7. Dwarf Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

7. Dwarf Galaxies 29.04.2018 I. Satellite Galaxies 1 1. DGs around the Milky Way The Magellanic Clouds: LMC and SMC 2 1 29.04.2018 1.1. The Magellanic System On the southern sky 2 large diffuse and faint patches are optically visible: 3 The Magellanic Clouds Small Magellanic Cloud (SMC); dIrr; dist.: ~ 58 kpc 4 2 29.04.2018 Large Magellanic Cloud (LMC), dIrr; dist.: ~ 58 kpc 5 optical : stars + lumin. gas 1.2. The many faces of the LMC Star-forming Regions: H 6 HI withl21cm 3 29.04.2018 (J. van Loon) 4/29/2018 Cosmic Matter Circuit 8 (J. van Loon) 4/29/2018 Cosmic Matter Circuit 9 4 29.04.2018 (J. van Loon) 4/29/2018 Cosmic Matter Circuit 10 1.3. The LMC, an gas-rich Dwarf Irregular Gakaxy (dIrr) 11 5 29.04.2018 (J. van Loon) 4/29/2018 Cosmic Matter Circuit 12 Panchromatic picture (J. van Loon) 4/29/2018 Cosmic Matter Circuit 13 6 29.04.2018 14 15 7 29.04.2018 The Magellanic Clouds Computer model of a small satellite galaxy orbiting a larger (edge-on) disk galaxy. As the satellite orbits, stars are stripped from the satellite and orbit in the halo of the larger galaxy. (Kathryn Johnston, Wesleyan): see the bending and tumbling of the satellite‘s figure axis! 17 8 29.04.2018 Further evidence for ram pressure: at its front-side LMC gas is compressed leading to molecular cloud formation triggered star formation Star-forming regions: H 18 Hot Supernova Gas: X-ray (J. van Loon) 4/29/2018 Cosmic Matter Circuit 19 9 29.04.2018 Small Magellanic Cloud (SMC); dIrr; dist.: ~ 58 kpc 20 1.4. More distant dIrrs 21 10 29.04.2018 Carina II dIrr 22 23 11 29.04.2018 IC 10, dIrr, Dist.: 4200 kly, Local Group Cloud 24 Leo A in the solar vicinity 26 12 29.04.2018 1.5. Gas-free Dwarf Galaxies: dSphs Fornax dSph D= 138 kpc Mv = -13.5 27 Faint dSphs pure stellar systems, no gas, metal-poor: Z< Z, faint end of dwarf Es, m extremely faint: Mv>-8 , very small: ~ few kpc, close to the MWG Leo I with Regulus = Leo 28 13 29.04.2018 Ursa Minor dSph Leo I: D = 250 kpc 32 14 29.04.2018 1.6. Intrinsic properties of dSphs van den Bergh (2008) dSphs are less Mv = 16.2 – 14.26 log Rh concentrated and flatter than dSphs 33 1.7. Spatial Distribution of MW satellites 34 15 29.04.2018 The MW Satellites 35 36 16 29.04.2018 Marla Geha 38 39 Grebel, 1998 17 29.04.2018 40 41 18 29.04.2018 NGC 147 2MASS 2. The M31 system NGC 205 NGC 185 BVR NGC 221 Star-formation regions in NGC 185 and NGC 205 of similar size as in dIrrs M32 NGC 205 43 19 29.04.2018 And VII And VI 3. Stellar populations 45 20 29.04.2018 46 49 21 29.04.2018 50 22 29.04.2018 23 29.04.2018 The chart above demonstrates the previous conclusions by showing the abundances of alpha elements in dSphs versus solar metallicity. The symbols are as follows: blue triangles, Carina blue triangles plus circles, Leo I red triangles, Sculptor red triangles plus circles, Fornax green triangles, Draco, Ursa Minor, and Sextans from SCS01 black crosses, Glactic disk stars open squares, halo data from McWilliam et al. 1995 light blue stars, UVES data from a study of LMC star clusters of different ages 60 light blue crosses, Galactic globular cluster measurements 24 29.04.2018 4.1. SF timescale from element Assumptions: abundances closed box, constant Yields yi O+Fe from SNeII of massive stars, Fe by SN Ia from WD-WD or WD-RG slow evolution fast gas consumption Effects: The ratio of element abundances from particular precursor stars allow the age dating of their lifetimes and the derivation of the gas consumption. 63 SNeII of massive stars produce a constant ratio [O/Fe]0.5, while Fe increases continuously. After the typical formation timescale of SN Ia Fe is further enhanced independently of the O enrichment. Thus, O/Fe decreases. From the age of the disk, the SN Ia timescale must be of the same order. Tolstoy & Venn, 2003 65 25 29.04.2018 4.2. Radial gradients in [Fe/H] EK et al., ApJ, submitted 67/42 Walker et al. 26 29.04.2018 69 , 2004 70 27 29.04.2018 The metallicity distributions of dwarf galaxies evolve with luminosity. EK et al., ApJ Kirby et al. 2008, ApJ,685 28 29.04.2018 Kirby et al. 2008, ApJ,685 4.3. The Population Box 74 29 29.04.2018 with courtesy by Eva Grebel SF continues also through the re-ion.epoch dIrrs of the MW show stronger and more continuous star formation with an increase of Z. Phoenix is in a stage of morphological transition. 76 30 29.04.2018 77 (2009) A&A 500 31 29.04.2018 4.4. Gas in dSph‘s: almost gas free, but gas infall! Carignan et al. (1988) HI gas outside Sculptor dSph, Welsh et al. (1998) flocculent HVCs gas infall in NGC 205 enhances SF (see also Bouchard et al. 2003, 2006) Satellites with gas Sculptur (Carignan 1996) Leo A Dwarf Galaxies (low masses) can easily expel all(?) their gas into their intergalactic environment. Gas is stripped off by tidal and dynamical drag, by this, transforming dIrrs into dEs and dSphs(?). 80 32 29.04.2018 HI Environment? Carignan et al. (1998) Bouchard et al. (2003) AJ, 126 Gas clouds around Sculptor dSphs from expulsion? Grcevich & Putman, 09, ApJ, 696 82 33 29.04.2018 Gas-poor Dwarf Galaxies in the Local Group Antlia83 DG 5. Detection of the Sagittarius Satellite Galaxy If no bright star-forming regions exist, the stellar component of satellite The Sagittarius Dwarf Galaxy galaxies is hardly detectible84 at D 24 kpc due to their low brightness. 34 29.04.2018 Southwards of the MWG center a sample of stars was detected at a dist. of 24 kpc due to their collective kinematics: SagDIG Dwarf Galaxy 85 86 35 29.04.2018 87 88 36 29.04.2018 Belokurov et al. (2007) ApJ, 658 89 Belokurov et al. (2007) ApJ, 658 90 37 29.04.2018 91 Search for tidal streamers. 92 38 29.04.2018 6. Satellite Accretion 93 Computer model of a small satellite galaxy orbiting a larger (edge-on) disk galaxy. As the satellite orbits, stars are stripped from the satellite and orbit in the halo of the larger galaxy. (Kathryn Johnston): see the bending and tumbling of the satellite‘s figure axis! 94 39 29.04.2018 Satellites on elliptical orbits experience 1) stretching along the trajectory on their approach to perigalacticum and crushing along the orbit towards apogalacticum because of velocity differences between leading anf trailing part, 2) radial stretching due to the tidal force of the mature galaxy, 3) by this a revolving gravitational potential along the orbit (due to tidal torque), 4) an oscillating equipotential (:= tidal radius) 95 that facilitates tidal stripping. 6.1. Tidal Force Bodies that are extended over d and located at distance D in the central gravitational field of any mass M experience a Tidal Force d Ftide GM 3 D This results in a mode-2 deformation in radial direction towards and away from the center of mass. The detection of the leading arm confirms the tidal stripping effect. The stripped gas approachs the MW disk. 96 40 29.04.2018 7. The Magellanic Stream Gas bridges between the Magellanic Clouds are formed (Magellanic Stream), showing that this complex is tidally disrupted by the Milky Way. Stripped-off gas drops down to the Galactic disk and feeds the MWG. [Dwarf satellite galaxies are swallowed by larger parent galaxies (see next 97 Chapt.)] 98 41 29.04.2018 The tidal stream of Sgr I is detected from enhanced star density. 99 101 42 29.04.2018 The tidal stream of Sgr DG is detected from enhanced star density. 102 8. The Canis Major Satellite Galaxy Canis Major DG discovered recently: 17/11/03, close to the galactic plane at 7.5 kpc distance 103 43 29.04.2018 The Canis Major tidal Stream 104 8.2. Tidal Streams Recent sensitive observations of galaxy halos have revealed tidal streamers of satellite galaxies under disruption in a few of them. In M31 HVCs accumulate along the tidal path. 105 44 29.04.2018 Tidal streams around NGC 5907 106 Search for tidal streamers. 107 45 29.04.2018 The Aquarius stellar stream CDM models of Galaxy Stellar Halos Cosmological models based on CDM predict many accretion events through lifetime of a big galaxy. Infalling satellites are torn apart by tidal forces. 109 46 29.04.2018 8.3. Are halo stars witnesses of accretion? The accretion of satellite galaxies by host galaxies like the Milky Way are observed by 1. Satellite infall 2. Tidally disrupted stellar streams Most halo stars do not agree with Z of the present-day dSphs, but some could be the remnants of accretion. 110 Tolstoy & Venn, 2004 Koch (2009) Rev. Mod. Astron. Conclusion: dSph stars do not match the MW halo stars!! 47 29.04.2018 Tolstoy et al. (2009) ARAA At low Z dSphs coincide with halo star abundance ratios Tolstoy & Venn, 2004 114 48 29.04.2018 8.4. Gas stripping Ram-pressure stripping by the ram-pressure stripping 2 motion through hot halo gas if Pram = IGM·v rel > P0(r) 116 49 29.04.2018 Gas displacement by tidal and ram-pressure effects Carignan 1999 HI gas displaced of Phoenix Welsh et al.
Recommended publications
  • Metallicity Relation in the Magellanic Clouds Clusters,,
    A&A 554, A16 (2013) Astronomy DOI: 10.1051/0004-6361/201220926 & c ESO 2013 Astrophysics Age – metallicity relation in the Magellanic Clouds clusters,, E. Livanou1, A. Dapergolas2,M.Kontizas1,B.Nordström3, E. Kontizas2,J.Andersen3,5, B. Dirsch4, and A. Karampelas1 1 Section of Astrophysics Astronomy & Mechanics, Department of Physics, University of Athens, 15783 Athens, Greece e-mail: [email protected] 2 Institute of Astronomy and Astrophysics, National Observatory of Athens, PO Box 20048, 11810 Athens, Greece 3 Niels Bohr Institute Copenhagen University, Astronomical Observatory, Juliane Maries Vej 30, 2100 Copenhagen, Denmark 4 Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, B1900 FWA La Plata Buenos Aires, Argentina 5 Nordic Optical Telescope, Apartado 474, 38700 Santa Cruz de La Palma, Spain Received 14 December 2012 / Accepted 2 March 2013 ABSTRACT Aims. We study small open star clusters, using Strömgren photometry to investigate a possible dependence between age and metallicity in the Magellanic Clouds (MCs). Our goals are to trace evidence of an age metallicity relation (AMR) and correlate it with the mutual interactions of the two MCs and to correlate the AMR with the spatial distribution of the clusters. In the Large Magellanic Cloud (LMC), the majority of the selected clusters are young (up to 1 Gyr), and we search for an AMR at this epoch, which has not been much studied. Methods. We report results for 15 LMC and 8 Small Magellanic Cloud (SMC) clusters, scattered all over the area of these galaxies, to cover a wide spatial distribution and metallicity range. The selected LMC clusters were observed with the 1.54 m Danish Telescope in Chile, using the Danish Faint Object Spectrograph and Camera (DFOSC) with a single 2k × 2k CCD.
    [Show full text]
  • Distribution of Phantom Dark Matter in Dwarf Spheroidals Alistair O
    A&A 640, A26 (2020) Astronomy https://doi.org/10.1051/0004-6361/202037634 & c ESO 2020 Astrophysics Distribution of phantom dark matter in dwarf spheroidals Alistair O. Hodson1,2, Antonaldo Diaferio1,2, and Luisa Ostorero1,2 1 Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 10125 Torino, Italy 2 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy e-mail: [email protected],[email protected] Received 31 January 2020 / Accepted 25 May 2020 ABSTRACT We derive the distribution of the phantom dark matter in the eight classical dwarf galaxies surrounding the Milky Way, under the assumption that modified Newtonian dynamics (MOND) is the correct theory of gravity. According to their observed shape, we model the dwarfs as axisymmetric systems, rather than spherical systems, as usually assumed. In addition, as required by the assumption of the MOND framework, we realistically include the external gravitational field of the Milky Way and of the large-scale structure beyond the Local Group. For the dwarfs where the external field dominates over the internal gravitational field, the phantom dark matter has, from the star distribution, an offset of ∼0:1−0:2 kpc, depending on the mass-to-light ratio adopted. This offset is a substantial fraction of the dwarf half-mass radius. For Sculptor and Fornax, where the internal and external gravitational fields are comparable, the phantom dark matter distribution appears disturbed with spikes at the locations where the two fields cancel each other; these features have little connection with the distribution of the stars within the dwarfs.
    [Show full text]
  • Searching for Diffuse Light in the M96 Group
    Draft version June 30, 2016 Preprint typeset using LATEX style emulateapj v. 5/2/11 SEARCHING FOR DIFFUSE LIGHT IN THE M96 GALAXY GROUP Aaron E. Watkins1, J. Christopher Mihos1,Paul Harding1,John J. Feldmeier2 Draft version June 30, 2016 ABSTRACT We present deep, wide-field imaging of the M96 galaxy group (also known as the Leo I Group). Down to surface brightness limits of µB = 30:1 and µV = 29:5, we find no diffuse, large-scale optical counterpart to the “Leo Ring”, an extended HI ring surrounding the central elliptical M105 (NGC 3379). However, we do find a number of extremely low surface-brightness (µB & 29) small-scale streamlike features, possibly tidal in origin, two of which may be associated with the Ring. In addition we present detailed surface photometry of each of the group’s most massive members – M105, NGC 3384, M96 (NGC 3368), and M95 (NGC 3351) – out to large radius and low surface brightness, where we search for signatures of interaction and accretion events. We find that the outer isophotes of both M105 and M95 appear almost completely undisturbed, in contrast to NGC 3384 which shows a system of diffuse shells indicative of a recent minor merger. We also find photometric evidence that M96 is accreting gas from the HI ring, in agreement with HI data. In general, however, interaction signatures in the M96 Group are extremely subtle for a group environment, and provide some tension with interaction scenarios for the formation of the Leo HI Ring. The lack of a significant component of diffuse intragroup starlight in the M96 Group is consistent with its status as a loose galaxy group in which encounters are relatively mild and infrequent.
    [Show full text]
  • Is There Tension Between Observed Small Scale Structure and Cold Dark Matter?
    Is there tension between observed small scale structure and cold dark matter? Louis Strigari Stanford University Cosmic Frontier 2013 March 8, 2013 Predictions of the standard Cold Dark Matter model 26 3 1 1. Density profiles rise towards the centersσannv 3of 10galaxies− cm s− (1) h i' ⇥ ⇢ Universal for all halo masses ⇢(r)= s (2) (r/r )(1 + r/r )2 Navarro-Frenk-White (NFW) model s s 2. Abundance of ‘sub-structure’ (sub-halos) in galaxies Sub-halos comprise few percent of total halo mass Most of mass contained in highest- mass sub-halos Subhalo Mass Function Mass[Solar mass] 1 Problems with the standard Cold Dark Matter model 1. Density of dark matter halos: Faint, dark matter-dominated galaxies appear less dense that predicted in simulations General arguments: Kleyna et al. MNRAS 2003, 2004;Goerdt et al. APJ2006; de Blok et al. AJ 2008 Dwarf spheroidals: Gilmore et al. APJ 2007; Walker & Penarrubia et al. APJ 2011; Angello & Evans APJ 2012 2. ‘Missing satellites problem’: Simulations have more dark matter subhalos than there are observed dwarf satellite galaxies Earilest papers: Kauffmann et al. 1993; Klypin et al. 1999; Moore et al. 1999 Solutions to the issues in Cold Dark Matter 1. The theory is wrong i) Not enough physics in theory/simulations (Talks yesterday by M. Boylan-Kolchin, M. Kuhlen) [Wadepuhl & Springel MNRAS 2011; Parry et al. MRNAS 2011; Pontzen & Governato MRNAS 2012; Brooks et al. ApJ 2012] ii) Cosmology/dark matter is wrong (Talk yesterday by A. Peter) 2. The data is wrong i) Kinematics of dwarf spheroidals (dSphs) are more difficult than assumed ii) Counting satellites a) Many more faint satellites around the Milky Way b) Milky Way is an oddball [Liu et al.
    [Show full text]
  • The Hubble Space Telescope Proper Motion Collaboration HSTPROMO
    HSTPROMO The HST Proper Motion Collaboration Dark Matter in the Local Group Roeland van der Marel (STScI) Stellar Dynamics • Many reasons to understand the dynamics of stars, clusters, and galaxies in the nearby Universe • Formation: The dynamics contains an imprint of initial conditions • Evolution: The dynamics reflects subsequent (secular) evolution • Structure: dynamics and structure are connected • Mass: Tied to the dynamics through gravity è critical for studies of dark matter 2 Line-of-Sight (LOS) Velocities • Almost all observational knowledge of stellar dynamics derives from LOS velocities • Requires spectroscopy – Time consuming – Limited numbers of objects – Brightness limits • Yields only 1 component of motion – Limited insight from 1D information 2 – 3D velocities needed for mass modeling: M = σ 3D Rgrav / G • Many assumptions/unknowns in LOS velocity modeling 3 Proper Motions (PMs) • PMs provide much added information, either by themselves (2D) or combined with LOS data (3D) • Characteristic velocity accuracy necessary – 1 km/s at 7 kpc (globular cluster dynamics) – 10 km/s at 70 kpc (Milky Way halo/satellite dynamics) – 100 km/s at 700 kpc (Local Group dynamics) – 0.03c at 70 Mpc (AGN jet dynamics) • Corresponding PM accuracy – 30 μas / yr (~ speed of human hair growth at Moon distance) • Observations – Ground-based: NO – VLBI: LIMITED (some water masers) – GAIA: FUTURE (but not crowded or faint) – HST: YES (0.006 HST ACS/WFC pixels in 10 yr) 4 Proper Motions with Hubble • Key Characteristics: – High spatial resolution – Low sky background – Exquisite telescope stability – Long time baselines – Large Archive – Many background galaxies in any moderately deep image • Advantages: – Depth: Astrometry of faint sources – Multiplexing: Many sources per field (N = 102 –106, Δ~ 1/√N) 5 HSTPROMO: The Hubble Space Telescope Proper Motion Collaboration (http://www.stsci.edu/~marel/hstpromo.html) • Set of many HST investigations aimed at improving our dynamical understanding of stars, clusters, and galaxies in the nearby Universe through PMs.
    [Show full text]
  • Stars and Galaxies
    Stars and Galaxies STUDENT PAGE Se e i n g i n to t h e Pa S t A galaxy is a gravitationally bound system of stars, gas, and dust. Gal- We can’t travel into the past, but we axies range in diameter from a few thousand to a few hundred thou- can get a glimpse of it. Every sand light-years. Each galaxy contains billions (10 9) or trillions (1012) time we look at the Moon, for of stars. In this activity, you will apply concepts of scale to grasp the example, we see it as it was a distances between stars and galaxies. You will use this understanding little more than a second ago. to elaborate on the question, Do galaxies collide? That’s because sunlight reflected from the Moon’s surface takes a little more EX P LORE than a second to reach Earth. We see On a clear, dark night, you can see hundreds of bright stars. The next table the Sun as it looked about eight minutes shows some of the brightest stars with their diameters and distances from ago, and the other stars as they were a the Sun. Use a calculator to determine the scaled distance to each star few years to a few centuries ago. (how many times you could fit the star between itself and the Sun). Hint: And then there’s M31, the Androm- you first need to convert light-years and solar diameters into meters. One eda galaxy — the most distant object light-year equals 9.46 x 1015 meters, and the Sun’s diameter is 1.4 x 109 that’s readily visible to human eyes.
    [Show full text]
  • Calendar of Roman Events
    Introduction Steve Worboys and I began this calendar in 1980 or 1981 when we discovered that the exact dates of many events survive from Roman antiquity, the most famous being the ides of March murder of Caesar. Flipping through a few books on Roman history revealed a handful of dates, and we believed that to fill every day of the year would certainly be impossible. From 1981 until 1989 I kept the calendar, adding dates as I ran across them. In 1989 I typed the list into the computer and we began again to plunder books and journals for dates, this time recording sources. Since then I have worked and reworked the Calendar, revising old entries and adding many, many more. The Roman Calendar The calendar was reformed twice, once by Caesar in 46 BC and later by Augustus in 8 BC. Each of these reforms is described in A. K. Michels’ book The Calendar of the Roman Republic. In an ordinary pre-Julian year, the number of days in each month was as follows: 29 January 31 May 29 September 28 February 29 June 31 October 31 March 31 Quintilis (July) 29 November 29 April 29 Sextilis (August) 29 December. The Romans did not number the days of the months consecutively. They reckoned backwards from three fixed points: The kalends, the nones, and the ides. The kalends is the first day of the month. For months with 31 days the nones fall on the 7th and the ides the 15th. For other months the nones fall on the 5th and the ides on the 13th.
    [Show full text]
  • NGC 602: Taken Under the “Wing” of the Small Magellanic Cloud
    National Aeronautics and Space Administration NGC 602 www.nasa.gov NGC 602: Taken Under the “Wing” of the Small Magellanic Cloud The Small Magellanic Cloud (SMC) is one of the closest galaxies to the Milky Way. In this composite image the Chandra data is shown in purple, optical data from Hubble is shown in red, green and blue and infrared data from Spitzer is shown in red. Chandra observations of the SMC have resulted in the first detection of X-ray emission from young stars with masses similar to our Sun outside our Milky Way galaxy. The Small Magellanic Cloud (SMC) is one of the Milky Way’s region known as NGC 602, which contains a collection of at least closest galactic neighbors. Even though it is a small, or so-called three star clusters. One of them, NGC 602a, is similar in age, dwarf galaxy, the SMC is so bright that it is visible to the unaided mass, and size to the famous Orion Nebula Cluster. Researchers eye from the Southern Hemisphere and near the equator. have studied NGC 602a to see if young stars—that is, those only a few million years old—have different properties when they have Modern astronomers are also interested in studying the SMC low levels of metals, like the ones found in NGC 602a. (and its cousin, the Large Magellanic Cloud), but for very different reasons. The SMC is one of the Milky Way’s closest galactic Using Chandra, astronomers discovered extended X-ray emission, neighbors. Because the SMC is so close and bright, it offers an from the two most densely populated regions in NGC 602a.
    [Show full text]
  • The Beginners Guide to Astrology AQUARIUS JAN
    WHAT’S YOUR SIGN? the beginners guide to astrology AQUARIUS JAN. 20th - FEB. 18th THE WATER BEARER ften simple and unassuming, the Aquarian goes about accomplishing goals in a quiet, often unorthodox ways. Although their methods may be unorth- Oodox, the results for achievement are surprisingly effective. Aquarian’s will take up any cause, and are humanitarians of the zodiac. They are honest, loyal and highly intelligent. They are also easy going and make natural friendships. If not kept in check, the Aquarian can be prone to sloth and laziness. However, they know this about themselves, and try their best to motivate themselves to action. They are also prone to philosophical thoughts, and are often quite artistic and poetic. KNOWN AS: The Truth Seeker RULING PLANET(S): Uranus, Saturn QUALITY: Fixed ELEMENT: Air MOST COMPATIBILE: Gemini, Libra CONSTELLATION: Aquarius STONE(S): Garnet, Silver PISCES FEB. 19th - MAR. 20th THE FISH lso unassuming, the Pisces zodiac signs and meanings deal with acquiring vast amounts of knowledge, but you would never know it. They keep an Aextremely low profile compared to others in the zodiac. They are honest, unselfish, trustworthy and often have quiet dispositions. They can be over- cautious and sometimes gullible. These qualities can cause the Pisces to be taken advantage of, which is unfortunate as this sign is beautifully gentle, and generous. In the end, however, the Pisces is often the victor of ill cir- cumstance because of his/her intense determination. They become passionately devoted to a cause - particularly if they are championing for friends or family. KNOWN AS: The Poet RULING PLANET(S): Neptune and Jupiter QUALITY: Mutable ELEMENT: Water MOST COMPATIBILE: Gemini, Virgo, Saggitarius CONSTELLATION: Pisces STONE(S): Amethyst, Sugelite, Fluorite 2 ARIES MAR.
    [Show full text]
  • Hubble Space Telescope Observations of the Local Group
    THE ASTROPHYSICAL JOURNAL, 514:665È674, 1999 April 1 ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. HUBBL E SPACE T EL ESCOPE OBSERVATIONS OF THE LOCAL GROUP DWARF GALAXY LEO I CARME GALLART,1 WENDY L. FREEDMAN,1 MARIO MATEO,2 CESARE CHIOSI,3 IAN B. THOMPSON,1 ANTONIO APARICIO,4 GIANPAOLO BERTELLI,3,5 PAUL W. HODGE,6 MYUNG G. LEE,7 EDWARD W. OLSZEWSKI,8 ABHIJIT SAHA,9 PETER B. STETSON,10 AND NICHOLAS B. SUNTZEFF11 Received 1998 March 19; accepted 1998 November 6 ABSTRACT We present deep HST F555W (V ) and F814W (I) observations of a central Ðeld in the Local Group dwarf spheroidal (dSph) galaxy Leo I. The resulting color-magnitude diagram (CMD) reaches I ^ 26 and reveals the oldest ^10È15 Gyr old turno†s. Nevertheless, a horizontal branch is not obvious in the CMD. Given the low metallicity of the galaxy, this likely indicates that the Ðrst substantial star forma- tion in the galaxy may have been somehow delayed in Leo I in comparison with the other dSph satel- lites of the Milky Way. The subgiant region is well and uniformly populated from the oldest turno†s up to the 1 Gyr old turno†, indicating that star formation has proceeded in a continuous way, with possible variations in intensity but no big gaps between successive bursts, over the galaxyÏs lifetime. The structure of the red clump of core He-burning stars is consistent with the large amount of intermediate-age popu- lation inferred from the main sequence and the subgiant region.
    [Show full text]
  • Large Magellanic Cloud, One of Our Busy Galactic Neighbors
    The Large Magellanic Cloud, One of Our Busy Galactic Neighbors www.nasa.gov Our Busy Galactic Neighbors also contain fewer metals or elements heavier than hydrogen and helium. Such an environment is thought to slow the growth The cold dust that builds blazing stars is revealed in this image of stars. Star formation in the universe peaked around 10 billion that combines infrared observations from the European Space years ago, even though galaxies contained lesser abundances Agency’s Herschel Space Observatory and NASA’s Spitzer of metallic dust. Previously, astronomers only had a general Space Telescope. The image maps the dust in the galaxy known sense of the rate of star formation in the Magellanic Clouds, as the Large Magellanic Cloud, which, with the Small Magellanic but the new images enable them to study the process in more Cloud, are the two closest sizable neighbors to our own Milky detail. Way Galaxy. Herschel is a European The Large Magellanic Cloud looks like a fiery, circular explosion Space Agency in the combined Herschel–Spitzer infrared data. Ribbons of dust cornerstone mission, ripple through the galaxy, with significant fields of star formation with science instruments noticeable in the center, center-left and top right. The brightest provided by consortia center-left region is called 30 Doradus, or the Tarantula Nebula, of European institutes for its appearance in visible light. and with important participation by NASA. NASA’s Herschel Project Office is based at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. JPL contributed mission-enabling technology for two of Herschel’s three science instruments.
    [Show full text]
  • Groups of Galaxies in the Nearby Universe Held in Santiago De Chile, 5–9 December 2006
    Report on the Conference on Groups of Galaxies in the Nearby Universe held in Santiago de Chile, 5–9 December 2006 Ivo Saviane, Valentin D. Ivanov, Jura Borissova (ESO) n Bi r 10 For every galaxy in the field or in clusters, pe p there are about three galaxies in groups. ou Therefore, the evolution of most galax- Gr r ies actually happens in groups. The Milky pe Way resides in a group, and groups can be found at high redshift. The current xies 1 generation of 10-m-class telescopes and Gala space facilities allows us to study mem- of bers of nearby groups with exquisite de- tail, and their properties can be corre- –1 Number L < 41.7 Log (erg s ) lated with the global properties of their x L > 41.7 Log (erg s–1) host group. Finally, groups are relevant x for cosmology, since they trace large- scale structures better than clusters, and –22 –20 –18 –16 –14 Absolute Magnitude (M ) the evolution of groups and clusters may B be related. Figure 1: Cumulative B-band luminosity function of Strangely, there are three times fewer pa- 25 GEMS groups of galaxies grouped into X-ray- bright and X-ray-faint categories, fitted with one or pers on groups of galaxies than on clus- two Schechter functions, respectively (Miles et ters of galaxies, as revealed by an ADS al. 2004, MNRAS 355, 785; presented by Raychaud- search. Organising this conference was a hury). Mergers could explain the bimodality of the way to focus the attention of the com- luminosity function of X-ray-faint groups.
    [Show full text]