1 Introduction

Total Page:16

File Type:pdf, Size:1020Kb

1 Introduction CONFERENCE SUM1V1ARY B.E.J. Pagel 1 1 NORD/TA, Copenhagen, Denmark. Abstract Some highlights of the conference are noted and commented on, especially abundances and chemical evolution and some problems relating to the overall cosmic abundance of heavy elements. 1 Introduction A previous meeting on dwarf galaxies was held at OHP nearly 5 years ago. At that meeting there were two concluding summaries, one from an observational point of view by Paul Hodge and the other from a theoretical point of view by Donald Lynden-Bell, who ended the conference with a disquisition on anti-tank weapons. Several of the issues discussed at that meeting have also come up at this one, e.g. dark matter, star formation histories, chemical abundances, gas distribution and dynamics, clustering properties and environmental effects. Apart from 5 years' worth of advances in these and other relatively traditional fields , the most striking change at the present meeting is a dramatic advance in the cosmological con­ nection. resulting from the CF and AAT red-shift surveys, HST observations including the Hubble Deep Field and the detailed studies of interveningiabsorption-line systems in front of quasars. Red-shift surveys have shown that irregular star-forming galaxies are the ones having the strongest cosmological evolution at moderate red-shifts, but to what extent these can- be classed as dwarfs is controversial. The maintopics covered at this meetingwere: Statistical properties of local dwarfs, Intrinsic properties reievant to cosmoiogy, Properties at significant iook-back times, ivi odeis and theory and Prospects with new instrumentation. In this brief summary I can only comment briefly on what s�ruck me being some of the highlights. I thank Eva Grebel, Fran�ois Hammer and as Max Pettini for some additional comments and corrections to my spoken version. 481 2 Statistical properties of local dwarfs The local luminosity function turns up at faint magnitudes (Jonathan Loveday and Neil Tren­ tham), and this is confirmedby morphological classification in the HDF (Simon Driver), leaving the possibility that dwarf galaxies make a significant contribution to cosmic matter density, lim­ ited by the resulting contribution to intra-cluster light. The current star formation rate from theKISS H-a survey (John Salzer, Caryl Gronwall) is 0.013 hso M0 yr-1 Mpc-3, 1.7 times higher than the lower limit from the Madrid UCM survey (Jesus Gallego) that has been used as a benchmark in surveys of past SFRs. The new value is of order (1/2)h5l of the average SFR density over the history of the known universe. There could still be upward corrections for selection effects and dust-enshrouded starbursts. H I (Martin Zwaan, Steve Schneider, Lyle Hoffman) tracks visible galaxies very closely, most of it in large spirals, and has a cosmic abundance of about 1/6 of its value at red-shift 3 from DLA systems, consistent with cosmic evolution models like that of Pei & Fall in which the reduction in H I is ascribed to star formation. The H I mass function resembles the galaxy luminosity function. We were treated to some spectacular pictures (Hoffman, Eric Wilcots, Pierre-Alain Due). There are differences between the H I properties of BCGs on the one hand and dI and LSB galaxies on the other. H I envelopes of BCGs are denser and more regular, which makes it seem less likely that dls and LSBs are descendants of BCGs (Liese van Zee, Caroline Simpson, Claude Carignan) and the dark matter and surface brightness distributions are different (Gerhard Meurer). BCGs have bursting star formation,whereas dls have 'gasping' SF, i.e. periods of star formationseparated by quiescent intervals (Monica Tosi). The amount of fading of tidal dwarfs depends on the presence or absence of an old population; less than 50 per cent of tidal dwarfs are still around today (Uta Fritze von Alvensleben, Due). Molecules are present in dwarf galaxies, but CO is not a good tracer (Ulrich Klein, Chris Taylor). 3 Intrinsic properties related to cosmology The IMF appears to be universal with a Salpeter slope above about l.5M0 or so, but somewhat more top-heavy than usually assumed (Claus Leitherer). Claus recommended that, for such purposes as deducing SFRs from UV or emission-line intensites, one should use the Salpeter function with a lower cutoffat 1M0. As noted by Piero Madau and others, this means a lower SFR by mass by about a factor of 2 relative to what is deduced from the widely used lower cutoff at 0.1M0. Daniel Kunth gave a very interesting discussion of Ly-a, which can appear as an emission line, a P Cygni profile or a damped absorption line according to the velocity field, which in turn may depend on the stage of development of superbubbles caused by star formationin an extended H I halo. One of the high points of this meeting was the investigation of star formation histories. Eline Tolstoy gave a superb description of HR diagrams obtained with HST for nearby systems such as Sex A, Peg, GR 8 and Leo A and their interpretation and Eva Grebel gave us also an excellent overview of population boxes in dSph, dE and dl members of the Local Group. Robbie Dohm-Palmer used HST to trace the star formationhistory in space and time over-t he last 600 Myr in Sex A and GR 8 and found star-forming clumps moving back and forth across concentrations in H I. Infra-red and spectral data show that most BCGs and star-forming galaxies have an older underlying stellar population (Georges Comte, Livia Origlia, Regina Schulte-Ladbeck, Armando Gil de Paz), which is of course needed to account for their metallicities if the H II regions are 482 not entirely self-enriched. I Zw 18 can be modelled either with a previous burst 100 to 400 Myr ago (Alessandra Aloisi) or with low-level continuous star formationup to the current burst (Franc;;ois Legrand). An apparent exception is SBS 0335, where there is no evidence for star formation older than 30 Myr (Thuan), but this system is so like I Zw 18 that one wonders. Thuan found zero metallicity in H I, but a similar claim for I Zw 18 has gone away as a result of work by Liese van Zee. So is SBS 0335 unique in having a pristine HIenve lope? Yuri Izotov discussed abundances in BCGs, mainly fromthe Second Byurakan Survey (SBS). His and Thuan's derived primordial helium abundance of about 0.24 is probably basically cor­ rect because previous lower values for I Zw 18 were affected by underlying stellar absorption, as was confirmedat this meeting (Jorge Iglesias/Pepe Vilchez). This removes any conflict with Tytler's 'low' deuterium abundance in the frameworkof Big Bang nucleosynthesis. Izotov re­ ported an 0 /Fe ratio similar to that found in Galactic halo stars, indicating a stellar population that is young relative to SNia lifetimes, maybe of the order of 1 Gyr. This is not unexpected, but one may ask whether it is clear that all the iron in the H II regions is in the gas phase, since iron is depleted in the Orion Nebula. A converse effect has frequently been claimed for the young population of the Magellanic Clouds, but in this case the Fe/O ratio now seems to be close to solar (Bernard Pagel). From an apparent lack of scatter in N/O below 12 + log(O/H) = 7.9, Izotov deduces that primary nitrogen comes from massive stars that also produce oxygen. Francesca Matteucci argued for the same conclusion from one DLA system reported to have N/O > 1. However, we know from other DLA systems that N/O is generally low with a large scatter (Patrick Petitjean). From this I would rather suggest that primary nitrogen comes from intermediate­ mass stars with lifetimes of several hundred Myr, short enough to occupy periods between bursts in BCGs like I Zw 18, but long enough to lead to scatter in the DLA systems if these are very young. Izotov suggested corrections to C/O values reported in the literature leading to constant C / 0 at the lowest metallicites, but the various trends and corrections are the same within substantial error bars. A further interestingaspect of I Zw 18 is the presence of WR stars, discovered by Izotov and Thuan. Dan Schaerer discussed the implications for stellar mass loss rates at different metallicities, concluding that all existing estimates have to be more or less doubled, with implications for chemical yields and the ionization of the intergalactic medium. The metallicity-luminosity relation for irregular galaxies has a dispersion, possibly large (A. Maria Hidalgo Gamez), but there are uncertainties in the data, largely based on 'empirical' methods using strong lines (Grazyna Stasinska). Possibly tidal tail debris dwarfs could be recognized by excess abundance, above the norm, at a given luminosity (Uta Fritze). An important problem in the study of SFR history is the role of dust obscuration, discussed in a very nice presentation by Daniela Calzetti taking account of varying dust nature and geometry. Many starbursts are shrouded in dust and detectable only in the IR (Marc Sauvage), and some quite high values of the extragactic background at submm wavelengths have recently been reported fromDI RBE. Daniela concluded that currently adopted SFRsare underestimated by about a factor of 2. Dark matter continues with us (Taft Armandroff, Andi Burkert, Ky Lo, Gerhard Meurer, Rob Swaters) and the old results are largely confirmed. The new twists are a possible contribu­ tion from H2 (Lo) and the effect of tidal forces on dwarf spheroidals, especially the Sgr dwarf where the evidence for dark matter is greatly weakened (M.A.
Recommended publications
  • Groups of Galaxies in the Nearby Universe Held in Santiago De Chile, 5–9 December 2006
    Report on the Conference on Groups of Galaxies in the Nearby Universe held in Santiago de Chile, 5–9 December 2006 Ivo Saviane, Valentin D. Ivanov, Jura Borissova (ESO) n Bi r 10 For every galaxy in the field or in clusters, pe p there are about three galaxies in groups. ou Therefore, the evolution of most galax- Gr r ies actually happens in groups. The Milky pe Way resides in a group, and groups can be found at high redshift. The current xies 1 generation of 10-m-class telescopes and Gala space facilities allows us to study mem- of bers of nearby groups with exquisite de- tail, and their properties can be corre- –1 Number L < 41.7 Log (erg s ) lated with the global properties of their x L > 41.7 Log (erg s–1) host group. Finally, groups are relevant x for cosmology, since they trace large- scale structures better than clusters, and –22 –20 –18 –16 –14 Absolute Magnitude (M ) the evolution of groups and clusters may B be related. Figure 1: Cumulative B-band luminosity function of Strangely, there are three times fewer pa- 25 GEMS groups of galaxies grouped into X-ray- bright and X-ray-faint categories, fitted with one or pers on groups of galaxies than on clus- two Schechter functions, respectively (Miles et ters of galaxies, as revealed by an ADS al. 2004, MNRAS 355, 785; presented by Raychaud- search. Organising this conference was a hury). Mergers could explain the bimodality of the way to focus the attention of the com- luminosity function of X-ray-faint groups.
    [Show full text]
  • AAS Members Save on Annual Reviews Journals
    AAS Members Save on Annual Reviews Journals Annual Review of Astronomy and Astrophysics #1 JCR® Volume 50 • September 2012 • ISSN: 0066-4146 • ISBN: 978-0-8243-0950-2 • http://astro.annualreviews.org IMPACT FACTOR AAS Member Discounted Price: $62.30 (WORLDWIDE) Regular price: $89.00 (WORLDWIDE) RANKING Co-Editors: Sandra M. Faber, University of California, Santa Cruz and Ewine F. van Dishoeck, Sterrewacht Leiden Associate Editor: John Kormendy, University of Texas, Austin PLANNED TABLE OF CONTENTS AND AUTHORS (SUBJECT TO CHANGE): • Planet-Disk Interactions and Orbital Migration, W. Kley, R.P. Nelson • Adaptive Optics for Astronomy, Richard Davies, Markus Kasper • Pre-Supernova Evolution of Massive Single and Binary Stars, Norbert Langer • Advances in Submillimeter and Far-Infrared Detectors, Jonas Zmuidzinas • Ram-Pressure Stripping of Galaxy Gas, J.H. Van Gorkom • Collisionless Dissipation Processes in Astrophysical Plasma Turbulence, Stuart D. Bale • Relativistic Shocks, Anatoly Spitkovsky • Concensus Cosmology, John E. Carlstrom • Seeing Cosmology Grow, P.J.E. Peebles • Connecting Galactic Star Formation on Global and Local Scales, Robert C. Kennicutt • Solar Magnetic Field, Alan Title • Dynamical Evolution and Resonances of Planetary Systems, Gregory P. Laughlin • Solar Neutrinos, Wick C. Haxton • Formation of Galaxy Clusters, Andrey Kravtsov • Subpopulations in Globular Clusters, Giampaolo Piotto • Galactic Stellar Populations in the Era of Large Surveys, Željko Ivezic • Supermassive Black Holes in the HST Era, John Kormendy • High Redshift Galaxy Evolution, Garth Illingworth • The Formation and Early Evolution of Low-Mass Stars and Brown Dwarfs, • Large-Scale Heliosphere, Ed Stone Kevin L. Luhman • Magnetic Fields in Molecular Clouds, Richard M. Crutcher • The Gaseous Galactic Halo, M. Putman, Joshua E.G.
    [Show full text]
  • Commission H1 Annual Report (2019)
    COMMISSION H1 THE LOCAL UNIVERSE (L’UNIVERS LOCAL) PRESIDENT Dante Minniti VICE-PRESIDENT Grazina Tautvaisiene PAST PRESIDENT Eva K. Grebel SECRETARY Aoki Wako ORGANIZING COMMITTEE Evangelie Athanassoula, John Beckman, Maria-Rosa Cioni, Yasuo Fukui, Eva K. Grebel, Margaret Meixner, Dante Minniti, Grazina Tautvaisiene, Aoki Wako, Gang Zhao ANNUAL SUMMARY REPORT 2019 1. Introduction The IAU Commission H1 on “The Local Universe (L'Univers Local)” is one of the three commissions of Division H, “Interstellar Matter and Local Universe”. This Commission H1 was established in mid-2015, and it was presided by Eva Grebel (Germany) during its first triennial period. IAU Commission H1 presently counts with 331 members. Our Commission focuses on studies of the Milky Way and nearby galaxies, where we can resolve galaxies into stars. A range of observational and theoretical research on the stellar populations, interstellar medium, dark matter of local galaxies, etc. are covered in order to understand galaxy formation, history and evolution. Recent and future photometric, spectroscopic, and astrometric surveys (both ground-based and space- based) contribute to the knowledge revolution that this field is experiencing. Current and forthcoming facilities will yield an even deeper understanding of our local Universe. 2. Activities 2019 This past year 2019 organizing committee members attended several international meetings and workshops worldwide, representing the IAU and giving invited/contributed talks and posters. Among the major developments on the area of Milky Way and Nearby galaxies that occurred during the year 2019, we can mention as examples the data releases and important publications from the following large surveys (in random order, incomplete list): * Astrometry - Continuing research on the Gaia DR2 released on April 2018 yielding a number of publications.
    [Show full text]
  • Discovery of a Dwarf Spheroidal Galaxy Behind the Andromeda Galaxy
    Mirach’s Goblin: Discovery of a dwarf spheroidal galaxy behind the Andromeda galaxy David Martínez-Delgado, Eva Grebel, Behnam Javanmardi, Walter Boschin, Nicolas Longeard, Julio Carballo-Bello, Dmitry Makarov, Michael Beasley, Giuseppe Donatiello, Martha Haynes, et al. To cite this version: David Martínez-Delgado, Eva Grebel, Behnam Javanmardi, Walter Boschin, Nicolas Longeard, et al.. Mirach’s Goblin: Discovery of a dwarf spheroidal galaxy behind the Andromeda galaxy. Astronomy and Astrophysics - A&A, EDP Sciences, 2018, 620, pp.A126. 10.1051/0004-6361/201833302. hal- 03152563 HAL Id: hal-03152563 https://hal.archives-ouvertes.fr/hal-03152563 Submitted on 27 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 620, A126 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833302 & c ESO 2018 Astrophysics Mirach’s Goblin: Discovery of a dwarf spheroidal galaxy behind the Andromeda galaxy David Martínez-Delgado1, Eva K. Grebel1, Behnam Javanmardi2, Walter Boschin3,4,5 , Nicolas Longeard6, Julio A. Carballo-Bello7, Dmitry Makarov8, Michael A. Beasley4,5, Giuseppe Donatiello9, Martha P. Haynes10, Duncan A. Forbes11, and Aaron J. Romanowsky12,13 1 Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr.
    [Show full text]
  • The SPLASH Survey: Internal Kinematics, Chemical Abundances
    Draft version October 29, 2018 Preprint typeset using LATEX style emulateapj v. 2/19/04 THE SPLASH SURVEY: INTERNAL KINEMATICS, CHEMICAL ABUNDANCES, AND MASSES OF THE ANDROMEDA I, II, III, VII, X, AND XIV DSPHS1,2 Jason S. Kalirai3, Rachael L. Beaton4, Marla C. Geha5, Karoline M. Gilbert6,7, Puragra Guhathakurta7, Evan N. Kirby7,8,9, Steven R. Majewski4, James C. Ostheimer4, Richard J. Patterson4, and Joe Wolf10 Draft version October 29, 2018 ABSTRACT We present new Keck/DEIMOS spectroscopic observations of hundreds of individual stars along the sightline to Andromeda’s first three discovered dwarf spheroidal galaxies (dSphs) – And I, II, and III, and leverage recent observations by our team of three additional dSphs, And VII, X, and XIV, as a part of the SPLASH Survey (Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo). Member stars of each dSph are isolated from foreground Milky Way dwarf and M31 field contamination using a variety of photometric and spectroscopic diagnostics. Our final spectroscopic sample of member stars in each dSph, for which we measure accurate radial velocities with a median uncertainty (random plus systematic errors) of 4 – 5 km s−1, includes 80 red giants in And I, 95 in And II, 43 in And III, 18 in And VII, 22 in And X, and 38 in And XIV. The sample of confirmed members in the six dSphs are used to derive each system’s mean radial velocity, intrinsic central velocity dispersion, mean abundance, abundance spread, and dynamical mass. This combined data set presents us with a unique opportunity to perform the first systematic comparison of the global properties (e.g., metallicities, sizes, and dark matter masses) of one-third of Andromeda’s total known dSph population with Milky Way counterparts of the same luminosity.
    [Show full text]
  • Roadmap for Astronomy in Switzerland 2007-2016
    Roadmap for Astronomy in Switzerland 2007– 2016 Cover picture: Marsflash Till Credner, AlltheSky.com Contents 3 Preface The purpose and scope of this document 6 Executive Summary 8 Summary list of the Roadmap Statements, Findings and Recommendations Chapter 1 13 Why is astronomy important today? Chapter 2 20 The broader context of Swiss astrophysics Chapter 3 29 Building on a strong foundation: Swiss astronomy in the past decade Chapter 4 41 The future scientific development of Swiss astrophysics Chapter 5 71 Transforming professional astrophysics education in Switzerland Chapter 6 74 Making science possible: Technology development for astronomy Chapter 7 82 Sharing the excitement: Public education and outreach 86 Concluding Remarks Appendix A 88 Research Networks Appendix B 91 List of acronyms and project names Roadmap for Astronomy 2007-2016 1 A Hubble Space Telescope image of a small region of M27, the Dumbell Nebula, showing small dense knots of gas ejected by the dying star, each containing a few times the mass of the Earth. NASA/ESA Preface The purpose and scope of this document Who was this document prepared by? We are the College of Helvetic Astronomy Profes- sors (CHAPS) which represents the full range of This Roadmap for Astronomy 2007-2016 was pre- astronomical interests within our community, and is pared by the 21 elected Professors in Astrophys- small enough that all members were strongly in- ics at Swiss universities, plus representatives of volved in the production of the Roadmap. The three independent laboratories: IRSOL,
    [Show full text]
  • Sternwarten Und Schutzbauten
    www.vds-astro.de ISSN 1615-0880 I/2016 Nr. 56 Zeitschrift der Vereinigung der Sternfreunde e.V. Schwerpunktthema: Sternwarten und Aktuelle Astrofotografie Irisierende Wolken Simulation von PX Cephei Seite 62 Seite 74 Seite 120 Schutzbauten Editorial 1 Liebe Mitglieder, liebe Sternfreunde, wenn Sie dieses Heft aufblättern, wurde ein Rätsel gelöst. Denn Ende Novem- ber ist der Komet C/2013 US10 (Catalina) für Beobachter auf der Nordhalbkugel in der Morgendämmerung aufgetaucht. Sofort schossen die Spekulationen in die Höhe: Wie hell wird er werden? Wird man den Kometen mit bloßem Auge sehen können? Beschert uns der Himmel einen „Weihnachtskometen“? Jetzt, Unser Titelbild: Mitte Januar, kann man bequem die Prognosen der Kometen-Community ins Der Mai ist gekommen, die Schutz- eigene Auge fassen: „Catalina“ zieht an der Deichsel des Großen Wagens vor- bauten schlagen aus: Ob Schiebe- bei, er ist zirkumpolar und damit die ganze Nacht zu sehen. Zumindest einen dachhütte oder klassische Kuppel – schönen Fernglas-Kometen sollte man dann beobachten können. die Sternwarte im eigenen Garten ist nicht nur für die Beobachtung nützlich, Ganz abseits jeder Spekulation verlief hingegen die 32. VdS-Tagung und sie kann sogar der Gartengestaltung Mitgliederversammlung am 21./22. November 2015. Dank der hervorra- dienen, wie diese Aufnahme von Reiner genden Organisation durch die Sternfreunde Braunschweig-Hondelage und Guse zeigt. Den Bericht zu diesem Bild zahlreicher interessanter Vorträge werden die Teilnehmer der Tagung die- lesen Sie ab Seite 45. se Veranstaltung in sehr guter Erinnerung behalten. Als neuer Vorstand wurden die bisherigen Vorstandsmitglieder im Amt bestätigt. Einen kurzen Blick auf die Tagung wirft der Beitrag auf Seite 5.
    [Show full text]
  • Issue 10 14 August 2015
    THE MILKY WAY Kai‘aleleiaka � Issue 10 � 14 August 2015 Wally Pacholka / AstroPics.com TABLE OF CONTENTS Resolution, Not Revolution, for the Next Triennium ............................................... 2 Hooray for Hands-on Science! ...................................................................................21 A New Tally of Individual IAU Members .................................................................... 3 Don’t Miss CAP 2016 in South America! .................................................................22 IAU Signs Agreements for Five New Coordinating Offices ................................. 5 Inspiring Every Child with Our Wonderful Universe .............................................23 On the ROAD in Armenia .............................................................................................. 6 The Social Network ......................................................................................................24 Astronomy Education and Development ...................................................................7 Exploring the Local Universe .....................................................................................25 Applause for Every Shiny Meteor ............................................................................... 9 The Intergalactic Medium ...........................................................................................26 New IAU Division Steering Committees .................................................................... 9 Hawaiian, Oceanic, and Global
    [Show full text]
  • Dwarf Galaxy Types (≤ 1/100 L ; MV ≥ –18) the Galaxy Content of the Local Group
    [copyrighted background image removed] 27.08.2018 Grebel: Dwarf Galaxies in the Local Group 1 Dwarf Galaxy Types (≤ 1/100 L★; MV ≥ –18) The Galaxy Content of the Local Group ❏ Dwarf elliptical galaxies Certain or probable members: Early-type dwarfs. ≥ 104 galaxies within R ~ 1 Mpc. dEs ❏ Dwarf spheroidal galaxies Gas-deficient and now largely quiescent. 0 dIrrs § 3 spiral galaxies (~ 95% mass). dIrrs spirals ❏ Ultra-compact dwarf galaxies } High-density regions preferred. /dSphs § ≥ 101 dwarf and satellite galaxies ❏ Dwarf spirals / dwarf lenticulars Late-type dwarfs. (typically, MV ≥ –18). ❏ Dwarf irregular galaxies Gas-rich and usually star-forming. § Some satellites have own satellites... ❏ Blue compact dwarf galaxies Low-density regions preferred. } dE dSph dIrr dSphs ❏ Ultra-diffuse galaxies ❏ Tidal dwarf galaxies Pictures not on same scale dE dSph UCD dS0, dS dIrr BCD Gas-deficient, late-type dwarf galaxies: dwarf elliptical (dEs: 3; 1 cE) & dwarf spheroidal galaxies (dSphs: ≥ 83) Gas-rich, early-type dwarf galaxies: dwarf irregular galaxies (dIrrs: 9), transition types (dIrrs/dSphs: 5) 27.08.2018 Grebel: Dwarf Galaxies in the Local Group 2 27.08.2018 Grebel: Dwarf Galaxies in the Local Group 3 New Satellites of Size – Luminosity Relation Morphology- the Milky Way density ❑ New discoveries mainly have mainly very low surface brightnesses. and M31 by Year relation ❑ Note overlap between GC −2 ❑ and dSph locus in L (M ) After Muñoz et al. 2018 of Publication V Blue points: GCs. −2 −2 Mainly thanks to large = 18 mag arcsec 26 mag V imaging surveys in the μ arcsec northern hemisphere 22 mag arcsec Grebel 2017 (esp.
    [Show full text]
  • 7. Dwarf Galaxies
    29.04.2018 I. Satellite Galaxies 1 1. DGs around the Milky Way The Magellanic Clouds: LMC and SMC 2 1 29.04.2018 1.1. The Magellanic System On the southern sky 2 large diffuse and faint patches are optically visible: 3 The Magellanic Clouds Small Magellanic Cloud (SMC); dIrr; dist.: ~ 58 kpc 4 2 29.04.2018 Large Magellanic Cloud (LMC), dIrr; dist.: ~ 58 kpc 5 optical : stars + lumin. gas 1.2. The many faces of the LMC Star-forming Regions: H 6 HI withl21cm 3 29.04.2018 (J. van Loon) 4/29/2018 Cosmic Matter Circuit 8 (J. van Loon) 4/29/2018 Cosmic Matter Circuit 9 4 29.04.2018 (J. van Loon) 4/29/2018 Cosmic Matter Circuit 10 1.3. The LMC, an gas-rich Dwarf Irregular Gakaxy (dIrr) 11 5 29.04.2018 (J. van Loon) 4/29/2018 Cosmic Matter Circuit 12 Panchromatic picture (J. van Loon) 4/29/2018 Cosmic Matter Circuit 13 6 29.04.2018 14 15 7 29.04.2018 The Magellanic Clouds Computer model of a small satellite galaxy orbiting a larger (edge-on) disk galaxy. As the satellite orbits, stars are stripped from the satellite and orbit in the halo of the larger galaxy. (Kathryn Johnston, Wesleyan): see the bending and tumbling of the satellite‘s figure axis! 17 8 29.04.2018 Further evidence for ram pressure: at its front-side LMC gas is compressed leading to molecular cloud formation triggered star formation Star-forming regions: H 18 Hot Supernova Gas: X-ray (J.
    [Show full text]
  • L33 an Internal Second-Parameter Problem in the Sculptor Dwarf Spheroidal Galaxy S. R. Majewski,1 M. H. Siegel, Richard J. Patte
    The Astrophysical Journal, 520:L33±L36, 1999 July 20 q 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. AN INTERNAL SECOND-PARAMETER PROBLEM IN THE SCULPTOR DWARF SPHEROIDAL GALAXY S. R. Majewski,1 M. H. Siegel, Richard J. Patterson, and R. T. Rood Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903-0818; [email protected], [email protected], [email protected], [email protected] Received 1999 March 1; accepted 1999 May 18; published 1999 June 22 ABSTRACT We present BV photometry of the Sculptor dwarf galaxy toV 5 22 . These data give evidence for a bimodality in Sculptor's metallicity distribution based on a discontinuity in the luminosities of horizontal-branch (HB) stars and by the presence of two distinct red giant branch (RGB) bumps. A consistent picture of the evolved stars in Sculptor is given by the presence of (1) a metal-poor population of[Fe/H] » 22.3 with an exclusively blue HB and that corresponds to the blueward side of the Sculptor RGB and the more luminous RGB bump, and (2) a less metal-poor population of[Fe/H] » 21.5 required to explain the less luminous red HB, the red side of the RGB, and a second, less luminous RGB bump. Best ®ts to the HB populations are obtained with enhanced oxygen abundances,[O/Fe] » 10.5 . Variations in the global HB and RGB morphology of Sculptor can be explained by differences in the radial distribution of the two different [Fe/H] populations. The presence of these two populations shows that the Sculptor dwarf galaxy has an internal second-parameter problem.
    [Show full text]
  • Be Stars in and Around Young Clusters in the Magellanic Clouds
    A&A manuscript no. ASTRONOMY (will be inserted by hand later) AND Your thesaurus codes are: 06 (08.05.2; 11.13.1; 11.19.4) ASTROPHYSICS Be stars in and around young clusters in the Magellanic Clouds S. C. Keller, P. R. Wood, and M. S. Bessell Mount Stromlo & Siding Spring Observatories, Private Bag, Weston Creek PO, ACT 2611, Australia email: [email protected], [email protected], [email protected] Received ; accepted Abstract. We present the results of a search for Be stars Be stars, which show strong Hα emission, stand out in in six fields centered on the young clusters NGC 330 and comparison to normal stars. Photometric techniques such NGC 346 in the SMC, and NGC 1818, NGC 1948, NGC as these are very efficient methods of identifying Be stars, 2004 and NGC 2100 in the LMC. Be stars were identi- in particular within dense clusters where spectroscopy is fied by differencing R band and narrow-band Hα CCD difficult. images. Our comparatively large images provide substan- The main purpose of the present study is to provide tial Be star populations both within the clusters and in a sample of Be stars for follow-up spectroscopy and to their surrounding fields. Magnitudes, positions and finding see if there are differences in Be star populations between charts are given for the 224 Be stars found. The fraction different clusters and between clusters and the local field of Be stars to normal B stars within each cluster is found population. The results of the follow-up spectroscopy will to vary significantly although the average ratio is similar be presented in a subsequent paper.
    [Show full text]