The TRPM2 Ion Channel in Nucleotide-Gated Calcium Signaling

Total Page:16

File Type:pdf, Size:1020Kb

The TRPM2 Ion Channel in Nucleotide-Gated Calcium Signaling The TRPM2 ion channel in nucleotide-gated calcium signaling Den Naturwissenschaftlichen Fakultäten der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades vorgelegt von Ingo Lange aus Erlangen Als Dissertation genehmigt von den Naturwissen- schaftlichen Fakultäten der Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 14. Juli 2008 Vorsitzender der Prüfungskommission: Prof. Dr. Eberhart Bänsch Erstberichterstatter: Prof. Dr. Lars Nitschke Zweitberichterstatter: Prof. Dr. Andrea Fleig 2 3 TABLE OF CONTENT TABLE OF CONTENT....................................................................................................................................... 4 INTRODUCTION TO CALCIUM SIGNALING ........................................................................................... 6 CALCIUM AS A SECOND MESSENGER ................................................................................................................. 6 INFORMATION IS PROCESSED THROUGH CALCIUM–BINDING MOTIFS............................................................... 7 CALCIUM SIGNALING ACROSS THE PLASMA MEMBRANE .................................................................................. 7 CLASSICAL CALCIUM RELEASE CHANNELS ....................................................................................................... 8 INFORMATION THROUGH CALCIUM CAN BE MOBILIZED AND PROCESSED FROM DIFFERENT SOURCES ........... 8 CALCIUM SIGNALING IN THE COMPLEX NETWORK OF CELL SPECIFIC PHYSIOLOGY......................................... 9 INTRODUCTION TO TRP ION CHANNELS ......................................................................................................... 11 TRPM2 IN THE NETWORK OF CALCIUM SIGNALING ....................................................................................... 11 TRP-CHANNELS AND CALCIUM RELEASE........................................................................................................ 13 AIM OF THE THESIS .......................................................................................................................................... 14 MATERIAL........................................................................................................................................................ 15 AGONISTS AND ANTAGONISTS AND PHARMACOLOGICAL INHIBITORS ........................................................... 15 CELL CULTURE AND MEDIA ............................................................................................................................. 15 BUFFERS AND SOLUTIONS................................................................................................................................ 16 ENZYMES ......................................................................................................................................................... 16 CELL SEPARATION REAGENTS AND TOOLS...................................................................................................... 17 ANTIBODIES, BEADS AND STAINING REAGENTS.............................................................................................. 17 TRANSFECTION ................................................................................................................................................ 18 CALCIUM DYES AND CHELATORS .................................................................................................................... 18 ANIMALS.......................................................................................................................................................... 18 EQUIPMENT ...................................................................................................................................................... 18 METHODS.......................................................................................................................................................... 20 CELL CULTURE AND ISOLATION ...................................................................................................................... 20 HEK-293 cells ............................................................................................................................................ 20 INS-1 cells .................................................................................................................................................. 20 Isolation of pancreatic beta cells............................................................................................................... 20 Isolation of human blood-derived neutrophils.......................................................................................... 21 Isolation of human T-lymphocytes............................................................................................................. 21 Isolation of blood-derived monocytes ....................................................................................................... 21 Isolation of murine spleen-derived neutrophils ........................................................................................ 22 Neutrophil isolation from bone marrow (mouse) ..................................................................................... 22 Culture of bone marrow-derived dendritic cells....................................................................................... 22 INS-1 SIRNA EXPERIMENTS ........................................................................................................................... 23 TRPM2 AND ER FLUORESCENCE LABELING IN INS-1 CELLS........................................................................ 23 TRPM2 IMMUNOFLUORESCENCE IN MOUSE NEUTROPHILS AND DENDRITIC CELLS ...................................... 24 ELECTROPHYSIOLOGY AND FLUORESCENCE MEASUREMENTS ....................................................................... 24 Voltage clamp protocols ............................................................................................................................ 24 Fluorescence measurements...................................................................................................................... 25 Fura-2 Ca2+ measurements and perforated patch .................................................................................... 26 Single channel measurements.................................................................................................................... 26 SOLUTIONS....................................................................................................................................................... 27 RESULTS............................................................................................................................................................ 28 OVERVIEW ....................................................................................................................................................... 28 ADP-RIBOSE IS A MULTIMODAL AGONIST FOR PURINERGIC RECEPTORS AND TRPM2 CHANNELS IN THE PLASMA MEMBRANE AND INTRACELLULAR STORES OF BETA CELLS.............................................................. 29 Extracellular ADPR triggers calcium release through P2Y receptors in HEK293 cells........................ 29 Effects of extracellular NAD+ and cADPR in HEK293 cells ................................................................... 30 4 Effect of intracellular ADPR in HEK293 wild-type and TRPM2-expressing cells ................................. 31 INS-1 cells as a model for endogenous TRPM2 ....................................................................................... 33 Extracellular ADPR triggers calcium release through P2Y and adenosine receptors in INS-1 cells.... 33 Effects of extracellular NAD+ and cADPR in INS-1 cells ........................................................................ 34 Effects of intracellular ADPR and pharmacological characterization of stores in INS-1 cells ............. 37 TRPM2 in primary mouse beta cells ......................................................................................................... 40 Extracellular ADPR acts on P2Y receptors.............................................................................................. 40 Intracellular ADPR mediates calcium release through TRPM2.............................................................. 41 cADPR causes calcium release in beta cells............................................................................................. 41 TRPM2 function is limited to calcium release in mouse dendritic cells.................................................. 43 SYNERGISTIC REGULATION OF ENDOGENOUS TRPM2 CHANNELS BY ADENINE DINUCLEOTIDES IN PRIMARY HUMAN NEUTROPHILS...................................................................................................................... 45 Regulation of TRPM2 by intracellular Ca2+ ............................................................................................. 45 Regulation of TRPM2 by cADPR and H2O2.............................................................................................. 50 Regulation of TRPM2 by NAADP ............................................................................................................. 52 TRPM2 IN MOUSE NEUTROPHILS .................................................................................................................... 54 Regulation of TRPM2 by ADPR in wild-type, TRPM2 and CD38 deficient mouse neutrophils............
Recommended publications
  • Effect of Capsaicin and Other Thermo-TRP Agonists on Thermoregulatory Processes in the American Cockroach
    Article Effect of Capsaicin and Other Thermo-TRP Agonists on Thermoregulatory Processes in the American Cockroach Justyna Maliszewska 1,*, Milena Jankowska 2, Hanna Kletkiewicz 1, Maria Stankiewicz 2 and Justyna Rogalska 1 1 Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland; [email protected] (H.K.); [email protected] (J.R.) 2 Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland; [email protected] (M.J.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +48-56611-44-63 Academic Editor: Pin Ju Chueh Received: 5 November 2018; Accepted: 17 December 2018; Published: 18 December 2018 Abstract: Capsaicin is known to activate heat receptor TRPV1 and induce changes in thermoregulatory processes of mammals. However, the mechanism by which capsaicin induces thermoregulatory responses in invertebrates is unknown. Insect thermoreceptors belong to the TRP receptors family, and are known to be activated not only by temperature, but also by other stimuli. In the following study, we evaluated the effects of different ligands that have been shown to activate (allyl isothiocyanate) or inhibit (camphor) heat receptors, as well as, activate (camphor) or inhibit (menthol and thymol) cold receptors in insects. Moreover, we decided to determine the effect of agonist (capsaicin) and antagonist (capsazepine) of mammalian heat receptor on the American cockroach’s thermoregulatory processes. We observed that capsaicin induced the decrease of the head temperature of immobilized cockroaches. Moreover, the examined ligands induced preference for colder environments, when insects were allowed to choose the ambient temperature.
    [Show full text]
  • The Direct and Functional Interaction of Tubulin with Transient Receptor Potential Melastatin 2
    The Direct and Functional Interaction of Tubulin With Transient Receptor Potential Melastatin 2 by Colin Elliott Seepersad A thesis submitted in conformity with the requirements for the degree of Masters of Science Cell & Systems Biology University of Toronto © Copyright by Colin Elliott Seepersad 2011 The Direct and Functional Interaction of Tubulin With Transient Receptor Potential Melastatin 2 Colin Elliott Seepersad Masters of Science Cell & Systems Biology University of Toronto 2011 Abstract Transient Receptor Potential Melastatin 2 (TRPM2) is a widely expressed, non-selective cationic channel with implicated roles in cell death, chemokine production and oxidative stress. This study characterizes a novel interactor of TRPM2. Using fusion proteins comprised of the TRPM2 C-terminus we established that tubulin interacted directly with the predicted C-terminal coiled-coil domain of the channel. In vitro studies revealed increased interaction between tubulin and TRPM2 during LPS-induced macrophage activation and taxol-induced microtubule stabilization. We propose that the stabilization of microtubules in activated macrophages enhances the interaction of tubulin with TRPM2 resulting in the gating and/or localization of the channel resulting in a contribution to increased intracellular calcium and downstream production of chemokines. ii Acknowledgments I would like to thank my supervisor Dr. Michelle Aarts for providing me with the opportunity to pursuit a Master’s of Science Degree at the University of Toronto. Since my days as an undergraduate thesis student, Michelle has provided me with the knowledge, tools and environment to succeed. I am very grateful for the experience and will move forward a more rounded and mature student. Special thanks to my committee members, Dr.
    [Show full text]
  • Cryo-EM Structure of the Polycystic Kidney Disease-Like Channel PKD2L1
    ARTICLE DOI: 10.1038/s41467-018-03606-0 OPEN Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1 Qiang Su1,2,3, Feizhuo Hu1,3,4, Yuxia Liu4,5,6,7, Xiaofei Ge1,2, Changlin Mei8, Shengqiang Yu8, Aiwen Shen8, Qiang Zhou1,3,4,9, Chuangye Yan1,2,3,9, Jianlin Lei 1,2,3, Yanqing Zhang1,2,3,9, Xiaodong Liu2,4,5,6,7 & Tingliang Wang1,3,4,9 PKD2L1, also termed TRPP3 from the TRPP subfamily (polycystic TRP channels), is involved 1234567890():,; in the sour sensation and other pH-dependent processes. PKD2L1 is believed to be a non- selective cation channel that can be regulated by voltage, protons, and calcium. Despite its considerable importance, the molecular mechanisms underlying PKD2L1 regulations are largely unknown. Here, we determine the PKD2L1 atomic structure at 3.38 Å resolution by cryo-electron microscopy, whereby side chains of nearly all residues are assigned. Unlike its ortholog PKD2, the pore helix (PH) and transmembrane segment 6 (S6) of PKD2L1, which are involved in upper and lower-gate opening, adopt an open conformation. Structural comparisons of PKD2L1 with a PKD2-based homologous model indicate that the pore domain dilation is coupled to conformational changes of voltage-sensing domains (VSDs) via a series of π–π interactions, suggesting a potential PKD2L1 gating mechanism. 1 Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China. 2 School of Life Sciences, Tsinghua University, Beijing 100084, China. 3 Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China. 4 School of Medicine, Tsinghua University, Beijing 100084, China.
    [Show full text]
  • TRPM2 in the Brain: Role in Health and Disease
    cells Review TRPM2 in the Brain: Role in Health and Disease Giulia Sita ID , Patrizia Hrelia * ID , Agnese Graziosi ID , Gloria Ravegnini and Fabiana Morroni ID Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; [email protected] (G.S.); [email protected] (A.G.); [email protected] (G.R.); [email protected] (F.M.) * Correspondence: [email protected]; Tel.: +39-051-209-1799 Received: 8 June 2018; Accepted: 20 July 2018; Published: 22 July 2018 Abstract: Transient receptor potential (TRP) proteins have been implicated in several cell functions as non-selective cation channels, with about 30 different mammalian TRP channels having been recognized. Among them, TRP-melastatin 2 (TRPM2) is particularly involved in the response to oxidative stress and inflammation, while its activity depends on the presence of intracellular calcium (Ca2+). TRPM2 is involved in several physiological and pathological processes in the brain through the modulation of multiple signaling pathways. The aim of the present review is to provide a brief summary of the current insights of TRPM2 role in health and disease to focalize our attention on future potential neuroprotective strategies. Keywords: TRPM2; brain; aging; neurodegeneration; neurodegenerative disease 1. Introduction Transient receptor potential (TRP) proteins form non-selective cation channels which are involved in several cell functions in activated form. To date, about 30 different mammalian TRP channels have been recognized, which are divided into six subfamilies: TRPA (Ankyrin), TRPC (canonical), TRPM (melastatin), TRPML (mucolipin), TRPP (polycystin) and TRPV (vanilloid) [1]. Most TRP channels have a role in sensory perception in animals and they all share structural similarities [2].
    [Show full text]
  • Photoswitchable Fatty Acids Enable Optical Control of TRPV1
    ARTICLE Received 18 Nov 2014 | Accepted 8 Apr 2015 | Published 22 May 2015 DOI: 10.1038/ncomms8118 OPEN Photoswitchable fatty acids enable optical control of TRPV1 James Allen Frank1, Mirko Moroni2, Rabih Moshourab2,3, Martin Sumser1, Gary R. Lewin2 & Dirk Trauner1 Fatty acids (FAs) are not only essential components of cellular energy storage and structure, but play crucial roles in signalling. Here we present a toolkit of photoswitchable FA analogues (FAAzos) that incorporate an azobenzene photoswitch along the FA chain. By modifying the FAAzos to resemble capsaicin, we prepare a series of photolipids targeting the Vanilloid Receptor 1 (TRPV1), a non-selective cation channel known for its role in nociception. Several azo-capsaicin derivatives (AzCAs) emerge as photoswitchable agonists of TRPV1 that are relatively inactive in the dark and become active on irradiation with ultraviolet-A light. This effect can be rapidly reversed by irradiation with blue light and permits the robust optical control of dorsal root ganglion neurons and C-fibre nociceptors with precision timing and kinetics not available with any other technique. More generally, we expect that photolipids will find many applications in controlling biological pathways that rely on protein–lipid interactions. 1 Department of Chemistry and Center for Integrated Protein Science, Ludwig Maximilians University Munich, Butenandtstrasse 5–13, Munich 81377, Germany. 2 Molecular Physiology of Somatic Sensation, Max Delbru¨ck Center for Molecular Medicine, Berlin 13125, Germany. 3 Department of Anesthesiology, Campus Charite´ Mitte und Virchow Klinikum, Charite´ Universita¨tsmedizin Berlin, Augustburgerplatz 1, Berlin 13353, Germany. Correspondence and requests for materials should be addressed to D.T.
    [Show full text]
  • Trpa1) Activity by Cdk5
    MODULATION OF TRANSIENT RECEPTOR POTENTIAL CATION CHANNEL, SUBFAMILY A, MEMBER 1 (TRPA1) ACTIVITY BY CDK5 A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Michael A. Sulak December 2011 Dissertation written by Michael A. Sulak B.S., Cleveland State University, 2002 Ph.D., Kent State University, 2011 Approved by _________________, Chair, Doctoral Dissertation Committee Dr. Derek S. Damron _________________, Member, Doctoral Dissertation Committee Dr. Robert V. Dorman _________________, Member, Doctoral Dissertation Committee Dr. Ernest J. Freeman _________________, Member, Doctoral Dissertation Committee Dr. Ian N. Bratz _________________, Graduate Faculty Representative Dr. Bansidhar Datta Accepted by _________________, Director, School of Biomedical Sciences Dr. Robert V. Dorman _________________, Dean, College of Arts and Sciences Dr. John R. D. Stalvey ii TABLE OF CONTENTS LIST OF FIGURES ............................................................................................... iv LIST OF TABLES ............................................................................................... vi DEDICATION ...................................................................................................... vii ACKNOWLEDGEMENTS .................................................................................. viii CHAPTER 1: Introduction .................................................................................. 1 Hypothesis and Project Rationale
    [Show full text]
  • Sensory and Signaling Mechanisms of Bradykinin, Eicosanoids, Platelet-Activating Factor, and Nitric Oxide in Peripheral Nociceptors
    Physiol Rev 92: 1699–1775, 2012 doi:10.1152/physrev.00048.2010 SENSORY AND SIGNALING MECHANISMS OF BRADYKININ, EICOSANOIDS, PLATELET-ACTIVATING FACTOR, AND NITRIC OXIDE IN PERIPHERAL NOCICEPTORS Gábor Peth˝o and Peter W. Reeh Pharmacodynamics Unit, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary; and Institute of Physiology and Pathophysiology, University of Erlangen/Nürnberg, Erlangen, Germany Peth˝o G, Reeh PW. Sensory and Signaling Mechanisms of Bradykinin, Eicosanoids, Platelet-Activating Factor, and Nitric Oxide in Peripheral Nociceptors. Physiol Rev 92: 1699–1775, 2012; doi:10.1152/physrev.00048.2010.—Peripheral mediators can contribute to the development and maintenance of inflammatory and neuropathic pain and its concomitants (hyperalgesia and allodynia) via two mechanisms. Activation Lor excitation by these substances of nociceptive nerve endings or fibers implicates generation of action potentials which then travel to the central nervous system and may induce pain sensation. Sensitization of nociceptors refers to their increased responsiveness to either thermal, mechani- cal, or chemical stimuli that may be translated to corresponding hyperalgesias. This review aims to give an account of the excitatory and sensitizing actions of inflammatory mediators including bradykinin, prostaglandins, thromboxanes, leukotrienes, platelet-activating factor, and nitric oxide on nociceptive primary afferent neurons. Manifestations, receptor molecules, and intracellular signaling mechanisms
    [Show full text]
  • Download File
    STRUCTURAL AND FUNCTIONAL STUDIES OF TRPML1 AND TRPP2 Nicole Marie Benvin Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2017 © 2017 Nicole Marie Benvin All Rights Reserved ABSTRACT Structural and Functional Studies of TRPML1 and TRPP2 Nicole Marie Benvin In recent years, the determination of several high-resolution structures of transient receptor potential (TRP) channels has led to significant progress within this field. The primary focus of this dissertation is to elucidate the structural characterization of TRPML1 and TRPP2. Mutations in TRPML1 cause mucolipidosis type IV (MLIV), a rare neurodegenerative lysosomal storage disorder. We determined the first high-resolution crystal structures of the human TRPML1 I-II linker domain using X-ray crystallography at pH 4.5, pH 6.0, and pH 7.5. These structures revealed a tetramer with a highly electronegative central pore which plays a role in the dual Ca2+/pH regulation of TRPML1. Notably, these physiologically relevant structures of the I-II linker domain harbor three MLIV-causing mutations. Our findings suggest that these pathogenic mutations destabilize not only the tetrameric structure of the I-II linker, but also the overall architecture of full-length TRPML1. In addition, TRPML1 proteins containing MLIV- causing mutations mislocalized in the cell when imaged by confocal fluorescence microscopy. Mutations in TRPP2 cause autosomal dominant polycystic kidney disease (ADPKD). Since novel technological advances in single-particle cryo-electron microscopy have now enabled the determination of high-resolution membrane protein structures, we set out to solve the structure of TRPP2 using this technique.
    [Show full text]
  • The Role of the Mechanotransduction Ion Channel Candidate Nanchung- Inactive in Auditory Transduction in an Insect Ear
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Cellular/Molecular The role of the mechanotransduction ion channel candidate Nanchung- Inactive in auditory transduction in an insect ear. Ben Warren and Tom Matheson University of Leicester, Department of Neuroscience, Psychology and Behaviour, University Road, Leicester, LE1 7RH, UK DOI: 10.1523/JNEUROSCI.2310-17.2018 Received: 15 August 2017 Revised: 19 January 2018 Accepted: 26 January 2018 Published: 14 March 2018 Author contributions: B.W. wrote the first draft of the paper; B.W. edited the paper; B.W. and T.M. designed research; B.W. performed research; B.W. analyzed data; B.W. and T.M. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. This work was supported by a Leverhulme Trust Early Career Fellowship to BW and BBSRC Research Grant BB/L02389X/1 to TM. We would like to thank Ceinwen Tilley and Paul Seear for help teaching molecular biology techniques and Jonathan Shand and Benjamin Hunt for compiling the Schistocerca gregaria transcriptome. We would also like to thank Ruben Gonzalez, Chanida Fung and Anthony Vencatasamy for locust maintenance. We thank the Biomedical Mechanical and Electronic Workshops for construction of custom devices used in this work. We would also like to thank Georgina Fenton, Jonathan McDearmid, Ian Forsythe and an anonymous friend for helpful discussions and comments on the manuscript. Corresponding author: Ben Warren, [email protected] Cite as: J. Neurosci ; 10.1523/JNEUROSCI.2310-17.2018 Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published.
    [Show full text]
  • Therapeutic Potential of TRPM Modulator
    Online Journal of Neurology and Brain Disorders DOI: 10.32474/OJNBD.2020.04.000192 ISSN: 2637-6628 Review Article Therapeutic Potential of TRPM Modulator Nitin Rawat, Hemprabha Tainguriya and Anil Kumar* Pharmacology Department, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, India *Corresponding author: Anil Kumar, Professor of Pharmacology, Former Dean, Faculty of Pharmaceutical Sciences, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, India Received: September 24, 2020 Published: October 06, 2020 Abstract Transient Receptor Potential of the family Melastatin (TRPM) is a group of nonselective cation channel, engaged in various daily skin. Soon after TRPM1 was discovered, another family member was discovered, that includes TRPM2 (channel sensitive to oxidative stressactivities present of the in body. microglial The family’s cells), TRPM3first member (channel (TRPM1) activating was renalcloned homeostasis in 1998 capable that is of activated supressing by thesphingosine), tumour in TRPM4/5melanocytes (Ca of+2 activated sister channel involved in conduction of monovalent cation), TRPM6/7 (chanzymes related to Mg+2 homeostasis), TRPM8 (thermosensitive Ca+2 permeable channel). This review will summarize activation of key structural features mechanism and therapeutic potential of drug modulating TRPM channels. Keywords: Transient Receptor Potential (TRP) Channels; TRPM Modulators; Neurodegenerative Diseases;
    [Show full text]
  • Pleiotropic Pharmacological Actions of Capsazepine, a Synthetic Analogue of Capsaicin, Against Various Cancers and Inflammatory Diseases
    molecules Review Pleiotropic Pharmacological Actions of Capsazepine, a Synthetic Analogue of Capsaicin, against Various Cancers and Inflammatory Diseases Min Hee Yang 1, Sang Hoon Jung 1, Gautam Sethi 2,* and Kwang Seok Ahn 1,3,4,* 1 KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea; [email protected] (M.H.Y.); [email protected] (S.H.J.) 2 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore 3 Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea 4 Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea * Correspondence: [email protected] (G.S.); [email protected] (K.S.A.); Tel.: +65-6516-3267 (G.S.); +82-2-961-2316 (K.S.A.) Academic Editor: Roberto Fabiani Received: 18 February 2019; Accepted: 8 March 2019; Published: 12 March 2019 Abstract: Capsazepine is a synthetic analogue of capsaicin that can function as an antagonist of TRPV1. Capsazepine can exhibit diverse effects on cancer (prostate cancer, breast cancer, colorectal cancer, oral cancer, and osteosarcoma) growth and survival, and can be therapeutically used against other major disorders such as colitis, pancreatitis, malaria, and epilepsy. Capsazepine has been reported to exhibit pleiotropic anti-cancer effects against numerous tumor cell lines. Capsazepine can modulate Janus activated kinase (JAK)/signal transducer and activator of the transcription (STAT) pathway, intracellular Ca2+ concentration, and reactive oxygen species (ROS)-JNK-CCAAT/enhancer-binding protein homologous protein (CHOP) pathways.
    [Show full text]
  • Transient Receptor Potential Canonical (TRPC) Channels As Modulators of Migration and Invasion
    International Journal of Molecular Sciences Review Transient Receptor Potential Canonical (TRPC) Channels as Modulators of Migration and Invasion Muhammad Yasir Asghar 1,2 and Kid Törnquist 1,2,* 1 Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland; yasir.asghar@helsinki.fi 2 Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland * Correspondence: ktornqvi@abo.fi Received: 11 February 2020; Accepted: 26 February 2020; Published: 3 March 2020 Abstract: Calcium (Ca2+) is perhaps the most versatile signaling molecule in cells. Ca2+ regulates a large number of key events in cells, ranging from gene transcription, motility, and contraction, to energy production and channel gating. To accomplish all these different functions, a multitude of channels, pumps, and transporters are necessary. A group of channels participating in these processes is the transient receptor potential (TRP) family of cation channels. These channels are divided into 29 subfamilies, and are differentially expressed in man, rodents, worms, and flies. One of these subfamilies is the transient receptor potential canonical (TRPC) family of channels. This ion channel family comprises of seven isoforms, labeled TRPC1–7. In man, six functional forms are expressed (TRPC1, TRPC3–7), whereas TRPC2 is a pseudogene; thus, not functionally expressed. In this review, we will describe the importance of the TRPC channels and their interacting molecular partners in the etiology of cancer, particularly in regard to regulating migration and invasion. Keywords: TRPC; ion channels; cancer; thyroid; calcium; migration; invasion; angiogenesis 1. Introduction Increasing evidence during the past decade indicates that different ion channels are expressed in several cancers in humans, and regulate a multitude of cellular processes, including migration, invasion and proliferation [1–3].
    [Show full text]