Effects of Chronic Oxidative Stress on TRPM2 and TRPC3 Channels: Potential Implications for Bipolar Disorder

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Chronic Oxidative Stress on TRPM2 and TRPC3 Channels: Potential Implications for Bipolar Disorder Effects of Chronic Oxidative Stress on TRPM2 and TRPC3 Channels: Potential Implications for Bipolar Disorder by Angela Selina Roedding A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Pharmacology and Toxicology Department University of Toronto © Copyright by Angela Selina Roedding 2013 Effects of Chronic Oxidative Stress on TRPM2 and TRPC3 Channels: Potential Implications for Bipolar Disorder Angela Selina Roedding Doctor of Philosophy Department of Pharmacology and Toxicology University of Toronto 2013 Abstract Intracellular calcium and oxidative stress dyshomeostasis, which can be highly interactive, occur in bipolar disorder (BD), but the pathogenesis of these disturbances is unknown. The transient receptor potential (TRP) melastatin subtype 2 (TRPM2) and canonical subtype 3 (TRPC3) calcium-permeable non-selective ion channels, already implicated in BD, are involved in calcium and oxidative stress signalling. Thus, I sought to determine whether the expression and function of these channels are modulated by oxidative stress exposure in rat cortical neurons, astrocytes, and in human B lymphoblast cell lines (BLCLs), a cell model that reports diagnostically relevant abnormalities in BD. This thesis work demonstrated that TRPC3 expression and function are decreased after chronic, but not acute oxidative stress exposure in both human and rat cell models. TRPM2 expression, on the other hand, was increased after both acute and chronic stressor treatments in rat cortical neurons. In BLCLs, TRPM2-mediated calcium entry was blunted although no ii difference in TRPM2 mRNA expression was detected. Moreover, BLCLs from BD-I patients exhibited greater susceptibility to cell death and a differential sensitivity of TRPM2-mediated calcium influx to acute oxidative stress compared with healthy subjects, further supporting reduced cellular resilience in the pathophysiology of BD-I. I also demonstrated that TRPC3 protein is expressed in human brain from 8 days to 83 years old supporting an ongoing role in the developing and adult human brain. These findings support an important role for TRPM2 and TRPC3 in sensing and responding to oxidative stress, and in transducing oxidative stress signalling to intracellular calcium homeostatic and cellular stress responses, which have been implicated in the pathophysiology of BD. Finally, this work has highlighted an inherent difference in TRPM2 channel functionality in BD type I subjects compared with controls, adding functional evidence to the genetic and differential expression findings implicating TRPM2 dysfunction in BD. iii Acknowledgments The completion of my PhD program would not have been possible without the help and support of numerous people. First and foremost, Dr. Jerry Warsh, I would like to express my utmost gratitude for all of the guidance and instruction you have given me throughout my training. You gave me the opportunity to develop and hone my skills as a scientist under your excellent tutelage. Your mentorship and confidence in my ability enabled me to successfully tackle grant writing, project management, scientific writing, and mentorship of several excellent undergraduate project students. Dr. Peter Li was also instrumental in my training and advised me on elements of study design, acting as a valuable sounding board. I was also fortunate to work with a wonderful group of talented staff and students in the lab. Many thanks to Marty Green for sharing her RT-PCR expertise and her general resourcefulness around the lab; and to Clarissa Pasiliao for all of her help with the neuronal cell cultures and her companionship during the dissection process. I would also like to thank all of the undergraduate project students that helped in the execution of my project, Andrew Gao, Alex Wu, Wynne Au-Yeung, Tiffany Scarcelli, and Lydia Zhou, for their hard work and friendship. I really enjoyed sharing with you my enthusiasm for science and you taught me about how rewarding working as a team can be. I also really enjoyed working alongside Michael Tseng, Takuji Uemura, Steven Tong and Dharshini Ganeshan. Finally, the support of my family and friends has been vital to the successful completion of my research program. The strength and support of my loving husband, Landon Roedding, has allowed me to pursue my interests and given me the strength to continue after the birth of our beautiful daughter. I would also like to thank my wonderful little girl, Grace June Roedding, for her angelic temperament that enabled me to continue and complete my thesis writing after her arrival. The love and support of my families, both Harrison and Roedding, has given me the confidence (and child care) I needed to reach my goals. I am truly lucky to have such a wonderful group of people in my life. iv Table of Contents Acknowledgments .......................................................................................................................... iv Table of Contents ............................................................................................................................ v List of Tables.................................................................................................................................. ix List of Figures ................................................................................................................................. x List of Appendices ........................................................................................................................ xii List of Abbreviations.................................................................................................................... xiii 1 Introduction ................................................................................................................................ 1 1.1 Bipolar Disorder .................................................................................................................. 2 1.2 Evidence of altered cellular resilience in the neuropathology of bipolar disorder ............. 4 1.3 Oxidative stress and mitochondrial dysfunction in bipolar disorder ................................ 10 1.4 Calcium signalling disturbances in bipolar disorder ......................................................... 17 1.5 Transient receptor potential channels................................................................................ 19 1.5.1 TRPC channels ...................................................................................................... 22 1.5.2 TRPM channels ..................................................................................................... 27 1.5.3 TRP channels and oxidative stress ........................................................................ 33 1.6 Cellular models used for the study of bipolar disorder pathophysiology ......................... 36 1.7 Hypotheses and objectives ................................................................................................ 38 2 TRPC3 Protein is Expressed Across the Lifespan in Human Prefrontal Cortex and Cerebellum ............................................................................................................................... 41 2.1 Abstract ............................................................................................................................. 42 2.2 Introduction ....................................................................................................................... 42 2.3 Methods ............................................................................................................................. 44 2.3.1 Subjects ................................................................................................................. 44 v 2.3.2 Preparation of brain samples ................................................................................. 44 2.3.3 SDS-PAGE and Western blotting. ........................................................................ 44 2.3.4 Statistics ................................................................................................................ 45 2.4 Results ............................................................................................................................... 46 2.4.1 Subject demographics ........................................................................................... 46 2.4.2 TRPC3 immunodetection specificity and quantification ...................................... 48 2.4.3 TRPC3 expression in human prefrontal cortex and cerebellum ........................... 48 2.5 Discussion ......................................................................................................................... 52 3 Chronic Oxidative Stress Modulates TRPC3 and TRPM2 Channel Expression and Function in Rat Primary Cortical Neurons: Relevance to the Pathophysiology of Bipolar Disorder ....................................................................................................................... 54 3.1 Abstract ............................................................................................................................. 55 3.2 Introduction ....................................................................................................................... 56 3.3 Methods ............................................................................................................................. 58 3.3.1 Preparation of rat cortical neuron cultures ...........................................................
Recommended publications
  • The Direct and Functional Interaction of Tubulin with Transient Receptor Potential Melastatin 2
    The Direct and Functional Interaction of Tubulin With Transient Receptor Potential Melastatin 2 by Colin Elliott Seepersad A thesis submitted in conformity with the requirements for the degree of Masters of Science Cell & Systems Biology University of Toronto © Copyright by Colin Elliott Seepersad 2011 The Direct and Functional Interaction of Tubulin With Transient Receptor Potential Melastatin 2 Colin Elliott Seepersad Masters of Science Cell & Systems Biology University of Toronto 2011 Abstract Transient Receptor Potential Melastatin 2 (TRPM2) is a widely expressed, non-selective cationic channel with implicated roles in cell death, chemokine production and oxidative stress. This study characterizes a novel interactor of TRPM2. Using fusion proteins comprised of the TRPM2 C-terminus we established that tubulin interacted directly with the predicted C-terminal coiled-coil domain of the channel. In vitro studies revealed increased interaction between tubulin and TRPM2 during LPS-induced macrophage activation and taxol-induced microtubule stabilization. We propose that the stabilization of microtubules in activated macrophages enhances the interaction of tubulin with TRPM2 resulting in the gating and/or localization of the channel resulting in a contribution to increased intracellular calcium and downstream production of chemokines. ii Acknowledgments I would like to thank my supervisor Dr. Michelle Aarts for providing me with the opportunity to pursuit a Master’s of Science Degree at the University of Toronto. Since my days as an undergraduate thesis student, Michelle has provided me with the knowledge, tools and environment to succeed. I am very grateful for the experience and will move forward a more rounded and mature student. Special thanks to my committee members, Dr.
    [Show full text]
  • TRPM2 in the Brain: Role in Health and Disease
    cells Review TRPM2 in the Brain: Role in Health and Disease Giulia Sita ID , Patrizia Hrelia * ID , Agnese Graziosi ID , Gloria Ravegnini and Fabiana Morroni ID Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; [email protected] (G.S.); [email protected] (A.G.); [email protected] (G.R.); [email protected] (F.M.) * Correspondence: [email protected]; Tel.: +39-051-209-1799 Received: 8 June 2018; Accepted: 20 July 2018; Published: 22 July 2018 Abstract: Transient receptor potential (TRP) proteins have been implicated in several cell functions as non-selective cation channels, with about 30 different mammalian TRP channels having been recognized. Among them, TRP-melastatin 2 (TRPM2) is particularly involved in the response to oxidative stress and inflammation, while its activity depends on the presence of intracellular calcium (Ca2+). TRPM2 is involved in several physiological and pathological processes in the brain through the modulation of multiple signaling pathways. The aim of the present review is to provide a brief summary of the current insights of TRPM2 role in health and disease to focalize our attention on future potential neuroprotective strategies. Keywords: TRPM2; brain; aging; neurodegeneration; neurodegenerative disease 1. Introduction Transient receptor potential (TRP) proteins form non-selective cation channels which are involved in several cell functions in activated form. To date, about 30 different mammalian TRP channels have been recognized, which are divided into six subfamilies: TRPA (Ankyrin), TRPC (canonical), TRPM (melastatin), TRPML (mucolipin), TRPP (polycystin) and TRPV (vanilloid) [1]. Most TRP channels have a role in sensory perception in animals and they all share structural similarities [2].
    [Show full text]
  • Therapeutic Potential of TRPM Modulator
    Online Journal of Neurology and Brain Disorders DOI: 10.32474/OJNBD.2020.04.000192 ISSN: 2637-6628 Review Article Therapeutic Potential of TRPM Modulator Nitin Rawat, Hemprabha Tainguriya and Anil Kumar* Pharmacology Department, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, India *Corresponding author: Anil Kumar, Professor of Pharmacology, Former Dean, Faculty of Pharmaceutical Sciences, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, India Received: September 24, 2020 Published: October 06, 2020 Abstract Transient Receptor Potential of the family Melastatin (TRPM) is a group of nonselective cation channel, engaged in various daily skin. Soon after TRPM1 was discovered, another family member was discovered, that includes TRPM2 (channel sensitive to oxidative stressactivities present of the in body. microglial The family’s cells), TRPM3first member (channel (TRPM1) activating was renalcloned homeostasis in 1998 capable that is of activated supressing by thesphingosine), tumour in TRPM4/5melanocytes (Ca of+2 activated sister channel involved in conduction of monovalent cation), TRPM6/7 (chanzymes related to Mg+2 homeostasis), TRPM8 (thermosensitive Ca+2 permeable channel). This review will summarize activation of key structural features mechanism and therapeutic potential of drug modulating TRPM channels. Keywords: Transient Receptor Potential (TRP) Channels; TRPM Modulators; Neurodegenerative Diseases;
    [Show full text]
  • Ion Channels in the Pathogenesis of Endometriosis: a Cutting-Edge Point of View
    International Journal of Molecular Sciences Review Ion Channels in The Pathogenesis of Endometriosis: A Cutting-Edge Point of View 1, 2, 1, Gaetano Riemma y , Antonio Simone Laganà y , Antonio Schiattarella * , Simone Garzon 2 , Luigi Cobellis 1, Raffaele Autiero 1, Federico Licciardi 1, Luigi Della Corte 3 , Marco La Verde 1 and Pasquale De Franciscis 1 1 Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; [email protected] (G.R.); [email protected] (L.C.); raff[email protected] (R.A.); [email protected] (F.L.); [email protected] (M.L.V.); [email protected] (P.D.F.) 2 Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, 21100 Varese, Italy; [email protected] (A.S.L.); [email protected] (S.G.) 3 Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-392-165-3275 Equal contributions (joint first authors). y Received: 30 December 2019; Accepted: 5 February 2020; Published: 7 February 2020 Abstract: Background: Ion channels play a crucial role in many physiological processes. Several subtypes are expressed in the endometrium. Endometriosis is strictly correlated to estrogens and it is evident that expression and functionality of different ion channels are estrogen-dependent, fluctuating between the menstrual phases. However, their relationship with endometriosis is still unclear. Objective: To summarize the available literature data about the role of ion channels in the etiopathogenesis of endometriosis.
    [Show full text]
  • Properties and Therapeutic Potential of Transient Receptor Potential Channels with Putative Roles in Adversity: Focus on TRPC5, TRPM2 and TRPA1
    724 Current Drug Targets, 2011, 12, 724-736 Properties and Therapeutic Potential of Transient Receptor Potential Channels with Putative Roles in Adversity: Focus on TRPC5, TRPM2 and TRPA1 L.H. Jiang, N. Gamper and D.J. Beech* Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK Abstract: Mammals contain 28 genes encoding Transient Receptor Potential (TRP) proteins. The proteins assemble into cationic channels, often with calcium permeability. Important roles in physiology and disease have emerged and so there is interest in whether the channels might be suitable therapeutic drug targets. Here we review selected members of three subfamilies of mammalian TRP channel (TRPC5, TRPM2 and TRPA1) that show relevance to sensing of adversity by cells and biological systems. Summarized are the cellular and tissue distributions, general properties, endogenous modulators, protein partners, cellular and tissue functions, therapeutic potential, and pharmacology. TRPC5 is stimulated by receptor agonists and other factors that include lipids and metal ions; it heteromultimerises with other TRPC proteins and is involved in cell movement and anxiety control. TRPM2 is activated by hydrogen peroxide; it is implicated in stress-related inflammatory, vascular and neurodegenerative conditions. TRPA1 is stimulated by a wide range of irritants including mustard oil and nicotine but also, controversially, noxious cold and mechanical pressure; it is implicated in pain and inflammatory responses, including in the airways. The channels have in common that they show polymodal stimulation, have activities that are enhanced by redox factors, are permeable to calcium, and are facilitated by elevations of intracellular calcium. Developing inhibitors of the channels could lead to new agents for a variety of conditions: for example, suppressing unwanted tissue remodeling, inflammation, pain and anxiety, and addressing problems relating to asthma and stroke.
    [Show full text]
  • Free PDF Download
    European Review for Medical and Pharmacological Sciences 2019; 23: 3088-3095 The effects of TRPM2, TRPM6, TRPM7 and TRPM8 gene expression in hepatic ischemia reperfusion injury T. BILECIK1, F. KARATEKE2, H. ELKAN3, H. GOKCE4 1Department of Surgery, Istinye University, Faculty of Medicine, VM Mersin Medical Park Hospital, Mersin, Turkey 2Department of Surgery, VM Mersin Medical Park Hospital, Mersin, Turkey 3Department of Surgery, Sanlıurfa Training and Research Hospital, Sanliurfa, Turkey 4Department of Pathology, Inonu University, Faculty of Medicine, Malatya, Turkey Abstract. – OBJECTIVE: Mammalian transient Introduction receptor potential melastatin (TRPM) channels are a form of calcium channels and they trans- Ischemia is the lack of oxygen and nutrients port calcium and magnesium ions. TRPM has and the cause of mechanical obstruction in sev- eight subclasses including TRPM1-8. TRPM2, 1 TRPM6, TRPM7, TRPM8 are expressed especial- eral tissues . Hepatic ischemia and reperfusion is ly in the liver cell. Therefore, we aim to investi- a serious complication and cause of cell death in gate the effects of TRPM2, TRPM6, TRPM7, and liver tissue2. The resulting ischemic liver tissue TRPM8 gene expression and histopathologic injury increases free intracellular calcium. Intra- changes after treatment of verapamil in the he- cellular calcium has been defined as an important patic ischemia-reperfusion rat model. secondary molecular messenger ion, suggesting MATERIALS AND METHODS: Animals were randomly assigned to one or the other of the calcium’s effective role in cell injury during isch- following groups including sham (n=8) group, emia-reperfusion, when elevated from normal verapamil (calcium entry blocker) (n=8) group, concentrations. The high calcium concentration I/R group (n=8) and I/R- verapamil (n=8) group.
    [Show full text]
  • The Role of TRP Channels in Pain and Taste Perception
    International Journal of Molecular Sciences Review Taste the Pain: The Role of TRP Channels in Pain and Taste Perception Edwin N. Aroke 1 , Keesha L. Powell-Roach 2 , Rosario B. Jaime-Lara 3 , Markos Tesfaye 3, Abhrarup Roy 3, Pamela Jackson 1 and Paule V. Joseph 3,* 1 School of Nursing, University of Alabama at Birmingham, Birmingham, AL 35294, USA; [email protected] (E.N.A.); [email protected] (P.J.) 2 College of Nursing, University of Florida, Gainesville, FL 32611, USA; keesharoach@ufl.edu 3 Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; [email protected] (R.B.J.-L.); [email protected] (M.T.); [email protected] (A.R.) * Correspondence: [email protected]; Tel.: +1-301-827-5234 Received: 27 July 2020; Accepted: 16 August 2020; Published: 18 August 2020 Abstract: Transient receptor potential (TRP) channels are a superfamily of cation transmembrane proteins that are expressed in many tissues and respond to many sensory stimuli. TRP channels play a role in sensory signaling for taste, thermosensation, mechanosensation, and nociception. Activation of TRP channels (e.g., TRPM5) in taste receptors by food/chemicals (e.g., capsaicin) is essential in the acquisition of nutrients, which fuel metabolism, growth, and development. Pain signals from these nociceptors are essential for harm avoidance. Dysfunctional TRP channels have been associated with neuropathic pain, inflammation, and reduced ability to detect taste stimuli. Humans have long recognized the relationship between taste and pain. However, the mechanisms and relationship among these taste–pain sensorial experiences are not fully understood.
    [Show full text]
  • Transient Receptor Potential Channels As Drug Targets: from the Science of Basic Research to the Art of Medicine
    1521-0081/66/3/676–814$25.00 http://dx.doi.org/10.1124/pr.113.008268 PHARMACOLOGICAL REVIEWS Pharmacol Rev 66:676–814, July 2014 Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: DAVID R. SIBLEY Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine Bernd Nilius and Arpad Szallasi KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.) Abstract. ....................................................................................679 I. Transient Receptor Potential Channels: A Brief Introduction . ...............................679 A. Canonical Transient Receptor Potential Subfamily . .....................................682 B. Vanilloid Transient Receptor Potential Subfamily . .....................................686 C. Melastatin Transient Receptor Potential Subfamily . .....................................696 Downloaded from D. Ankyrin Transient Receptor Potential Subfamily .........................................700 E. Mucolipin Transient Receptor Potential Subfamily . .....................................702 F. Polycystic Transient Receptor Potential Subfamily . .....................................703 II. Transient Receptor Potential Channels: Hereditary Diseases (Transient Receptor Potential Channelopathies). ......................................................704
    [Show full text]
  • Characterization and Optimization of the Novel TRPM2 Antagonist Tatm2nx
    Molecular Pharmacology Fast Forward. Published on November 26, 2019 as DOI: 10.1124/mol.119.117549 This article has not been copyedited and formatted. The final version may differ from this version. MOL Manuscript # 117549 Characterization and optimization of the novel TRPM2 antagonist tatM2NX Cruz-Torres, I.; Backos, D.S.; and Herson, P.S. Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA (I.C.T, P.S.H.) Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA (D.S.B.) Downloaded from Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA (P.S.H.) molpharm.aspetjournals.org Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA (I.C.T, P.S.H.) Corresponding author: Ivelisse Cruz-Torres ([email protected]), Paco S. at ASPET Journals on September 29, 2021 Herson ([email protected]); telephone: 303-724-6628; fax: 303-724-1761 Address: Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA 1 Molecular Pharmacology Fast Forward. Published on November 26, 2019 as DOI: 10.1124/mol.119.117549 This article has not been copyedited and formatted. The final version may differ from this version. MOL Manuscript # 117549 Running title: Characterization of the TRPM2 antagonist tatM2NX Number of text pages: 32 Number of tables: 2 Number of figures: 4 Number of references: 75 Downloaded from Number of words abstract:
    [Show full text]
  • Characterization of Membrane Proteins: from a Gated Plant Aquaporin to Animal Ion Channel Receptors
    Characterization of Membrane Proteins: From a gated plant aquaporin to animal ion channel receptors Survery, Sabeen 2015 Link to publication Citation for published version (APA): Survery, S. (2015). Characterization of Membrane Proteins: From a gated plant aquaporin to animal ion channel receptors. Department of Biochemistry and Structural Biology, Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Printed by Media-Tryck, Lund University 2015 SURVERY SABEEN Characterization of Membrane Proteins - From a gated plant aquaporin to animal ion channel
    [Show full text]
  • The Role of the Aquaporin 5 in the Function of Late Pregnant Rat Uterus: Pharmacological Studies
    University of Szeged Faculty of Pharmacy Department of Pharmacodynamics and Biopharmacy The role of the aquaporin 5 in the function of late pregnant rat uterus: pharmacological studies Ph.D. Thesis Adrienn Csányi Supervisor: Eszter Ducza Ph.D. 2019 Contents Contents ...................................................................................................................................... 1 List of publications ..................................................................................................................... 3 List of abbreviations ................................................................................................................... 5 1 Introduction ........................................................................................................................ 6 1.1 The role of the AQP water channels in the female reproductive system .................... 7 1.2 AQP5 in the pregnant rat uterus ................................................................................ 10 1.3 The effects of sexual hormones on the AQP5 expression ......................................... 11 1.4 Preterm birth, antibiotic treatment and AQP ............................................................. 12 1.5 Transient receptor potential vanilloid 4 and AQP5 channel ...................................... 13 2 Aims ................................................................................................................................. 16 3 Materials and methods ....................................................................................................
    [Show full text]
  • The Role of TRPM2 Channels in Oxidative Stress-Induced Liver Damage
    The role of TRPM2 channels in oxidative stress-induced liver damage Ehsan Kheradpezhouh Discipline of Physiology, School of Medical Sciences University of Adelaide Submitted for the degree of Doctor of Philosophy December 2014 Contents List of Abbreviations ....................................................................................................... i Abstract ........................................................................................................................... v Declaration of Originality ............................................................................................vii Acknowledgements ......................................................................................................... x Chapter 1: Research Background ................................................................................. 1 1.1 Introduction ............................................................................................................ 1 1.2 Oxidative Stress ...................................................................................................... 4 1.2.1 Systems Eliminating Oxidative Compounds ................................................... 5 1.2.2 Cellular and Molecular Targets of Oxidative Stress ....................................... 6 1.2.3 Mechanisms of Oxidative Stress Mediated Cellular Damage ......................... 8 2+ 1.3 Oxidative Damage and Ca Signalling................................................................ 11 1.4 TRP Channels in Oxidative Stress ......................................................................
    [Show full text]