Searching for Diffuse Light in the M96 Group

Total Page:16

File Type:pdf, Size:1020Kb

Searching for Diffuse Light in the M96 Group Draft version June 30, 2016 Preprint typeset using LATEX style emulateapj v. 5/2/11 SEARCHING FOR DIFFUSE LIGHT IN THE M96 GALAXY GROUP Aaron E. Watkins1, J. Christopher Mihos1,Paul Harding1,John J. Feldmeier2 Draft version June 30, 2016 ABSTRACT We present deep, wide-field imaging of the M96 galaxy group (also known as the Leo I Group). Down to surface brightness limits of µB = 30:1 and µV = 29:5, we find no diffuse, large-scale optical counterpart to the “Leo Ring”, an extended HI ring surrounding the central elliptical M105 (NGC 3379). However, we do find a number of extremely low surface-brightness (µB & 29) small-scale streamlike features, possibly tidal in origin, two of which may be associated with the Ring. In addition we present detailed surface photometry of each of the group’s most massive members – M105, NGC 3384, M96 (NGC 3368), and M95 (NGC 3351) – out to large radius and low surface brightness, where we search for signatures of interaction and accretion events. We find that the outer isophotes of both M105 and M95 appear almost completely undisturbed, in contrast to NGC 3384 which shows a system of diffuse shells indicative of a recent minor merger. We also find photometric evidence that M96 is accreting gas from the HI ring, in agreement with HI data. In general, however, interaction signatures in the M96 Group are extremely subtle for a group environment, and provide some tension with interaction scenarios for the formation of the Leo HI Ring. The lack of a significant component of diffuse intragroup starlight in the M96 Group is consistent with its status as a loose galaxy group in which encounters are relatively mild and infrequent. Subject headings: galaxies: elliptical – galaxies: groups: individual(Leo I) – galaxies: interactions – galaxies: stellar content – galaxies: structure 1. INTRODUCTION subtle ways in their outskirts, where restoring forces are low In the current ΛCDM cosmological paradigm, massive and dynamical times are long. Morphological signatures of galaxies form hierarchically over time, via the continual ac- accretion such as tidal features, warps, and disk asymme- cretion of smaller objects (Searle & Zinn 1978; Davis et al. tries (Toomre & Toomre 1972; Bullock & Johnston 2005; 1985; Frenk et al 1988; White & Frenk 1991; Jenkins et Mart´ınez-Delgado et al. 2010) may trace the record of past en- al. 2001; Springel et al. 2005). Massive galaxies may in- counters, while changes in the structural properties and stellar teract with one another as well, leaving behind readily ob- populations of the outer disk can be probed via quantitative servable signatures in the form of tidal streams or drastic photometry and color profiles (e.g. van der Kruit 1979; Pohlen changes in morphology, stellar populations, and kinematics et al. 2002; Trujillo et al. 2009; Mihos et al. 2013a). Finding (e.g., Arp 1966; Toomre & Toomre 1972; Toomre 1977; Hern- and categorizing such signatures thus becomes an important quist 1992; Barnes 1992, 2002). Even after the initial con- step in constraining theories of galaxy formation. struction of galaxies has ended, however, cosmological sim- Unfortunately, the extended outskirts of galaxies are ex- ulations indicate that there should remain a wealth of low- tremely dim and diffuse. However, with the advent of deep mass satellites that continue to interact with the parent galaxy wide-field imaging techniques, over the past decade a wide over time (e.g., Frenk et al 1988; Gelb & Bertschinger 1994; variety of faint tidal features have been identified around Springel et al. 2005, 2008). Observations of the Local Group nearby galaxies. These features span a wide range of mor- indeed show a number of low-luminosity satellites around the phologies, from loops, plumes, and shells (Forbes et al. 2003; Milky Way and M31 (Hodge 1971; Feitzinger & Galinski Mart´ınez-Delgado et al. 2008, 2009, 2010; Atkinson et al. 1985; Mateo 1998; Belokurov et al. 2006; Weisz et al. 2011; 2013; Mihos et al. 2013a) to extended streams, diffuse stel- McConnachie 2012), lending credence to the idea. However, lar halos, and large-scale intracluster light (Uson et al. 1991; important discrepancies between theory and observation re- Scheick & Kuhn 1994; Gonzalez et al. 2000; Feldmeier et al. 2004; Adami et al. 2005; Mihos et al. 2005; Rudick 2010b). arXiv:1406.6982v2 [astro-ph.GA] 29 Jun 2016 main, such as the ‘missing satellites problem’ (Klypin et al. 1999; Moore et al. 1999), demonstrating the importance of Gaseous accretion events also appear to influence the proper- continuing to test the theory observationally in a variety of ties of disks (Sancisi et al. 2008), fueling new star formation ways. in their low density outskirts and driving the formation of ex- Probing the low surface brightness outskirts of galaxies via tended ultraviolet (XUV) disks (Thilker et al. 2005; Gil de deep surface photometry provides one such observational test. Paz et al. 2005; Thilker et al. 2007; Lemonias et al. 2011). Under proposed “inside-out” galaxy formation models (Mat- This extended star formation will in turn affect the age and teucci & Franc¸ois 1989; Bullock & Johnston 2005; Naab & metallicity distributions, and hence the colors, of the underly- Ostriker 2006; Hopkins et al. 2009; van Dokkum et al. 2010; ing stellar populations in these regions. Meanwhile, internal Kauffmann et al. 2012), even apparently undisturbed galax- processes within disks may scatter stars outwards, again re- ies should show signs of recent accretions or interactions in sulting in changes in the structure and stellar content of the outer disk (Sellwood & Binney 2002; Debattista et al. 2006; 1 Department of Astronomy, Case Western Reserve University, Cleve- Roskar et al. 2008a,b). land, OH 44106, USA Local environment also must play a role in the accretion 2 Department of Physics and Astronomy, Youngstown State University, history of galaxies and the evolution of their outer regions. Youngstown, OH 44555, USA 2 Watkins et al. In massive clusters, for example, frequent and rapid interac- IGL fractions found may not be reflective of the entire group. tions between galaxies tend to produce plumes and streams of However, in stark contrast, McGee & Balogh (2010) have es- starlight, which are shredded over time by interactions within +16 timated that 47%−15 of the stellar mass in galaxy groups is in the cluster potential to form the more diffuse intracluster light the IGL component through detections of spectroscopically (ICL) seen in clusters such as Virgo (Rudick et al. 2009). In confirmed hostless intragroup SNe Ia that were within the group environments, where the velocity dispersions are gener- Sloan Digital Sky Survey (SDSS; York et al. 2000) SN sur- ally lower, slow encounters lead to strong dynamical friction vey. and rapid merging (Hickson et al. 1977; Barnes 1989; Taranu To improve this situation, more searches for IGL need to et al. 2013). Contrary to cluster environments, then, galax- be undertaken in galaxy groups over a large range of mass. ies in groups may exhibit long-lived accretion shells or tidal The M96 Group (sometimes referred to as the Leo I Group), tails in their outskirts (e.g., Quinn 1984; Hernquist & Quinn shown in Figure 1, helps serve this purpose well. It is the 1987; Law et al. 2005). Meanwhile, the low density envi- nearest loose group4 that contains both early and late type ronment around isolated field galaxies should lead to fewer massive galaxies (de Vaucouleurs 1975), and hosts a rather recent interactions and accentuate secular evolution processes unusual feature – a roughly 200 kiloparsec diameter broken that are internal to galaxies (e.g. Kraljic et al. 2012). A com- ring of neutral hydrogen, first discovered by Schneider et al. plete survey of the processes that shape galaxies thus requires (1983). This ring is fairly diffuse; from Arecibo data, column an investigation across all environments. densities range from 6:4×1019 cm−2 to as low as 2×1018 cm−2 Of particular interest is the group environment, the most (Schneider et al. 1989), although smaller clumps with densi- common environment for galaxies to reside. Intragroup ties of roughly 4 × 1020 cm−2 were also detected using the starlight (IGL) in loose groups3 is of significant interest across Very Large Array (Schneider et al. 1986). These higher den- many studies of galaxy and galaxy cluster evolution. The frac- sity clumps appear to be confined to the southernmost portion tion of baryons within galaxy groups and clusters constrains of the ring, and include a bridge-like feature apparently con- models of star formation and cluster assembly, and there is necting the ring to M96 (NGC 3368), the most massive spiral strong evidence that the amount of intragroup and intracluster galaxy in the group. Two other galaxies – the E1 galaxy M105 starlight may be a significant contributor to the baryon frac- (NGC 3379) and the S0 galaxy NGC 3384 – appear to lie near tion of these systems (e.g. Gonzalez et al. 2013; Budzynski the center of the ring, implying some relation between these et al. 2014). The loose group environment may also dynami- three galaxies and the intergalactic HI. A fourth galaxy, the cally “preprocess” galaxies that later fall into galaxy clusters barred spiral M95 (NGC 3351), is associated with the group and produce ICL (Mihos 2004), and substructure within the as well, but due to its relatively large projected separation may diffuse IGL should trace this process in dynamically evolving not be associated with the ring complex itself. The group also galaxy groups. lies near in the sky (∼8◦ away) and at a somewhat similar dis- However, the mean fraction of stars in an IGL compo- tance to the M66 Group, leading to speculation that the two nent, and how that fraction varies with group/cluster mass, groups are actually each part of a larger complex of galaxies is substantially uncertain.
Recommended publications
  • Distribution of Phantom Dark Matter in Dwarf Spheroidals Alistair O
    A&A 640, A26 (2020) Astronomy https://doi.org/10.1051/0004-6361/202037634 & c ESO 2020 Astrophysics Distribution of phantom dark matter in dwarf spheroidals Alistair O. Hodson1,2, Antonaldo Diaferio1,2, and Luisa Ostorero1,2 1 Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 10125 Torino, Italy 2 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy e-mail: [email protected],[email protected] Received 31 January 2020 / Accepted 25 May 2020 ABSTRACT We derive the distribution of the phantom dark matter in the eight classical dwarf galaxies surrounding the Milky Way, under the assumption that modified Newtonian dynamics (MOND) is the correct theory of gravity. According to their observed shape, we model the dwarfs as axisymmetric systems, rather than spherical systems, as usually assumed. In addition, as required by the assumption of the MOND framework, we realistically include the external gravitational field of the Milky Way and of the large-scale structure beyond the Local Group. For the dwarfs where the external field dominates over the internal gravitational field, the phantom dark matter has, from the star distribution, an offset of ∼0:1−0:2 kpc, depending on the mass-to-light ratio adopted. This offset is a substantial fraction of the dwarf half-mass radius. For Sculptor and Fornax, where the internal and external gravitational fields are comparable, the phantom dark matter distribution appears disturbed with spikes at the locations where the two fields cancel each other; these features have little connection with the distribution of the stars within the dwarfs.
    [Show full text]
  • Galaxy Transformation in Clusters
    GGaalalaxxyy TTrarannssfoformrmaatiotionn inin CClulusstetersrs Coma CL0939 z=0.41 U. Fritze, PostGrad UH 2008 FFroromm GGrorouuppss toto CluClusterssters The Local Group : 35 members around Milky Way & M31 within 1 Mpc Nearby groups : Sculptor group : 6 members D~1.8 Mpc M81 group : 8 members D~3.1 Mpc Centaurus group : 17 members D~3.5 Mpc M101 group : 5 members D~7.7 Mpc M66+M96 group : 10 members D~9.4 Mpc NGC 1023 group : 6 members D~9.6 Mpc Census very incomplete : low – luminosity dwarfs like Sag dSph cannot be detected beyond our Local Group galaxy group <50 members, galaxy cluster >50 members U. Fritze, PostGrad UH 2008 LLoocalcal GGalaxyalaxy CluClusterssters Virgo (W. Herschel 18th century) 10° × 10° D~16 Mpc ~ 250 normal galaxies > 2000 dwarf galaxies irregular cluster : 2 big Es: M87 & NGC 4479, not particularly rich Coma : regular rich cluster (+ substructure) D~ 90 Mpc ~ 10,000 galaxies U. Fritze, PostGrad UH 2008 AbAbellell CataloCatalogg ooff GGalaxyalaxy CluClusterssters G. Abell 1958: POSS northern sky w/o Milky Way disk (extinction) Cluster := >50 members within m3 and m3+2 mag, rd m3 := mag of 3 brightest member, within angular radius qA=1.7'/z, z=redshift estimate (from 10th brightest galaxy assumed to be universal) 1682 galaxy clusters within 0.02 < z < 0.2 (z>0.02 --> cluster fits on ~6° ´ 6° POSS plate, z<0.2 --> sensitivity limit of POSS plates) extended to include 4076 clusters by Abell, Corwin, Olowin 1989 both catalogs not free from projection effects !!! U. Fritze, PostGrad UH 2008 GGalaxyalaxy CluClusterssters Galaxy Clusters : Rcl~ 2 - 10 Mpc, Ngal = 50 .
    [Show full text]
  • ALFALFA Survey of the Leo Region S
    ALFALFA Survey of the Leo Region S. Stierwalt, M.P. Haynes, R. Giovanelli, B. Kent, A. Saintonge (Cornell University), I.D. Karachentsev (Russian Academy of Sciences), V.E. Karachentseva (Astronomical Observatory of Kiev), N. Brosch (Wise Observatory), L. Hoffman (Lafayette College), B.Catinella, E. Momjian (Arecibo Observatory) ABSTRACT: The Leo region offers a detailed view of several nearby groups Points of Interest in the Leo Region of galaxies including Leo I at 10.4 Mpc and another slightly more distant (10h30m<RA<11h30m, 8º<dec<16º) structure within the Local Supercluster (Leo II). Leo I is of particular interest because it contains both a large ring of intergalactic gas of unknown origin (the Leo Ring) as well as a long tidal stream of stars and gas in the Leo Triplet. Because of its proximity, Leo can also offer insight M66 into the nature of low-mass, low-surface brightness galaxies believed to be the building blocks of galaxy formation. A direct comparison of optically and HI selected samples of dwarf galaxy candidates in the region has been made. This work has been supported by NSF grants AST-0307661 and AST--0435697 & by the Brinson Foundation. NNGGCC 3 6326828 OPTICALLY-SELECTED SAMPLE: Dwarf galaxy candidates in the Leo region were optically selected via a visual inspection of POSS-II/ESO/Serc plates by Karachentsev and Karachentseva. Sensitive, targeted single-pixel Arecibo Leo Ring of M65 gas in M96 group observations were taken of those candidates. Twenty-one of a possible thirty- Leo Triplet (Image from five dwarf galaxies were detected in HI including five background sources.
    [Show full text]
  • Is There Tension Between Observed Small Scale Structure and Cold Dark Matter?
    Is there tension between observed small scale structure and cold dark matter? Louis Strigari Stanford University Cosmic Frontier 2013 March 8, 2013 Predictions of the standard Cold Dark Matter model 26 3 1 1. Density profiles rise towards the centersσannv 3of 10galaxies− cm s− (1) h i' ⇥ ⇢ Universal for all halo masses ⇢(r)= s (2) (r/r )(1 + r/r )2 Navarro-Frenk-White (NFW) model s s 2. Abundance of ‘sub-structure’ (sub-halos) in galaxies Sub-halos comprise few percent of total halo mass Most of mass contained in highest- mass sub-halos Subhalo Mass Function Mass[Solar mass] 1 Problems with the standard Cold Dark Matter model 1. Density of dark matter halos: Faint, dark matter-dominated galaxies appear less dense that predicted in simulations General arguments: Kleyna et al. MNRAS 2003, 2004;Goerdt et al. APJ2006; de Blok et al. AJ 2008 Dwarf spheroidals: Gilmore et al. APJ 2007; Walker & Penarrubia et al. APJ 2011; Angello & Evans APJ 2012 2. ‘Missing satellites problem’: Simulations have more dark matter subhalos than there are observed dwarf satellite galaxies Earilest papers: Kauffmann et al. 1993; Klypin et al. 1999; Moore et al. 1999 Solutions to the issues in Cold Dark Matter 1. The theory is wrong i) Not enough physics in theory/simulations (Talks yesterday by M. Boylan-Kolchin, M. Kuhlen) [Wadepuhl & Springel MNRAS 2011; Parry et al. MRNAS 2011; Pontzen & Governato MRNAS 2012; Brooks et al. ApJ 2012] ii) Cosmology/dark matter is wrong (Talk yesterday by A. Peter) 2. The data is wrong i) Kinematics of dwarf spheroidals (dSphs) are more difficult than assumed ii) Counting satellites a) Many more faint satellites around the Milky Way b) Milky Way is an oddball [Liu et al.
    [Show full text]
  • The Hubble Space Telescope Proper Motion Collaboration HSTPROMO
    HSTPROMO The HST Proper Motion Collaboration Dark Matter in the Local Group Roeland van der Marel (STScI) Stellar Dynamics • Many reasons to understand the dynamics of stars, clusters, and galaxies in the nearby Universe • Formation: The dynamics contains an imprint of initial conditions • Evolution: The dynamics reflects subsequent (secular) evolution • Structure: dynamics and structure are connected • Mass: Tied to the dynamics through gravity è critical for studies of dark matter 2 Line-of-Sight (LOS) Velocities • Almost all observational knowledge of stellar dynamics derives from LOS velocities • Requires spectroscopy – Time consuming – Limited numbers of objects – Brightness limits • Yields only 1 component of motion – Limited insight from 1D information 2 – 3D velocities needed for mass modeling: M = σ 3D Rgrav / G • Many assumptions/unknowns in LOS velocity modeling 3 Proper Motions (PMs) • PMs provide much added information, either by themselves (2D) or combined with LOS data (3D) • Characteristic velocity accuracy necessary – 1 km/s at 7 kpc (globular cluster dynamics) – 10 km/s at 70 kpc (Milky Way halo/satellite dynamics) – 100 km/s at 700 kpc (Local Group dynamics) – 0.03c at 70 Mpc (AGN jet dynamics) • Corresponding PM accuracy – 30 μas / yr (~ speed of human hair growth at Moon distance) • Observations – Ground-based: NO – VLBI: LIMITED (some water masers) – GAIA: FUTURE (but not crowded or faint) – HST: YES (0.006 HST ACS/WFC pixels in 10 yr) 4 Proper Motions with Hubble • Key Characteristics: – High spatial resolution – Low sky background – Exquisite telescope stability – Long time baselines – Large Archive – Many background galaxies in any moderately deep image • Advantages: – Depth: Astrometry of faint sources – Multiplexing: Many sources per field (N = 102 –106, Δ~ 1/√N) 5 HSTPROMO: The Hubble Space Telescope Proper Motion Collaboration (http://www.stsci.edu/~marel/hstpromo.html) • Set of many HST investigations aimed at improving our dynamical understanding of stars, clusters, and galaxies in the nearby Universe through PMs.
    [Show full text]
  • Calendar of Roman Events
    Introduction Steve Worboys and I began this calendar in 1980 or 1981 when we discovered that the exact dates of many events survive from Roman antiquity, the most famous being the ides of March murder of Caesar. Flipping through a few books on Roman history revealed a handful of dates, and we believed that to fill every day of the year would certainly be impossible. From 1981 until 1989 I kept the calendar, adding dates as I ran across them. In 1989 I typed the list into the computer and we began again to plunder books and journals for dates, this time recording sources. Since then I have worked and reworked the Calendar, revising old entries and adding many, many more. The Roman Calendar The calendar was reformed twice, once by Caesar in 46 BC and later by Augustus in 8 BC. Each of these reforms is described in A. K. Michels’ book The Calendar of the Roman Republic. In an ordinary pre-Julian year, the number of days in each month was as follows: 29 January 31 May 29 September 28 February 29 June 31 October 31 March 31 Quintilis (July) 29 November 29 April 29 Sextilis (August) 29 December. The Romans did not number the days of the months consecutively. They reckoned backwards from three fixed points: The kalends, the nones, and the ides. The kalends is the first day of the month. For months with 31 days the nones fall on the 7th and the ides the 15th. For other months the nones fall on the 5th and the ides on the 13th.
    [Show full text]
  • The Beginners Guide to Astrology AQUARIUS JAN
    WHAT’S YOUR SIGN? the beginners guide to astrology AQUARIUS JAN. 20th - FEB. 18th THE WATER BEARER ften simple and unassuming, the Aquarian goes about accomplishing goals in a quiet, often unorthodox ways. Although their methods may be unorth- Oodox, the results for achievement are surprisingly effective. Aquarian’s will take up any cause, and are humanitarians of the zodiac. They are honest, loyal and highly intelligent. They are also easy going and make natural friendships. If not kept in check, the Aquarian can be prone to sloth and laziness. However, they know this about themselves, and try their best to motivate themselves to action. They are also prone to philosophical thoughts, and are often quite artistic and poetic. KNOWN AS: The Truth Seeker RULING PLANET(S): Uranus, Saturn QUALITY: Fixed ELEMENT: Air MOST COMPATIBILE: Gemini, Libra CONSTELLATION: Aquarius STONE(S): Garnet, Silver PISCES FEB. 19th - MAR. 20th THE FISH lso unassuming, the Pisces zodiac signs and meanings deal with acquiring vast amounts of knowledge, but you would never know it. They keep an Aextremely low profile compared to others in the zodiac. They are honest, unselfish, trustworthy and often have quiet dispositions. They can be over- cautious and sometimes gullible. These qualities can cause the Pisces to be taken advantage of, which is unfortunate as this sign is beautifully gentle, and generous. In the end, however, the Pisces is often the victor of ill cir- cumstance because of his/her intense determination. They become passionately devoted to a cause - particularly if they are championing for friends or family. KNOWN AS: The Poet RULING PLANET(S): Neptune and Jupiter QUALITY: Mutable ELEMENT: Water MOST COMPATIBILE: Gemini, Virgo, Saggitarius CONSTELLATION: Pisces STONE(S): Amethyst, Sugelite, Fluorite 2 ARIES MAR.
    [Show full text]
  • Hubble Space Telescope Observations of the Local Group
    THE ASTROPHYSICAL JOURNAL, 514:665È674, 1999 April 1 ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. HUBBL E SPACE T EL ESCOPE OBSERVATIONS OF THE LOCAL GROUP DWARF GALAXY LEO I CARME GALLART,1 WENDY L. FREEDMAN,1 MARIO MATEO,2 CESARE CHIOSI,3 IAN B. THOMPSON,1 ANTONIO APARICIO,4 GIANPAOLO BERTELLI,3,5 PAUL W. HODGE,6 MYUNG G. LEE,7 EDWARD W. OLSZEWSKI,8 ABHIJIT SAHA,9 PETER B. STETSON,10 AND NICHOLAS B. SUNTZEFF11 Received 1998 March 19; accepted 1998 November 6 ABSTRACT We present deep HST F555W (V ) and F814W (I) observations of a central Ðeld in the Local Group dwarf spheroidal (dSph) galaxy Leo I. The resulting color-magnitude diagram (CMD) reaches I ^ 26 and reveals the oldest ^10È15 Gyr old turno†s. Nevertheless, a horizontal branch is not obvious in the CMD. Given the low metallicity of the galaxy, this likely indicates that the Ðrst substantial star forma- tion in the galaxy may have been somehow delayed in Leo I in comparison with the other dSph satel- lites of the Milky Way. The subgiant region is well and uniformly populated from the oldest turno†s up to the 1 Gyr old turno†, indicating that star formation has proceeded in a continuous way, with possible variations in intensity but no big gaps between successive bursts, over the galaxyÏs lifetime. The structure of the red clump of core He-burning stars is consistent with the large amount of intermediate-age popu- lation inferred from the main sequence and the subgiant region.
    [Show full text]
  • A STUDY of DWARF GALAXIES EMBEDDED in a LARGE-SCALE H I RING in the LEO I GROUP a Large-Scale Neutral Hydrogen (H I) Ring Serend
    Publications of the Korean Astronomical Society pISSN: 1225-1534 30: 517 ∼ 519, 2015 September eISSN: 2287-6936 c 2015. The Korean Astronomical Society. All rights reserved. http://dx.doi.org/10.5303/PKAS.2015.30.2.517 A STUDY OF DWARF GALAXIES EMBEDDED IN A LARGE-SCALE H i RING IN THE LEO I GROUP Myo Jin Kim1, Aeree Chung y1, Jong Chul Lee2, Sungsoon Lim3, Minjin Kim2,5, Jongwan Ko2, Joon Hyeop Lee2,5, Soung-Chul Yang2,4, and Hye-Ran Lee2,5 1Department of Astronomy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea 2Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348, Korea 3Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, China 4The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, California, USA 5Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 305-350, Korea E-mail: [email protected], [email protected] (Received November 30, 2014; Reviced May 31, 2015; Aaccepted June 30, 2015) ABSTRACT A large-scale neutral hydrogen (H i) ring serendipitously found in the Leo I galaxy group is 200 kpc 9 in diameter with MH i ∼ 1:67 × 10 M , unique in size in the Local Universe. It is still under debate where this H i ring originated - whether it has formed out of the gas remaining after the formation of a galaxy group (primordial origin) or been stripped during galaxy-galaxy interactions (tidal origin). We are investigating the optical and H i gas properties of the dwarf galaxies located within the gas ring in order to probe its formation mechanism.
    [Show full text]
  • Streaming Motion in Leo I
    The Annals of Applied Statistics 2009, Vol. 3, No. 1, 96–116 DOI: 10.1214/08-AOAS211 © Institute of Mathematical Statistics, 2009 STREAMING MOTION IN LEO I BY BODHISATTVA SEN,1 MOULINATH BANERJEE,2 MICHAEL WOODROOFE,3 MARIO MATEO AND MATTHEW WALKER University of Michigan, University of Michigan, University of Michigan, University of Michigan, and University of Cambridge Whether a dwarf spheroidal galaxy is in equilibrium or being tidally dis- rupted by the Milky Way is an important question for the study of its dark matter content and distribution. This question is investigated using 328 re- cent observations from the dwarf spheroidal Leo I. For Leo I, tidal disruption is detected, at least for stars sufficiently far from the center, but the effect appears to be quite modest. Statistical tools include isotonic and split point estimators, asymptotic theory, and resampling methods. 1. Introduction. The dwarf spheroidal galaxies near the Milky Way are among the least luminous galaxies in the night sky. While they have stellar popu- lations similar to those of globular clusters, approximately 106–107 stars, they are considerably larger systems, typically hundreds, even thousands of parsecs in size compared to radii of tens of parsecs characteristic of clusters. They are excellent candidates for the study of dark matter because they are nearby and generally have extremely low stellar densities. Moreover, due to their proximity to the Milky Way, many of these dwarf galaxies are also potentially strongly affected by disruptive tidal effects. The mere existence of dwarf spheroidal galaxies suggests these sys- tems contain much dark matter since it is unclear how they could have avoided the effects of tidal disruption without the added gravitational force from a consider- able reservoir of unseen matter [see Muñoz, Majewski and Johnston (2008)and Mateo, Olszewski and Walker (2008)].
    [Show full text]
  • Neutral Hydrogen in Local Group Dwarf Galaxies
    Neutral Hydrogen in Local Group Dwarf Galaxies Jana Grcevich Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2013 c 2013 Jana Grcevich All rights reserved ABSTRACT Neutral Hydrogen in Local Group Dwarfs Jana Grcevich The gas content of the faintest and lowest mass dwarf galaxies provide means to study the evolution of these unique objects. The evolutionary histories of low mass dwarf galaxies are interesting in their own right, but may also provide insight into fundamental cosmological problems. These include the nature of dark matter, the disagreement be- tween the number of observed Local Group dwarf galaxies and that predicted by ΛCDM, and the discrepancy between the observed census of baryonic matter in the Milky Way’s environment and theoretical predictions. This thesis explores these questions by studying the neutral hydrogen (HI) component of dwarf galaxies. First, limits on the HI mass of the ultra-faint dwarfs are presented, and the HI content of all Local Group dwarf galaxies is examined from an environmental standpoint. We find that those Local Group dwarfs within 270 kpc of a massive host galaxy are deficient in HI as compared to those at larger galactocentric distances. Ram- 4 3 pressure arguments are invoked, which suggest halo densities greater than 2-3 10− cm− × out to distances of at least 70 kpc, values which are consistent with theoretical models and suggest the halo may harbor a large fraction of the host galaxy’s baryons. We also find that accounting for the incompleteness of the dwarf galaxy count, known dwarf galaxies whose gas has been removed could have provided at most 2.1 108 M of HI gas to the Milky Way.
    [Show full text]
  • Culmination of a Constellation
    Culmination of a Constellation Over any night, stars and constellations in the sky will appear to move from east to west due to the Earth’s rotation on its axis. A constellation will culminate (reach its highest point in the sky for your location) when it centres on the meridian - an imaginary line that runs across the sky from north to south and also passes through the zenith (the point high in the sky directly above your head). For example: When to Observe Constellations The taBle shows the approximate time (AEST) constellations will culminate around the middle (15th day) of each month. Constellations will culminate 2 hours earlier for each successive month. Note: add an hour to the given time when daylight saving time is in effect. The time “12” is midnight. Sunrise/sunset times are rounded off to the nearest half an hour. Sun- Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Rise 5am 5:30 6am 6am 7am 7am 7am 6:30 6am 5am 4:30 4:30 Set 7pm 6:30 6pm 5:30 5pm 5pm 5pm 5:30 6pm 6pm 6:30 7pm And 5am 3am 1am 11pm 9pm Aqr 5am 3am 1am 11pm 9pm Aql 4am 2am 12 10pm 8pm Ara 4am 2am 12 10pm 8pm Ari 5am 3am 1am 11pm 9pm Aur 10pm 8pm 4am 2am 12 Boo 3am 1am 11pm 9pm 7pm Cnc 1am 11pm 9pm 7pm 3am CVn 3am 1am 11pm 9pm 7pm CMa 11pm 9pm 7pm 3am 1am Cap 5am 3am 1am 11pm 9pm 7pm Car 2am 12 10pm 8pm 6pm Cen 4am 2am 12 10pm 8pm 6pm Cet 4am 2am 12 10pm 8pm Cha 3am 1am 11pm 9pm 7pm Col 10pm 8pm 4am 2am 12 Com 3am 1am 11pm 9pm 7pm CrA 3am 1am 11pm 9pm 7pm CrB 4am 2am 12 10pm 8pm Crv 3am 1am 11pm 9pm 7pm Cru 3am 1am 11pm 9pm 7pm Cyg 5am 3am 1am 11pm 9pm 7pm Del
    [Show full text]