Trypanosomiasis and Leishmaniasis Symposium Advances in Basic and Applied Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Multifaceted Approach to Combating Leishmaniasis, a Neglected Tropical Disease
OLD TARGETS AND NEW BEGINNINGS: A MULTIFACETED APPROACH TO COMBATING LEISHMANIASIS, A NEGLECTED TROPICAL DISEASE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy from the Graduate School of The Ohio State University By Adam Joseph Yakovich, B.S. ***** The Ohio State University 2007 Dissertation Committee: Karl A Werbovetz, Ph.D., Advisor Approved by Pui-Kai Li, Ph.D. Werner Tjarks, Ph.D. ___________________ Ching-Shih Chen, Ph.D Advisor Graduate Program In Pharmacy ABSTRACT Leishmaniasis, a broad spectrum of disease which is caused by the protozoan parasite Leishmania , currently affects 12 million people in 88 countries worldwide. There are over 2 million of new cases of leishmaniasis occurring annually. Clinical manifestations of leishmaniasis range from potentially disfiguring cutaneous leishmaniasis to the most severe manifestation, visceral leishmaniasis, which attacks the reticuloendothelial system and has a fatality rate near 100% if left untreated. All currently available therapies all suffer from drawbacks including expense, route of administration and developing resistance. In the laboratory of Dr. Karl Werbovetz our primary goal is the identification and development of an inexpensive, orally available antileishmanial chemotherapeutic agent. Previous efforts in the lab have identified a series of dinitroaniline compounds which have promising in vitro activity in inhibiting the growth of Leishmania parasites. It has since been discovered that these compounds exert their antileishmanial effects by binding to tubulin and inhibiting polymerization. Remarkably, although mammalian and Leishmania tubulins are ~84 % identical, the dinitroaniline compounds show no effect on mammalian tubulin at concentrations greater than 10-fold the IC 50 value determined for inhibiting Leishmania tubulin ii polymerization. -
Leishmania\) Martiniquensis N. Sp. \(Kinetoplastida: Trypanosomatidae\
Parasite 2014, 21, 12 Ó N. Desbois et al., published by EDP Sciences, 2014 DOI: 10.1051/parasite/2014011 urn:lsid:zoobank.org:pub:31F25656-8804-4944-A568-6DB4F52D2217 Available online at: www.parasite-journal.org SHORT NOTE OPEN ACCESS Leishmania (Leishmania) martiniquensis n. sp. (Kinetoplastida: Trypanosomatidae), description of the parasite responsible for cutaneous leishmaniasis in Martinique Island (French West Indies) Nicole Desbois1, Francine Pratlong2, Danie`le Quist3, and Jean-Pierre Dedet2,* 1 CHU de la Martinique, Hoˆpital Pierre-Zobda-Quitman, Poˆle de Biologie de territoire-Pathologie, Unite´de Parasitologie-Mycologie, BP 632, 97261 Fort-de-France Cedex, Martinique, France 2 Universite´Montpellier 1 et CHRU de Montpellier, Centre National de re´fe´rence des leishmanioses, UMR « MIVEGEC » (CNRS 5290, IRD 224, UM1, UM2), De´partement de Parasitologie-Mycologie (Professeur Patrick Bastien), 39 avenue Charles Flahault, 34295 Montpellier Cedex 5, France 3 CHU de la Martinique, Hoˆpital Pierre-Zobda-Quitman, Service de dermatologie, Poˆle de Me´decine-Spe´cialite´s me´dicales, BP 632, 97261 Fort-de-France Cedex, Martinique, France Received 21 November 2013, Accepted 19 February 2014, Published online 14 March 2014 Abstract – The parasite responsible for autochthonous cutaneous leishmaniasis in Martinique island (French West Indies) was first isolated in 1995; its taxonomical position was established only in 2002, but it remained unnamed. In the present paper, the authors name this parasite Leishmania (Leishmania) martiniquensis Desbois, Pratlong & Dedet n. sp. and describe the type strain of this taxon, including its biological characteristics, biochemical and molecular identification, and pathogenicity. This parasite, clearly distinct from all other Euleishmania, and placed at the base of the Leishmania phylogenetic tree, is included in the subgenus Leishmania. -
Health Information for International Travel 1996-97
CDCCENTERS FOR DISEASE CONTROL AND PREVENTION Health Information for International Travel 1996-97 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service This document was created with FrameMaker 4.0.4 ATTENTION READERS It is impossible for an annual publication on international travel to remain absolutely current given the nature of disease transmission in the world today. For readers of this text to be the most up-to-date on travel-related diseases and recommendations, this text must be used in conjunction with the other services provided by the Travelers’ Health Section of the Centers for Disease Control and Prevention (CDC). Changes such as vaccine requirements, disease outbreaks, drug availability, or emerging infections will be posted promptly on these services. For these and other changes, please consult either our Voice or Fax Information Service at 404-332-4559 or our Internet address on the World Wide Web Server at http://www.cdc.gov or the File Transfer Protocol server at ftp.cdc.gov . Because certain countries require vaccination against yellow fever only if a traveler arrives from a country currently infected with this disease, it is essential that up-to-date information regarding infected areas be maintained for reference. The CDC publishes a biweekly "Summary of Health Information for Interna- tional Travel" (Blue Sheet) which lists yellow fever infected areas. Subscriptions to the Blue Sheet are available to health departments, physicians, travel agencies, international airlines, shipping companies, travel clinics, and other private and public agencies that advise international travelers concerning health risks they may encounter when visiting other countries. -
Download the Abstract Book
1 Exploring the male-induced female reproduction of Schistosoma mansoni in a novel medium Jipeng Wang1, Rui Chen1, James Collins1 1) UT Southwestern Medical Center. Schistosomiasis is a neglected tropical disease caused by schistosome parasites that infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs, yet our understanding of their sexual reproduction is limited because egg production is not sustained for more than a few days in vitro. Here, we explore the process of male-stimulated female maturation in our newly developed ABC169 medium and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. By performing an RNAi screen for genes whose expression was enriched in the female reproductive organs, we identify a single nuclear hormone receptor that is required for differentiation and maturation of germ line stem cells in female gonad. Furthermore, we screen genes in non-reproductive tissues that maybe involved in mediating cell signaling during the male-female interplay and identify a transcription factor gli1 whose knockdown prevents male worms from inducing the female sexual maturation while having no effect on male:female pairing. Using RNA-seq, we characterize the gene expression changes of male worms after gli1 knockdown as well as the female transcriptomic changes after pairing with gli1-knockdown males. We are currently exploring the downstream genes of this transcription factor that may mediate the male stimulus associated with pairing. -
Autophagy in Trypanosomatids
Cells 2012, 1, 346-371; doi:10.3390/cells1030346 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review Autophagy in Trypanosomatids Ana Brennand 1,†, Eva Rico 2,†,‡ and Paul A. M. Michels 1,* 1 Research Unit for Tropical Diseases, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, postal box B1.74.01, B-1200 Brussels, Belgium; E-Mail: [email protected] 2 Department of Biochemistry and Molecular Biology, University Campus, University of Alcalá, Alcalá de Henares, Madrid, 28871, Spain; E-Mail: [email protected] † These authors contributed equally to this work. ‡ Present Address: Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +32-2-7647473; Fax: +32-2-7626853. Received: 28 June 2012; in revised form: 14 July 2012 / Accepted: 16 July 2012 / Published: 27 July 2012 Abstract: Autophagy is a ubiquitous eukaryotic process that also occurs in trypanosomatid parasites, protist organisms belonging to the supergroup Excavata, distinct from the supergroup Opistokontha that includes mammals and fungi. Half of the known yeast and mammalian AuTophaGy (ATG) proteins were detected in trypanosomatids, although with low sequence conservation. Trypanosomatids such as Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are responsible for serious tropical diseases in humans. The parasites are transmitted by insects and, consequently, have a complicated life cycle during which they undergo dramatic morphological and metabolic transformations to adapt to the different environments. -
Oneida Espinosa Álvarez Spliced Leader (SL) RNA: Análises De
Oneida Espinosa Álvarez Spliced Leader (SL) RNA: análises de genes e regiões intergênicas com aportes na filogenia, taxonomia e genotipagem de Trypanosoma spp. de todas as classes de vertebrados Tese apresentada ao Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro do Instituto de Ciências Biomédicas da Universidade de São Paulo, para a obtenção do Título de Doutor em Ciências. Área de concentração: Biología da Relação Patógeno- Hospedeiro Orientadora: Profa. Dra. Marta Maria Geraldes Teixeira Versão corrigida. A versão original eletrônica, encontra-se disponível tanto na Biblioteca do ICB quanto na Biblioteca Digital de Teses e Dissertações da USP (BDTD) São Paulo 2017 RESUMO Álvarez OE. Análises estruturais, filogenéticas e do polimorfismo de genes Spliced Leader (SL) em Trypanosoma spp. de diversos hospedeiros vertebrados. [Tese (Doutorado em Parasitologia)]. São Paulo: Instituto de Ciências Biomédicas, Universidade de São Paulo; 2017. Tripanossomas são parasitas obrigatórios de uma grande variedade de hospedeiros vertebrados e invertebrados com um número crescente de espécies, linhagens e genótipos sendo descritos nos últimos anos. Análises moleculares têm sido essenciais para conhecer a diversidade e compreender a complexidade e a história evolutiva dos tripanossomas patogênicos (humanos e animais) e não- patogênicos de todas as classes de vertebrados. Além dos marcadores filogenéticos tradicionais (SSU rRNA e gGAPDH genes), sequências do gene Spliced Leader (SL) e regiões intergênicas têm sido empregadas para identificação e genotipagem de tripanossomatídeos. No entanto, os estudos têm se restringido aos tripanosomas patogênicos para o homem e animais domésticos. Nosso principal objetivo neste estudo foi caracterizar sequências do gene SL (envolvido no mecanismo de processamento de RNA via trans-splicing) de uma grande amostra de tripanossomas, incluindo representantes de diferentes classes de vertebrados posicionados em todos os clados da árvore filogenética do gênero Trypanosoma. -
Programme Against African Trypanosomiasis Year 2006 Volume
ZFBS 1""5 1SPHSBNNF *44/ WPMVNF "HBJOTU "GSJDBO QBSU 5SZQBOPTPNJBTJT 43%43%!.$4290!./3/-)!3)3).&/2-!4)/. $EPARTMENTFOR )NTERNATIONAL $EVELOPMENT year 2006 PAAT Programme volume 29 Against African part 1 Trypanosomiasis TSETSE AND TRYPANOSOMIASIS INFORMATION Numbers 13466–13600 Edited by James Dargie Bisamberg Austria FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2006 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. All rights reserved. Reproduction and dissemination of material in this in- formation product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to the Chief, Electronic Publishing Policy and Support Branch, Information Division, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy or by e-mail to [email protected] © FAO 2006 Tsetse and Trypanosomiasis Information Volume 29 Part 1, 2006 Numbers 13466–13600 Tsetse and Trypanosomiasis Information TSETSE AND TRYPANOSOMIASIS INFORMATION The Tsetse and Trypanosomiasis Information periodical has been established to disseminate current information on all aspects of tsetse and trypanosomiasis research and control to institutions and individuals involved in the problems of African trypanosomiasis. -
Leishmaniasis in the United States: Emerging Issues in a Region of Low Endemicity
microorganisms Review Leishmaniasis in the United States: Emerging Issues in a Region of Low Endemicity John M. Curtin 1,2,* and Naomi E. Aronson 2 1 Infectious Diseases Service, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA 2 Infectious Diseases Division, Uniformed Services University, Bethesda, MD 20814, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-011-301-295-6400 Abstract: Leishmaniasis, a chronic and persistent intracellular protozoal infection caused by many different species within the genus Leishmania, is an unfamiliar disease to most North American providers. Clinical presentations may include asymptomatic and symptomatic visceral leishmaniasis (so-called Kala-azar), as well as cutaneous or mucosal disease. Although cutaneous leishmaniasis (caused by Leishmania mexicana in the United States) is endemic in some southwest states, other causes for concern include reactivation of imported visceral leishmaniasis remotely in time from the initial infection, and the possible long-term complications of chronic inflammation from asymptomatic infection. Climate change, the identification of competent vectors and reservoirs, a highly mobile populace, significant population groups with proven exposure history, HIV, and widespread use of immunosuppressive medications and organ transplant all create the potential for increased frequency of leishmaniasis in the U.S. Together, these factors could contribute to leishmaniasis emerging as a health threat in the U.S., including the possibility of sustained autochthonous spread of newly introduced visceral disease. We summarize recent data examining the epidemiology and major risk factors for acquisition of cutaneous and visceral leishmaniasis, with a special focus on Citation: Curtin, J.M.; Aronson, N.E. -
Leishmania Major Is Not Altered by in Vitro Exposure to 2,3,7,8‑Tetrachlorodibenzo‑P‑Dioxin Vera Sazhnev and Gregory K
Sazhnev and DeKrey BMC Res Notes (2018) 11:642 https://doi.org/10.1186/s13104-018-3759-x BMC Research Notes RESEARCH NOTE Open Access The growth and infectivity of Leishmania major is not altered by in vitro exposure to 2,3,7,8‑tetrachlorodibenzo‑p‑dioxin Vera Sazhnev and Gregory K. DeKrey* Abstract Objective: The numbers of Leishmania major parasites in foot lesions of C57Bl/6, BALB/c or SCID mice can be signif- cantly reduced by pre-exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). One potential mechanism to explain this enhanced resistance to infection is that TCDD is directly toxic to L. major. This potential mechanism was addressed by exposing L. major promastigotes and amastigotes to TCDD in vitro and examining their subsequent proliferation and infectivity. Results: We found no signifcant change in the rate of in vitro L. major proliferation (promastigotes or amastigotes) after TCDD exposure at concentrations up to 100 nM. Moreover, in vitro TCDD exposure did not signifcantly alter the ability of L. major to infect mice, trigger lesion formation, or survive in those lesions. Keywords: Leishmania major, Dioxin, TCDD, Proliferation, Infectivity Introduction Previous studies in this laboratory have found that the Approximately one million new cases of leishmaniasis numbers of L. major parasites in foot lesions of C57Bl/6, occur each year worldwide [1, 2]. Of the various forms, BALB/c or SCID mice can be signifcantly reduced by cutaneous leishmaniasis is the most common, and vis- exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) ceral leishmaniasis is the most deadly. -
M the Battle Against Neglected Tropical Diseases Forging the Chain “Results Innovative Build Trust, and with Intensified Trust, Commitment Management Escalates.”
SCENES FROM THE BATTLE AGAINST NEGLECTED TROPICAL DISEASES FORGING THE CHAIN “RESULTS INNOVATIVE BUILD TRUST, AND WITH INTENSIFIED TRUST, COMMITMENT MANAGEMENT ESCALATES.” Dr Margaret Chan, WHO Director-General “RESULTS INNOVATIVE BUILD TRUST, AND WITH INTENSIFIED TRUST, COMMITMENT MANAGEMENT ESCALATES.” Dr Margaret Chan, WHO Director-General WHO Library Cataloguing-in-Publication Data Forging the chain: scenes from the battle against neglected tropical diseases, with the support of innovative partners. 1. Tropical Medicine 2. Neglected Diseases I. World Health Organization ISBN 978 92 4 151000 4 (NLM classification: WC 680) © World Health Organization 2016 Acknowledgements All rights reserved. Publications of the World Health Organization are available on the WHO website Forging the chain: scenes from the battle against neglected tropical diseases (with the support of (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, innovative partners) was prepared by the Innovative and Intensified Disease Management (IDM) unit 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). of the WHO Department of Control of Neglected Tropical Diseases under the overall coordination and supervision of Dr Jean Jannin. Requests for permission to reproduce or translate WHO publications – whether for sale or for non-commercial distribution – should be addressed to WHO Press through the WHO website The writing team was coordinated by Deboh Akin-Akintunde and Lise Grout, in collaboration with (www.who.int/about/licensing/copyright_form/en/index.html). Grégoire Rigoulot Michel, Pedro Albajar Viñas, Kingsley Asiedu, Daniel Argaw Dagne, Jose Ramon Franco Minguell, Stéphanie Jourdan, Raquel Mercado, Gerardo Priotto, Prabha Rajamani, Jose The designations employed and the presentation of the material in this publication do not imply the Antonio Ruiz Postigo, Danilo Salvador and Patricia Scarrott. -
Maintenance of Trypanosoma Cruzi, T. Evansi and Leishmania Spp
IJP: Parasites and Wildlife 7 (2018) 398–404 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Maintenance of Trypanosoma cruzi, T. evansi and Leishmania spp. by domestic dogs and wild mammals in a rural settlement in Brazil-Bolivian border T ∗ Grasiela Edith de Oliveira Porfirioa, Filipe Martins Santosa, , Gabriel Carvalho de Macedoa, Wanessa Teixeira Gomes Barretob, João Bosco Vilela Camposa, Alyssa C. Meyersc, Marcos Rogério Andréd, Lívia Perlesd, Carina Elisei de Oliveiraa, Samanta Cristina das Chagas Xaviere, Gisele Braziliano de Andradea, Ana Maria Jansene, Heitor Miraglia Herreraa,b a Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Tamandaré Avenue, 6000. Jardim Seminário, Cep 79117-900, Campo Grande, Mato Grosso do Sul, Brazil b Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Costa e Silva Avenue, Cep 79070-900, Campo Grande, Mato Grosso do Sul, Brazil c Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, 4458, College Station, Texas, USA d Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Prof. Paulo Donato Castelane Street, Cep 14884-900, Jaboticabal, São Paulo, Brazil e Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Brazil Avenue, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, Brazil ARTICLE INFO ABSTRACT Keywords: Domestic dogs are considered reservoirs hosts for several vector-borne parasites. This study aimed to evaluate Canine the role of domestic dogs as hosts for Trypanosoma cruzi, Trypanosoma evansi and Leishmania spp. in single and Neglected diseases co-infections in the Urucum settlement, near the Brazil-Bolivian border. -
Ghanaian Mangrove Wetland Endophytic Fungus, Penicillium Herquei Strain BRS2A-AR Produces
Available online at http://www.ifgdg.org Int. J. Biol. Chem. Sci. 13(4): 1918-1937, August 2019 ISSN 1997-342X (Online), ISSN 1991-8631 (Print) Original Paper http://ajol.info/index.php/ijbcs http://indexmedicus.afro.who.int Ghanaian Mangrove Wetland Endophytic Fungus, Penicillium herquei strain BRS2A-AR produces (9Z, 11E)-13-oxooctadeca-9,11-dienoic acid with activity against Trichomonas mobilensis Kennedy HAYIBOR1, Samuel KWAIN1, Enoch OSEI1, Adwoa Padiki NARTEY1, Gilbert Mawuli TETEVI1, Kofi Baffour-Awuah OWUSU2, Mustafa CAMAS3, Anil Sazak CAMAS3 and Kwaku KYEREMEH1* 1 Marine and Plant Research Laboratory of Ghana, Department of Chemistry, School of Physical and Mathematical Sciences, University of Ghana, P.O. Box LG 56, Legon-Accra, Ghana. 2 Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon-Accra, Ghana. 3 Department of Bioengineering, Munzur University, 62000 Tunceli, Turkey. *Corresponding author; E-mail: [email protected]; Tel.: +233-50-482-9778 ABSTRACT Sub-Sahara Africa is burdened with a high incidence of parasitic infections, including schistosomiasis, trypanosomiasis, trichomoniasis, and leishmaniasis. Currently, there is a rapid widespread development of resistance to prescription drugs for these neglected diseases. Microbes provide the largest chemical and biological diversity in drug discovery screening programs; therefore, our project seeks to explore microbes in the sub-region for new drugs. The oxylipin (9Z,11E)-13-oxooctadeca-9,11-dienoic acid (1) was isolated from the Ghanaian endophytic fungus, Penicillium herquei strain BRS2A-AR obtained from the leaves of a Laguncularia racemosa tree growing on the banks of the River Butre in the Western Regional wetlands of Ghana.