acetals, enols, and sulfur-containing groups Intermediates used for the construction of aromatic heterocycles • Synthesis of aromatic heterocycles • Carbon–heteroatom bond formation and choice of oxidation state • Examples of commonly used strategies for heterocycle synthesis Pyridines • General properties, electronic structure • Synthesis of pyridines • Electrophilic substitution of pyridines • Nucleophilic substitution of pyridines • Metallation of pyridines Pyridine derivatives • Structure and reactivity of oxy-pyridines, alkyl pyridines, pyridinium salts, and pyridine N-oxides Quinolines and isoquinolines • General properties and reactivity compared to pyridine • Electrophilic and nucleophilic substitution quinolines and isoquinolines 3 • General methods used for the synthesis of quinolines and isoquinolines Course Summary (cont) Five-membered aromatic heterocycles • General properties, structure and reactivity of pyrroles, furans and thiophenes • Methods and strategies for the synthesis of five-membered heteroaromatics
    [Show full text]
  • Pyrrole, Thiophene and Furan
    Libyan International Medical University PYRROLE, THIOPHENE AND FURAN Presented by: Halima Boshiha 2958 Retaj ElFerjany 3106 Hana ElbaKuosh 2981 Objectives: 01 02 03 Identify Pyrrole, Explain the Discuss the Furan and physical and medicinal Thiophene chemical importance of properties of pyrrole, furan and Pyrrole, Furan thiophene and Thiophene INTODUCTION Five membered Heterocyclic compounds contain one heteroatom. • The most common heterocycles are those having five membered rings containing heteroatoms of Nitrogen (N), Oxygen(O), Sulphur(S). • They obey Hickel's rule and are aromatic compounds • The six pie electrons are provided from the 4sp2 carbon atoms and the lone pair of electrons of the sp2 heteroatoms. 01 PYRROLE Ø Pyrrole is a nitrogen-containing unsaturated five-membered heterocycle aromatic compound with the formula C4H4NH. It shows aromaticity by delocalization of a lone pair of electrons from nitrogen. Ø The pyrrole derivatives alkaloids are found in plants like Opium, coffee and also found in marine. Ø Pyrrole is found in collagen as proline and hydroxyproline. 02 FURAN Ø Furan, is an oxygen-containing five-membered aromatic heterocyclic compound, with the formula C4H4O Ø The highly electronegative oxygen holds on the electron density tightly. Ø Although it has a lone pair of electrons, these electrons cannot delocalize easily, and so the system is generally considered to be almost non- aromatic or weakly aromatic Ø Furan is produced through thermal degradation of natural food constituents. 03 THIOPHENE Ø Thiophene is a Sulphur-containing five- membered unsaturated heterocycle, with the formula C4H4S Ø Thiophene is considered less aromatic than benzene. Ø The thiophene ring is present in many important pharmaceutical products.
    [Show full text]
  • PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics
    polymers Review Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics Daniele Mantione 1,†, Isabel del Agua 1,2,†, Ana Sanchez-Sanchez 1,2,* and David Mecerreyes 1,3,* 1 Polymat University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain; [email protected] (D.M.); [email protected] (I.d.A.) 2 Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France 3 Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain * Correspondence: [email protected] (A.S.-S.); [email protected] (D.M.); Tel.: +34-943-015-323 (A.S.-S.); +34-943-018-018 (D.M.) † These authors contributed equally. Received: 26 June 2017; Accepted: 8 August 2017; Published: 11 August 2017 Abstract: Poly(3,4-ethylenedioxythiophene)s are the conducting polymers (CP) with the biggest prospects in the field of bioelectronics due to their combination of characteristics (conductivity, stability, transparency and biocompatibility). The gold standard material is the commercially available poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). However, in order to well connect the two fields of biology and electronics, PEDOT:PSS presents some limitations associated with its low (bio)functionality. In this review, we provide an insight into the synthesis and applications of innovative poly(ethylenedioxythiophene)-type materials for bioelectronics. First, we present a detailed analysis of the different synthetic routes to (bio)functional dioxythiophene monomer/polymer derivatives. Second, we focus on the preparation of PEDOT dispersions using different biopolymers and biomolecules as dopants and stabilizers.
    [Show full text]
  • High-Temperature Unimolecular Decomposition Pathways for Thiophene Angayle K
    Article pubs.acs.org/JPCA Modeling Oil Shale Pyrolysis: High-Temperature Unimolecular Decomposition Pathways for Thiophene AnGayle K. Vasiliou,*,† Hui Hu,‡ Thomas W. Cowell,† Jared C. Whitman,† Jessica Porterfield,∥,§ and Carol A. Parish‡ † Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, United States ‡ Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23713, United States § Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States ABSTRACT: The thermal decomposition mechanism of thiophene has been investigated both experimentally and theoretically. Thermal decomposition experiments were done using a 1 mm × 3 cm pulsed silicon carbide microtubular Δ → reactor, C4H4S+ Products. Unlike previous studies these experiments were able to identify the initial thiophene decomposition products. Thiophene was entrained in either Ar, Ne, or He carrier gas, passed through a heated (300−1700 K) SiC microtubular reactor (roughly ≤100 μs residence time), and exited into a vacuum chamber. The resultant molecular beam was probed by photoionization mass spec- troscopy and IR spectroscopy. The pyrolysis mechanisms of thiophene were also investigated with the CBS-QB3 method using UB3LYP/6-311++G(2d,p) optimized geometries. In particular, these electronic structure methods were used to explore pathways for the formation of elemental sulfur as well as for fi the formation of H2S and 1,3-butadiyne. Thiophene was found to undergo unimolecular decomposition by ve pathways: C4H4S → − − (1) S C CH2 + HCCH, (2) CS + HCCCH3, (3) HCS + HCCCH2, (4) H2S + HCC CCH, and (5) S + HCC CH fi CH2. The experimental and theoretical ndings are in excellent agreement.
    [Show full text]
  • (10) Patent No.: US 8140267 B2
    US008140267B2 (12) UnitedO States Patent (10) Patent No.: US 8,140,267 B2 Boyer et al. (45) Date of Patent: Mar. 20, 2012 (54) SYSTEMAND METHOD FOR IDENTIFYING 2. 6. E: S. W et al. SMILARMOLECULES 7,206,7354. WW B2 4/2007 Menezesang et al. 7,260,568 B2 8/2007 Zhang et al. (75) Inventors: Stephen Kane Boyer, San Jose, CA 7.286,978 B2 10/2007 Huang et al. (US); Gregory Breyta, San Jose, CA 7,321,854 B2 1/2008 Sharma et al. (US); Tapas Kanungo, San Jose, CA 7.340,388 B2 3, 2008 Soricut et al. (US); Jeffrey Thomas Kreulen, San 7,346,5077,343,624 B1 3/2008 RihnNatarajan et al. et al. Jose, CA (US); James J. Rhodes, Los T.373.291 B2 5/2008 Garst Gatos, CA (US) 7,398,211 B2 7/2008 Wang 7.421418 B2 9, 2008 Nakano (73) Assignee: International Business Machines 2322 R 239: Stig et al. C orporation,tion, Armonk, NY (US)(US 7,707,206- - w B2 * 4/2010 Encinaakano et al. ................. 707/716 2002/0087508 A1* 7/2002 Hull et al. ......................... 707/1 (*) Notice: Subject to any disclaimer, the term of this 2002.0099536 A1 T, 2002 Sri et al. patent is extended or adjusted under 35 2003. O195890 A1 10, 2003 Oommen U.S.C. 154(b) by 1664 days. 2004/0042667 A1 3/2004 Lee et al. 2004/0044952 A1 3/2004 Jiang et al. 2004.0143574 A1 7/2004 Nakamura et al. (21) Appl. No.: 11/428,147 2004/0176915 A1 9, 2004 Williams et al.
    [Show full text]
  • Towards the Synthesis of Isocoronene
    Department of Chemistry Towards the Synthesis of Isocoronene Iain William Currie This thesis is presented for the Degree of Doctor of Philosophy of Curtin University April 2018 Declaration To the best of my knowledge and belief this thesis contains no material previously published by any other person except where due acknowledgement has been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any other university. Signature: Date: i Abstract The concept of aromaticity and its implications are fundamentally important to a wide range of applied sciences involving organic molecules. Aromaticity arises from the delocalisation of electrons through a cyclic conjugated system known as a conjugated circuit. Monocyclic aromatic compounds possess a single conjugated circuit while polycyclic aromatic hydrocarbons (PAHs) may have numerous potential conjugated circuits. The aromaticity of PAHs is complicated by the presence of multiple conjugated circuits which may have varying contribution to the overall properties depending on several factors such as geometry and topology. Isocoronene 105 is one example of a PAH classified as a non-benzenoid corannulene. Isocoronene is unique among corannulenes since the conjugated circuits are restricted to the peripheral and central rings only. Isocoronene has been used as a model compound for computational studies into aromaticity and may provide the first example of a superaromatic molecule. The synthesis of novel aromatic structures such as isocoronene is essential in providing unambiguous empirical data which can be used to verify and develop computational methods. In addition, the development of new synthetic methodologies towards PAHs is important in the field of organic electronics.
    [Show full text]
  • Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry
    Baran, Richter Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry 5 4 Deprotonation of N–H, Deprotonation of C–H, Deprotonation of Conjugate Acid 3 4 3 4 5 4 3 5 6 6 3 3 4 6 2 2 N 4 4 3 4 3 4 3 3 5 5 2 3 5 4 N HN 5 2 N N 7 2 7 N N 5 2 5 2 7 2 2 1 1 N NH H H 8 1 8 N 6 4 N 5 1 2 6 3 4 N 1 6 3 1 8 N 2-Pyrazoline Pyrazolidine H N 9 1 1 5 N 1 Quinazoline N 7 7 H Cinnoline 1 Pyrrolidine H 2 5 2 5 4 5 4 4 Isoindole 3H-Indole 6 Pyrazole N 3 4 Pyrimidine N pK : 11.3,44 Carbazole N 1 6 6 3 N 3 5 1 a N N 3 5 H 4 7 H pKa: 19.8, 35.9 N N pKa: 1.3 pKa: 19.9 8 3 Pyrrole 1 5 7 2 7 N 2 3 4 3 4 3 4 7 Indole 2 N 6 2 6 2 N N pK : 23.0, 39.5 2 8 1 8 1 N N a 6 pKa: 21.0, 38.1 1 1 2 5 2 5 2 5 6 N N 1 4 Pteridine 4 4 7 Phthalazine 1,2,4-Triazine 1,3,5-Triazine N 1 N 1 N 1 5 3 H N H H 3 5 pK : <0 pK : <0 3 5 Indoline H a a 3-Pyrroline 2H-Pyrrole 2-Pyrroline Indolizine 4 5 4 4 pKa: 4.9 2 6 N N 4 5 6 3 N 6 N 3 5 6 3 N 5 2 N 1 3 7 2 1 4 4 3 4 3 4 3 4 3 3 N 4 4 2 6 5 5 5 Pyrazine 7 2 6 Pyridazine 2 3 5 3 5 N 2 8 N 1 2 2 1 8 N 2 5 O 2 5 pKa: 0.6 H 1 1 N10 9 7 H pKa: 2.3 O 6 6 2 6 2 6 6 S Piperazine 1 O 1 O S 1 1 Quinoxaline 1H-Indazole 7 7 1 1 O1 7 Phenazine Furan Thiophene Benzofuran Isobenzofuran 2H-Pyran 4H-Pyran Benzo[b]thiophene Effects of Substitution on Pyridine Basicity: pKa: 35.6 pKa: 33.0 pKa: 33.2 pKa: 32.4 t 4 Me Bu NH2 NHAc OMe SMe Cl Ph vinyl CN NO2 CH(OH)2 4 8 5 4 9 1 3 2-position 6.0 5.8 6.9 4.1 3.3 3.6 0.7 4.5 4.8 –0.3 –2.6 3.8 6 3 3 5 7 4 8 2 3 5 2 3-position 5.7 5.9 6.1 4.5 4.9 4.4 2.8 4.8 4.8 1.4 0.6 3.8 4 2 6 7 7 3 N2 N 1 4-position
    [Show full text]
  • (Organic) Heteroaromatic Chemistry LECTURES 4 & 5 Pyrroles, Furans
    1 Chemistry II (Organic) Heteroaromatic Chemistry LECTURES 4 & 5 Pyrroles, furans & thiophenes – properties, syntheses & reactivity Alan C. Spivey [email protected] Mar 2012 2 Format & scope of lectures 4 & 5 • Bonding, aromaticity & reactivity of 5-ring heteroaromatics: – cf. cyclopentadienyl anion – pyrroles, furans & thiophenes: • MO and valence bond descriptions • resonance energies • electron densities • Pyrroles: – structure & properties – syntheses – reactivity • Furans: – structure & properties – syntheses – reactivity • Thiophenes: – structure & properties – syntheses – reactivity • Supplementary slides 1-2 – revision of SEAr mechanism Pyrroles, Furans & Thiophenes – Importance Natural products: CO2H ~ 4 PYRROLES FURAN N N HO2C 2+ PYRROLE Mg N N H2N O N H O MeO2C rosefuran porphobilinogen O (component of rose oil) (biosynthetic precursor to chlorophyll tetrapyrrole pigments) O (green leaf pigment) Pharmaceuticals: Cyclopentadienyl anion → pyrrole, furan & thiophene The cyclopentadienyl anion is a C5-symmetric aromatic 5-membered cyclic carbanion: H Na Na NaOEt 4 electron = H Na 6 electron etc. = = diene aromatic H 3 2 H H sp EtOH H sp cyclopentadiene cyclopentadienyl anion Pyrrole, furan & thiophene can be considered as the corresponding aromatic systems where the anionic CH unit has been replaced by the iso-electronic NH, O and S units respectively: N O S H H C C C C C C C N C O C S H H 2 2 2 sp2 hybrid CH sp hybrid NH sp hybrid O sp hybrid S They are no longer C5-symmetric and do not bear a negative charge but they retain 6p electrons and are still aromatic MO Description ↔ Resonance Energies: pyrrole, furan & thiophene The MO diagram for the cyclopentadienyl anion can be generated using the Musulin-Frost method (lecture 1).
    [Show full text]