Phylogeography and Systematics of Algyroides (Sauria: Lacertidae) of the Balkan Peninsula
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DESERTMED a Project About the Deserted Islands of the Mediterranean
DESERTMED A project about the deserted islands of the Mediterranean The islands, and all the more so the deserted island, is an extremely poor or weak notion from the point of view of geography. This is to it’s credit. The range of islands has no objective unity, and deserted islands have even less. The deserted island may indeed have extremely poor soil. Deserted, the is- land may be a desert, but not necessarily. The real desert is uninhabited only insofar as it presents no conditions that by rights would make life possible, weather vegetable, animal, or human. On the contrary, the lack of inhabitants on the deserted island is a pure fact due to the circumstance, in other words, the island’s surroundings. The island is what the sea surrounds. What is de- serted is the ocean around it. It is by virtue of circumstance, for other reasons that the principle on which the island depends, that the ships pass in the distance and never come ashore.“ (from: Gilles Deleuze, Desert Island and Other Texts, Semiotext(e),Los Angeles, 2004) DESERTMED A project about the deserted islands of the Mediterranean Desertmed is an ongoing interdisciplina- land use, according to which the islands ry research project. The “blind spots” on can be divided into various groups or the European map serve as its subject typologies —although the distinctions are matter: approximately 300 uninhabited is- fluid. lands in the Mediterranean Sea. A group of artists, architects, writers and theoreti- cians traveled to forty of these often hard to reach islands in search of clues, impar- tially cataloguing information that can be interpreted in multiple ways. -
Ship Rats and Island Reptiles: Patterns of Co-Existence in the Mediterranean
Ship rats and island reptiles: patterns of co-existence in the Mediterranean Daniel Escoriza GRECO, University of Girona, Girona, Girona, Spain ABSTRACT Background. The western Mediterranean archipelagos have a rich endemic fauna, which includes five species of reptiles. Most of these archipelagos were colonized since early historic times by anthropochoric fauna, such as ship rats (Rattus rattus). Here, I evaluated the influence of ship rats on the occurrence of island reptiles, including non-endemic species. Methodology. I analysed a presence-absence database encompassing 159 islands (Balearic Islands, Provence Islands, Corso-Sardinian Islands, Tuscan Archipelago, and Galite) using Bayesian-regularized logistic regression. Results. The analysis indicated that ship rats do not influence the occurrence of endemic island reptiles, even on small islands. Moreover, Rattus rattus co-occurred positively with two species of non-endemic reptiles, including a nocturnal gecko, a guild considered particularly vulnerable to predation by rats. Overall, the analyses showed a very different pattern than that documented in other regions of the globe, possibly attributable to a long history of coexistence. Subjects Biodiversity, Biogeography, Conservation Biology, Ecology, Zoology Keywords Alien species, Co-occurrences, Extinction, Island endemic, Lizard INTRODUCTION The Mediterranean basin is a hotspot of biodiversity, but it is also one of the regions Submitted 19 November 2019 Accepted 28 February 2020 in which biodiversity is most threatened, specifically by the massive transformation of Published 19 March 2020 landscapes and the spread of alien species (Médail & Quézel, 1999). The loss of biodiversity Corresponding author in the region began in ancient times, shortly after human colonization of the islands (Vigne, Daniel Escoriza, 1992). -
THE HERPETOFAUNA of KRNOVO (MONTENEGRO) Lidija P O L O V I
NATURA MONTENEGRINA, Podgorica, 2013, 12(1): 109-115 ORIGINAL RESEARCH PAPER THE HERPETOFAUNA OF KRNOVO (MONTENEGRO) Lidija P O L O V I Ć and Natalija Č A Đ ENOVIĆ The Natural History Museum of Montenegro, P.O.Box 374, 81000 Podgorica, Montenegro. E-mails: [email protected]; [email protected] SYNOPSIS Key words: In Krnovo area we recorded 3 species of amphibians (Mesotriton species list, alpestris, Bombina variegata, Bufo bufo) and 9 species of reptiles amphibians, (Lacerta agilis, Lacerta viridis, Podarcis muralis, Dinarolacerta reptiles, mosorensis, Natrix natrix, Natrix tessellata, Coronella austriaca, Krnovo, Zamenis longissimus, Vipera ammodytes) in 8 localities. Montenegro. SINOPSIS Ključne riječi: HERPETOFAUNA KRNOVA (CRNA GORA) spisak vrsta, Na području Krnova registrovali smo 3 vrste vodozemaca vodozemci, (Mesotriton alpestris, Bombina variegata, Bufo bufo) i 9 vrsta gmizavci, gmizavaca (Lacerta agilis, Lacerta viridis, Podarcis muralis, Krnovo, Dinarolacerta mosorensis, Natrix natrix, Natrix tessellata, Coronella Crna Gora. austriaca, Zamenis longissimus, Vipera ammodytes) na 8 lokaliteta. INTRODUCTION Previous herpetological studies in Montenegro included only few areas, mostly National Parks (DŽUKIĆ, 1991; CRNOBRNJA-ISAILOVIĆ & DŽUKIĆ, 1995; TOMOVIĆ et al., 2004; POLOVIĆ & LJUBISAVLJEVIĆ, 2010). Detailed amphibian and reptile species lists are generally missing. The most detailed available lists of herpetofauna for the northern part of Montenegro are species list of the Massif of Durmitor and Tara River Canyon (DŽUKIĆ, 1991) and species list of Bjelasica Mountain (TOMOVIĆ et al., 2004). Krnovo is situated in North-Western Montenegro, on a plateau between the Vojnik and Lola mountains. The altitude of this plateau varies from 1300 m to 1850 m a.s.l. Krnovo area is characterized by mesophilic meadows and pastures, cultivated fields, bordered by beech forest and boscage, and sporadically parted by communities of rocky pastures. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
BOTANY Research
doi: 10.1111/njb.02156 00 1–12 NORDIC JOURNAL OF BOTANY Research 0 Determinants of alpha and beta vascular plant diversity in 61 Mediterranean island systems: the Ionian islands, Greece 65 5 Anna-Thalassini Valli, Konstantinos Kougioumoutzis, Eleni Iliadou, Maria Panitsa and Panayiotis Trigas 70 10 A.-T. Valli (http://orcid.org/0000-0002-2085-1174) ([email protected]), K. Kougioumoutzis and P. Trigas (https://orcid.org/0000-0001-9557- 7723), Laboratory of Systematic Botany, Faculty of Crop Science, Agricultural Univ. of Athens, Athens, Greece. – E. Iliadou and M. Panitsa, Division of Plant Biology, Faculty of Biology, Univ. of Patras, Patras, Greece. 75 15 Nordic Journal of Botany The Ionian archipelago is the second largest Greek archipelago after the Aegean, but the factors driving plant species diversity in the Ionian islands are still barely known. 2018: e02156 80 20 doi: 10.1111/njb.02156 We used stepwise multiple regressions to investigate the factors affecting plant spe- cies diversity in 17 Ionian islands. Generalized dissimilarity modelling was applied Subject Editor: Rob Lewis to examine variation in the magnitude and rate of species turnover along environ- Editor-in-Chief: Torbjörn Tyler mental gradients, as well as to assess the relative importance of geographical and 85 25 Accepted 19 November 2018 climatic factors in explaining species turnover. The values of the residuals from the ISAR log10-transfomed models of native and endemic taxa were used as a measure of island floristic diversity. Area was confirmed to be the most powerful single explana- tory predictor of all diversity metrics. Mean annual precipitation and temperature, as 90 30 well as shortest distance to the nearest island are also significant predictors of vascular plant diversity. -
Distribution of Reptiles in Kosovo and Metohija Province
UNIVERSITY THOUGHT doi:10.5937/univtho8-16981 Publication in Natural Sciences, Vol. 8, No. 2, 2018, pp. 1-6. Original Scientific Paper CONTRIBUTION TO THE HERPETOFAUNA OF SERBIA - DISTRIBUTION OF REPTILES IN KOSOVO AND METOHIJA PROVINCE LJILJANA TOMOVIĆ1*, MAGDALENA TIMOTIJEVIĆ2, RASTKO AJTIĆ3, IMRE KRIZMANIĆ1, NENAD LABUS2 1Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia 2Faculty of Science and Mathematics, University of Priština, Kosovska Mitrovica, Serbia 3Institute for Nature Conservation of Serbia, Belgrade, Serbia ABSTRACT Kosovo and Metohija have already been recognized as regions with the highest diversity of reptiles in Serbia, where 92% (22 of 24) of existing reptile species can be found (Tomović et al., 2015a). First comprehensive contribution to herpetofauna of Kosovo and Metohija was provided by late Professor Gojko Pasuljević. In this study we present a complete dataset of distribution records for 13 most common reptile species in Kosovo and Metohija, including published and new distribution data compiled, and provide standardized 10 x 10 km UTM maps for these data. Results of this study include 1013 distribution records (278 new and 735 published data) for the following reptiles: Testudo hermanni, Ablepharus kitaibelii, Anguis fragilis, Lacerta agilis, Lacerta viridis, Podarcis muralis, Podarcis tauricus, Coronella austriaca, Dolichophis caspius, Natrix natrix, Natrix tessellata, Zamenis longissimus and Vipera ammodytes. The most widely distributed species, which occupy more than 50 UTM 10 x 10 km squares are: Podarcis muralis and Vipera ammodytes. Species with limited distribution which occupy less than 20 UTM 10 x 10 km are: Dolichophis caspius and Lacerta agilis. The largest numbers of new or confirmed literature data are recorded for: Anguis fragilis, Testudo hermanni and Vipera ammodytes. -
A Phylogeny of the European Lizard Genus Algyroides (Reptilia: Lacertidae) Based on DNA Sequences, with Comments on the Evolution of the Group
J. Zool., Lond. (1999) 249,49±60 # 1999 The Zoological Society of London Printed in the United Kingdom A phylogeny of the European lizard genus Algyroides (Reptilia: Lacertidae) based on DNA sequences, with comments on the evolution of the group D. James Harris, E. Nicholas Arnold* and Richard H. Thomas Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K. (Accepted 19 November 1998) Abstract The four species of Algyroides Bibron & Bory, 1833 form part of the relatively plesiomorphic Palaearctic clade of lacertids comprising Lacerta and its allies. An estimate of phylogeny based on DNA sequence from parts of the 12S and 16S rRNA mitochondrial genes con®rms the monophyly of the genus already suggested by several morphological features. The molecular data also indicates that relationships within the clade are: (A. nigropunctatus (A. moreoticus (A. ®tzingeri, A. marchi))); this agrees with an estimate of phylogeny based on morphology that assumes the taxon ancestral to Alygroides was relatively robust in body form, and not strongly adapted to using crevices. Initial morphological evolution within Algyroides appears to involve adaptation to crypsis in woodland habitats. The most plesiomorphic form (A. nigropunctatus) is likely to have originally climbed extensively on tree boles and branches and there may have been two subsequent independent shifts to increased use of litter and vegetation matrices with related anatomical changes (A. moreoticus, A. ®tzingeri), and one to increased use of crevices (A. marchi). Some members of Algyroides are strikingly similar in super®cial morphology to particular species of the equatorial African genus Adolfus. This resemblance results from a combination of many shared primitive features plus a few independently acquired derived ones that are likely to give performance advantage in the relatively similar structural niches that these forms occupy. -
Algyroides Nigropunctatus, Blue-Throated Keeled Lizard
The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T61466A12490013 Algyroides nigropunctatus, Blue-throated Keeled Lizard Assessment by: Wolfgang Böhme, Petros Lymberakis, Rastko Ajtic, Idriz Haxhiu, Jelka Crnobrnja Isailovic, Roberto Sindaco View on www.iucnredlist.org Citation: Wolfgang Böhme, Petros Lymberakis, Rastko Ajtic, Idriz Haxhiu, Jelka Crnobrnja Isailovic, Roberto Sindaco. 2009. Algyroides nigropunctatus. The IUCN Red List of Threatened Species 2009: e.T61466A12490013. http://dx.doi.org/10.2305/IUCN.UK.2009.RLTS.T61466A12490013.en Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: BirdLife International; Botanic Gardens Conservation International; Conservation International; Microsoft; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; Wildscreen; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Animalia Chordata Reptilia Squamata Lacertidae Taxon Name: Algyroides nigropunctatus (Duméril and Bibron. -
Strasbourg, 22 May 2002
Strasbourg, 21 October 2015 T-PVS/Inf (2015) 18 [Inf18e_2015.docx] CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS Standing Committee 35th meeting Strasbourg, 1-4 December 2015 GROUP OF EXPERTS ON THE CONSERVATION OF AMPHIBIANS AND REPTILES 1-2 July 2015 Bern, Switzerland - NATIONAL REPORTS - Compilation prepared by the Directorate of Democratic Governance / The reports are being circulated in the form and the languages in which they were received by the Secretariat. This document will not be distributed at the meeting. Please bring this copy. Ce document ne sera plus distribué en réunion. Prière de vous munir de cet exemplaire. T-PVS/Inf (2015) 18 - 2 – CONTENTS / SOMMAIRE __________ 1. Armenia / Arménie 2. Austria / Autriche 3. Belgium / Belgique 4. Croatia / Croatie 5. Estonia / Estonie 6. France / France 7. Italy /Italie 8. Latvia / Lettonie 9. Liechtenstein / Liechtenstein 10. Malta / Malte 11. Monaco / Monaco 12. The Netherlands / Pays-Bas 13. Poland / Pologne 14. Slovak Republic /République slovaque 15. “the former Yugoslav Republic of Macedonia” / L’« ex-République yougoslave de Macédoine » 16. Ukraine - 3 - T-PVS/Inf (2015) 18 ARMENIA / ARMENIE NATIONAL REPORT OF REPUBLIC OF ARMENIA ON NATIONAL ACTIVITIES AND INITIATIVES ON THE CONSERVATION OF AMPHIBIANS AND REPTILES GENERAL INFORMATION ON THE COUNTRY AND ITS BIOLOGICAL DIVERSITY Armenia is a small landlocked mountainous country located in the Southern Caucasus. Forty four percent of the territory of Armenia is a high mountainous area not suitable for inhabitation. The degree of land use is strongly unproportional. The zones under intensive development make 18.2% of the territory of Armenia with concentration of 87.7% of total population. -
Notes on the Altitudinal Distribution of Lizards and Some Other Reptiles on Mount Biokovo (Croatia) and Its Immediate Surroundings
View metadata, citation and similar papers at core.ac.uk brought to you by CORE NAT. CROAT. VOL. 8 No 3 223¿237 ZAGREB September 30, 1999 ISSN 1330-0520 original scientific paper / izvorni znanstveni rad . UDK 598.112 591.91(497.5/1-13) NOTES ON THE ALTITUDINAL DISTRIBUTION OF LIZARDS AND SOME OTHER REPTILES ON MOUNT BIOKOVO (CROATIA) AND ITS IMMEDIATE SURROUNDINGS JOSEF F. S CHMIDTLER Oberföhringer Str. 35, D-81925 München, Germany Schmidtler, J. F.: Notes on the altitudinal distribution of lizards and some other reptiles on Mount Biokovo (Croatia) and its immediate surroundings. Nat. Croat., Vol. 8, No. 3., 223–237, 1999, Zagreb. During nine stays on Mount Biokovo (1762 m) / Central Dalmatia (Croatia), and the adjacent parts of the Cetina valley in the years 1979–1990, 16 reptile species were observed. Together with previous data from literature the list now comprises 21 species. New or more detailed data are given, particularly on the following lizard species: Lacerta trilineata, L. viridis, L. mosorensis, L. oxycephala, Podarcis muralis and P. sicula. Key words: altitudinal distribution, reptiles, Mount Biokovo, Croatia Schmidtler, J. F.: Podaci o visinskoj rasprostranjenosti gu{tera i nekih drugih gmazova na Biokovu (Hrvatska) i njegovoj neposrednoj okolici. Nat. Croat., Vol. 8, No. 3., 223–237, 1999, Za- greb. Tijekom devet boravaka na Biokovu (1762 m) / sredi{nja Dalmacija (Hrvatska) i u susjednim krajevima doline Cetine u razdoblju od 1979. do 1990. zabilje`eno je 16 vrsta gmazova. Zajedno s poznatim podacima iz literature taj popis sada obuhva}a 21 vrstu. Rad donosi nove i detaljnije po- datke, posebno o sljede}im vrstama gu{tera: Lacerta trilineata, L. -
FL4113 Layout 1
Fl. Medit. 23: 255-291 doi: 10.7320/FlMedit23.255 Version of Record published online on 30 December 2013 Mediterranean chromosome number reports – 23 edited by G. Kamari, C. Blanché & S. Siljak-Yakovlev Abstract Kamari, G., Blanché, C. & Siljak-Yakovlev, S. (eds): Mediterranean chromosome number reports – 23. — Fl. Medit. 23: 255-291. 2013. — ISSN: 1120-4052 printed, 2240-4538 online. This is the twenty-three of a series of reports of chromosomes numbers from Mediterranean area, peri-Alpine communities and the Atlantic Islands, in English or French language. It com- prises contributions on 56 taxa: Anthriscus, Bupleurum, Dichoropetalum, Eryngium, Ferula, Ferulago, Lagoecia, Oenanthe, Prangos, Scaligeria, Seseli and Torilis from Turkey by Ju. V. Shner, T. V. Alexeeva, M. G. Pimenov & E. V. Kljuykov (Nos 1768-1783); Astrantia, Bupleurum, Daucus, Dichoropetalum, Eryngium, Heracleum, Laserpitium, Melanoselinum, Oreoselinum, Pimpinella, Pteroselinum and Ridolfia from Former Jugoslavia (Slovenia), Morocco and Portugal by J. Shner & M. Pimenov (1784-1798); Arum, Biarum and Eminium from Turkey by E. Akalın, S. Demirci & E. Kaya (1799-1804); Colchicum from Turkey by G. E. Genç, N. Özhatay & E. Kaya (1805-1808); Crocus and Galanthus from Turkey by S. Yüzbaşıoğlu, S. Demirci & E. Kaya (1809-1812); Pilosella from Italy by E. Di Gristina, G. Domina & A. Geraci (1813-1814); Narcissus from Sicily by A. Troia, A. M. Orlando & R. M. Baldini (1815-1816); Allium, Cerastium, Cochicum, Fritillaria, Narcissus and Thymus from Greece, Kepfallinia by S. Samaropoulou, P. Bareka & G. Kamari (1817-1823). Addresses of the editors: Prof. Emer. Georgia Kamari, Botanical Institute, Section of Plant Biology, Department of Biology, University of Patras, GR-265 00 Patras, Greece. -
The Parastatiki GEOMETRY in GREEK EDUCATION of 19TH
Journal of Applied Mathematics & Bioinformatics, vol.7, no.3, 2017, 13-82 ISSN: 1792-6602 (print), 1792-6939 (online) Scienpress Ltd, 2017 Descriptive Geometry in the Greek Military and Technical Education during the 19th Century Andreas Kastanis1 Abstract Greece came into contact with Descriptive Geometry (henceforth, DG) relatively early. Monge’s courses were taught for a long time in the Greek Military Academy. During the second half of the 19th century the teaching of Descriptive Geometry blossomed. In some of its applications, and especially in the field of Perspective, there were certain ideological obstacles, which were, however, overcome with the advent of Enlightenment. The teaching of DG was extended at the Greek Technical University (Polytechnic School), at the Greek Naval Academy and the School of Non-commissioned Officers (NCO). The French textbooks, written by Leroy or Olivier, were used as the core material for the Greek handbooks. During the last two decades of the 19th Century, the first books which were published in Greek, were mostly translations of the aforementioned French ones. It is also noteworthy that the vast majority of professors were military officers. 1 Department of Theoretical Sciences, Hellenic Military Academy, 166 73, Vari Attikis, Greece. E-mail: [email protected] Article Info: Received : October 30, 2015. Revised : January 28, 2016. Published online : December 30, 2017. 14 Descriptive Geometry in the Greek Military and Technical Education … Keywords: Descriptive Geometry; Monge; Leroy; Olivier; Military Academy; Greece 1 Introduction DG was the development from a technique of representing a three- dimensional object on a plane by projecting it onto two perpendiculars in each plane [18, 4; 2, 887].