Insights Into the Lifestyle of Uncultured Bacterial Natural Product

Total Page:16

File Type:pdf, Size:1020Kb

Insights Into the Lifestyle of Uncultured Bacterial Natural Product Insights into the lifestyle of uncultured bacterial PNAS PLUS natural product factories associated with marine sponges Gerald Lacknera,b, Eike Edzard Petersa, Eric J. N. Helfricha, and Jörn Piela,1 aInstitute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland; and bJunior Research Group Synthetic Microbiology, Friedrich Schiller University at the Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, 07745 Jena, Germany Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved December 7, 2016 (received for review September 29, 2016) The as-yet uncultured filamentous bacteria “Candidatus Entotheonella anticancer drug candidate discodermolide (9, 10), but their chemical factor” and “Candidatus Entotheonella gemina” live associated with role remains unclear (11). Despite repeated efforts (12, 13), the vast themarinespongeTheonella swinhoei Y, the source of numerous majority of T. swinhoei symbionts, including Ca. Entotheonella, re- unusual bioactive natural products. Belonging to the proposed candi- main uncultured to date, except for a report on the detection of date phylum “Tectomicrobia,” Candidatus Entotheonella members are Ca. Entotheonella in a mixed culture (7). There is some pros- only distantly related to any cultivated organism. The Ca.E.factorhas pect, however, of overcoming this challenge by genomics-based been identified as the source of almost all polyketide and modified targeted cultivation (14). peptides families reported from the sponge host, and both Ca. Ento- By metagenomic, single-particle genomic, and functional studies, we theonella phylotypes contain numerous additional genes for as-yet and collaborators recently provided evidence that almost all known unknown metabolites. Here, we provide insights into the biology of bioactive polyketides and modified peptides previously reported from these remarkable bacteria using genomic, (meta)proteomic, and chem- a Japanese chemotype of T. swinhoei (termed “chemotype Y”)are ical methods. The data suggest a metabolic model of Ca. Entotheonella produced by a single member of the complex microbiome named as facultative anaerobic, organotrophic organisms with the ability to “Candidatus Entotheonella factor” TSY1 (15–18). In this sponge, the use methanol as an energy source. The symbionts appear to be auxo- bacterium co-occurs with a second Ca. Entotheonella symbiont (15) trophic for some vitamins, but have the potential to produce most that, based on average nucleotide identity values, is a distinct candi- amino acids as well as rare cofactors like coenzyme F420.Thelatter date species and was termed “Candidatus Entotheonella gemina” likely accounts for the strong autofluorescence of Ca. Entotheonella TSY2 (21). Disentangling the metagenomic sequence data by binning filaments. A large expansion of proteinfamiliesinvolvedinregulation analysis revealed a striking number of natural product gene clusters in and conversion of organic molecules indicates roles in host–bacterial both phylotypes, but assigned all clusters for attributable T. swinhoei interaction. In addition, a massive overrepresentation of members of Y compounds (onnamides, polytheonamides, keramamides, pseudo- the luciferase-like monooxygenase superfamily points toward an im- theonamides, cyclotheonamides, and nazumamides) to Ca.E.factor portant role of these proteins in Ca. Entotheonella. Furthermore, we (15). In addition, multiple clusters for as-yet cryptic natural products MICROBIOLOGY performed mass spectrometric imaging combined with fluorescence in were identified in both phylotypes,suggestinganevenhigherbio- situ hybridization to localize Ca. Entotheonella and some of the bio- synthetic capacity. Both phylotypes remain as-yet uncultivated; are active natural products in the sponge tissue. These metabolic insights only distantly related to any cultivated bacterium; and, on the basis of into a new candidate phylum offer hints on the targeted cultivation of phylogenomic data, belong to a novel candidate phylum that was the chemically most prolific microorganisms known from microbial termed “Tectomicrobia” (15). dark matter. Recently, we presented evidence that another Ca. Entotheonella phylotype, “Candidatus Entotheonella serta,” present in the chemically uncultivated bacteria | natural products | genomics | proteomics | symbiosis Significance arine sponges are prolific sources of bioactive natural products The candidate genus “Candidatus Entotheonella” belongs to a Mand of great interest for drug development (1). Besides their recently proposed bacterial candidate phylum with largely un- pharmacological potential, sponges are among the oldest metazoans known properties due to the lack of cultivated members. Among – and have attracted attention as ancient models of animal bacterial the few known biological properties is an association of Ca. symbioses. Many sponges harbor highly abundant bacterial commu- Entotheonella with marine sponges and an extraordinarily rich nities that exhibit a similar biological complexity as the human genomic potential for bioactive natural products with unique microbiome (2, 3), but the ecological roles of these mostly un- structures and unprecedented biosynthetic enzymology. In- cultivated microbes remain largely elusive. One of the functions, for creasing evidence suggests that Ca. Entotheonella are wide- which evidence is accumulating, is the production of toxic natural spread key producers of sponge natural products with a chemical products that might contribute to host defense (4, 5). Significant ef- richness comparable to soil actinomycetes. Given the unusual forts have been made to connect the chemistry of sponges to possible biology and exceptional pharmacological potential of Ca.Ento- bacterial producers, largely motivated by the prospect of developing theonella, the bioinformatic and functional insights into their sustainable production systems for drug development. One of the lifestyle presented here provide diverse avenues for marine important sponge models that has emerged in these studies is The- natural product research, biotechnology, and microbial ecology. onella swinhoei, a chemically exceptionally rich complex of distinct chemotypes. Pioneering work on a variant from Palau revealed the Author contributions: J.P. designed research; G.L., E.E.P., and E.J.N.H. performed research; presence of filamentous, multicellular bacteria that could be G.L. and J.P. analyzed data; and G.L. and J.P. wrote the paper. mechanically enriched and contained elevated amounts of theopa- The authors declare no conflict of interest. lauamide-type antifungal peptides (6). The symbiont was assigned to This article is a PNAS Direct Submission. a new candidate genus and named “Candidatus Entotheonella pal- 1To whom correspondence should be addressed. Email: [email protected]. ” auensis (7). Related Candidatus Entotheonella bacteria were also This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. detected in the sponge Discodermia dissoluta (8), the source of the 1073/pnas.1616234114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1616234114 PNAS | Published online January 3, 2017 | E347–E356 Downloaded by guest on September 28, 2021 distinct Japanese sponge T. swinhoei WA, is the producer of (at a false discovery rate of 1%). Considering the challenging the actin-binding polyketide misakinolide (19). Additional Ca. sample and large genome size of ca. 9Mb,thisproteomecoverage Entotheonella variants were also detected by PCR in a wide range of is respectable. The lower number of identifications for Ca.E. other sponge species (15) and were connected to natural product gemina is most likely due to the lower abundance of Ca.E.gemina biosynthesis in the sponge Discodermia calyx (20, 21). These data and in the sample as determined by genome sequencing (15). the previous Ca. Entotheonella studies mentioned above (6–8) suggest a more general relevance for the production of sponge- Central Carbon and Energy Metabolism. One important aspect of derived compounds. Biosynthetic pathways from Ca. Entotheonella genomic research on uncultured bacteria is the deduction of meta- exhibit a high frequency of unusual enzymatic features, and their bolic pathways that might deliver valuable information for targeted chemistry shows little similarity to the chemistry of cultivated cultivation experiments. Important clues for successful cultivation bacteria (17, 22–24). Being the first example of a chemically pro- are, for instance, potential energy sources, carbon sources, and tol- lific taxon among uncultivated bacteria, these producers offer ex- erance to oxygen. Concerning oxygen, the DNA-based data suggest citing opportunities for pharmaceutical applications, for systematic that Ca.E.factorandCa. E. gemina perform aerobic metabolism studies on the ecology of sponge-associated bacteria, and for in- and are likely facultative anaerobes. Both strains harbor genes vestigating functional properties of elusive candidate phyla. encoding a respiratory chain, including cytochrome c oxidase Since our first release of the Ca. Entotheonella genomes from (expressed) as well as catalase (expressed) and superoxide dismutase T. swinhoei Y (15), we have made several attempts to close gaps in (Dataset S1). In addition, anaerobic growth might be promoted, as the metagenome by rounds of PacBio and Illumina sequencing. suggested by putative fermentation pathways to D-lactate, to acetate, Unfortunately,
Recommended publications
  • Lithistid’ Tetractinellid
    1 Systematics of ‘lithistid’ tetractinellid 2 demosponges from the Tropical Western 3 Atlantic – implications for phylodiversity 4 and bathymetric distribution 1,2 3 4 5 Astrid Schuster , Shirley A. Pomponi , Andrzej Pisera , Paco 5 6 1,7,8 1,8 6 Cardenas´ , Michelle Kelly , Gert Worheide¨ , and Dirk Erpenbeck 1 7 Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, 8 Ludwig-Maximilians-Universitat¨ M ¨unchen, Richard-Wagner Str. 10, 80333 Munich, 9 Germany 2 10 Current address: Department of Biology, NordCEE, Southern University of Denmark, 11 Campusvej 55, 5300 M Odense, Denmark 3 12 Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, 13 Ft Pierce, FL 34946, USA 4 14 Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 15 Warszawa, Poland 5 16 Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Husargatan 17 3, 75123 Uppsala, Sweden 6 18 National Centre for Coasts and Oceans, National Institute of Water and Atmospheric 19 Research, Private Bag 99940, Newmarket, Auckland, 1149, New Zealand 7 20 SNSB-Bayerische Staatssammlung f ¨urPalaontologie¨ und Geologie, Richard-Wagner 21 Str. 10, 80333 Munich, Germany 8 22 GeoBio-CenterLMU, Ludwig-Maximilians-Universitat¨ M ¨unchen, Richard-Wagner Str. 10, 23 80333 Munich, Germany 24 Corresponding author: 1,8 25 Dirk Erpenbeck 26 Email address: [email protected] 27 ABSTRACT PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27673v1 | CC BY 4.0 Open Access | rec: 22 Apr 2019, publ: 22 Apr 2019 28 Background Among all present demosponges, lithistids represent a polyphyletic group with 29 exceptionally well preserved fossils dating back to the Cambrian.
    [Show full text]
  • Natural Products from the Lithistida: a Review of the Literature Since 2000
    Mar. Drugs 2011, 9, 2643-2682; doi:10.3390/md9122643 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Natural Products from the Lithistida: A Review of the Literature since 2000 Priscilla L. Winder, Shirley A. Pomponi and Amy E. Wright * Harbor Branch Oceanographic Institution at Florida Atlantic University, Center for Marine Biomedical and Biotechnology Research, 5600 US 1 North, Fort Pierce, FL 34946, USA; E-Mails: [email protected] (P.L.W.); [email protected] (S.A.P.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-772-242-2459; Fax: +1-772-242-2332. Received: 27 September 2011; in revised form: 9 November 2011 / Accepted: 6 December 2011 / Published: 15 December 2011 Abstract: Lithistid sponges are known to produce a diverse array of compounds ranging from polyketides, cyclic and linear peptides, alkaloids, pigments, lipids, and sterols. A majority of these structurally complex compounds have very potent and interesting biological activities. It has been a decade since a thorough review has been published that summarizes the literature on the natural products reported from this amazing sponge order. This review provides an update on the current taxonomic classification of the Lithistida, describes structures and biological activities of 131 new natural products, and discusses highlights from the total syntheses of 16 compounds from marine sponges of the Order Lithistida providing a compilation of the literature since the last review published in 2002. Keywords: Lithistida; lithistid; Theonella; desmas; natural product 1. Introduction The Order Lithistida is a polyphyletic assemblage of sponges grouped together based on interlocking siliceous spicules called desmas that make up their skeleton [1,2].
    [Show full text]
  • Molecular Phylogenetics Suggests a New Classification and Uncovers Convergent Evolution of Lithistid Demosponges
    RESEARCH ARTICLE Deceptive Desmas: Molecular Phylogenetics Suggests a New Classification and Uncovers Convergent Evolution of Lithistid Demosponges Astrid Schuster1,2, Dirk Erpenbeck1,3, Andrzej Pisera4, John Hooper5,6, Monika Bryce5,7, Jane Fromont7, Gert Wo¨ rheide1,2,3* 1. Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians- Universita¨tMu¨nchen, Richard-Wagner Str. 10, 80333 Munich, Germany, 2. SNSB – Bavarian State Collections OPEN ACCESS of Palaeontology and Geology, Richard-Wagner Str. 10, 80333 Munich, Germany, 3. GeoBio-CenterLMU, Ludwig-Maximilians-Universita¨t Mu¨nchen, Richard-Wagner Str. 10, 80333 Munich, Germany, 4. Institute of Citation: Schuster A, Erpenbeck D, Pisera A, Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland, 5. Queensland Hooper J, Bryce M, et al. (2015) Deceptive Museum, PO Box 3300, South Brisbane, QLD 4101, Australia, 6. Eskitis Institute for Drug Discovery, Griffith Desmas: Molecular Phylogenetics Suggests a New Classification and Uncovers Convergent Evolution University, Nathan, QLD 4111, Australia, 7. Department of Aquatic Zoology, Western Australian Museum, of Lithistid Demosponges. PLoS ONE 10(1): Locked Bag 49, Welshpool DC, Western Australia, 6986, Australia e116038. doi:10.1371/journal.pone.0116038 *[email protected] Editor: Mikhail V. Matz, University of Texas, United States of America Received: July 3, 2014 Accepted: November 30, 2014 Abstract Published: January 7, 2015 Reconciling the fossil record with molecular phylogenies to enhance the Copyright: ß 2015 Schuster et al. This is an understanding of animal evolution is a challenging task, especially for taxa with a open-access article distributed under the terms of the Creative Commons Attribution License, which mostly poor fossil record, such as sponges (Porifera).
    [Show full text]
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1994 Elsevier B.V. This manuscript is an author version with the final publication available at http://www.sciencedirect.com/science/journal/03051978 and may be cited as: Kelly‐Borges, M., Robinson, E. V., Gunasekera, S. P., Gunasekera, M., Gulavita, N. K., & Pomponi, S. A. (1994). Species differentiation in the marine sponge genus Discodermia (Demospongiae, Lithistida): the utility of ethanol extract profiles as species‐specific chemotaxonomic markers. Biochemical Systematics and Ecology, 22(4), 353‐365. doi:10.1016/0305‐1978(94)90026‐4 Biochemical Systematics and Ecology. Vol.22, No.4, pp. 353-365, 1994 Copyright © 1994 Elsevier Science ltd Printed in Great Britain. All rights reserved 0305-1978/94 $7.00+0.00 0305-1978(94)EOOO3-X Species Differentiation in the Marine Sponge Genus Discodermia (Demospongiae: Lithistida): the Utility of Ethanol Extract Profiles as Species-Specific Chemotaxonomic Markers* MICHELLE KELLY-BORGES,t ELISE V. ROBINSON, SARATH P. GUNASEKERA, MALIKA GUNASEKERA, NANDA K. GULAVITA and SHIRLEY A. POMPONI:f Division of Biomedical Marine Research,Harbor Branch Oceanographic Institution, 5600 North U.S. 1. Fort Pierce. FL 34946. U.SA; tPresent address: Department of Zoology, The Natural History Museum. Cromwell Road. London SW7 5BD. U.K. Key Word Index-Theonellidae; Lithistida; Demospongiae; Porifera; Discoderrnia; chemotaxonomy; thin layer chromatography; 'H-NMR spectra; taxonomic relationships. Abstract-Many species of the marine sponge genus Discoderrnia (Lithistida. Theonellidae) are difficult to differentiate due to plasticity of their morphological features. Ethanol extracts of 26 specimens of central Atlantic Discoderrnia spp.
    [Show full text]
  • Sniðmát Meistaraverkefnis HÍ
    Exploring marine sponges and their associated microorganisms as a source of natural compounds Margarida Costa Thesis for the degree of Philosophiae Doctor December 2018 Leit að sjávarnáttúruefnum úr svömpum og samlífsörverum þeirra Margarida Costa Ritgerð til doktorsgráðu Háskóli Íslands Heilbrigðisvísindasvið Lyfjafræðideild Desember 2018 Thesis for a doctoral degree at the University of Iceland. All right reserved. No part of this publication may be reproduced in any form without the prior permission of the copyright holder. © Margarida Costa 2018 ISBN 978-9935-9445-1-1 Printing by Háskolaprent Reykjavik, Iceland 2018 Author´s address Ana Margarida Pinto e Costa Faculty of Pharmaceutical Sciences School of Health Sciences University of Iceland Supervisor Professor Margrét Thorsteinsdóttir Faculty of Pharmaceutical Sciences School of Health Sciences University of Iceland Co-supervisor Professor Sesselja Ómarsdóttir Faculty of Pharmaceutical Sciences School of Health Sciences University of Iceland Doctoral committee Professor Elín Soffia Ólafsdóttir (other than Faculty of Pharmaceutical Sciences supervisors) School of Health Sciences University of Iceland Dr. Marta Pérez Natural Products Department PharmaMar, Spain Opponents Professor Olivier Thomas School of Chemistry, Marine Biodiscovery National University of Ireland Assistant Professor Benjamín Sveinbjörnsson Faculty of Physical Sciences School of Engineering and Natural Sciences University of Iceland Ágrip Hafið hefur að geyma mikinn líffræðilegan fjölbreytileika er gríðarleg uppspretta lífvirkra efnasambanda með mikla möguleika á þróun nýrra lyfjasprota. Sjávarsvampar og samlífsörverur þeirra framleiða fjölbreytileg og einstök annarstigs efnasambönd. Markmið þessa verkefnis var að rannsaka efnainnihald og lífvirkni náttúruefna úr mismunandi sjávarasvömpum og samlífsörverum þeirra. Í því skyni var fimm svömpum safnað í hafinu í kringum Ísland, þremur svömpum úr Indó-Kyrrahafinu og tvær tegundir geislagerla (e.actinomycetes) safnað af svömpum, þeir ræktaðir upp og einangraðir.
    [Show full text]
  • Burkholderia As Bacterial Symbionts of Lagriinae Beetles
    Burkholderia as bacterial symbionts of Lagriinae beetles Symbiont transmission, prevalence and ecological significance in Lagria villosa and Lagria hirta (Coleoptera: Tenebrionidae) Dissertation To Fulfill the Requirements for the Degree of „doctor rerum naturalium“ (Dr. rer. nat.) Submitted to the Council of the Faculty of Biology and Pharmacy of the Friedrich Schiller University Jena by B.Sc. Laura Victoria Flórez born on 19.08.1986 in Bogotá, Colombia Gutachter: 1) Prof. Dr. Martin Kaltenpoth – Johannes-Gutenberg-Universität, Mainz 2) Prof. Dr. Martha S. Hunter – University of Arizona, U.S.A. 3) Prof. Dr. Christian Hertweck – Friedrich-Schiller-Universität, Jena Das Promotionskolloquium wurde abgelegt am: 11.11.2016 “It's life that matters, nothing but life—the process of discovering, the everlasting and perpetual process, not the discovery itself, at all.” Fyodor Dostoyevsky, The Idiot CONTENT List of publications ................................................................................................................ 1 CHAPTER 1: General Introduction ....................................................................................... 2 1.1. The significance of microorganisms in eukaryote biology ....................................................... 2 1.2. The versatile lifestyles of Burkholderia bacteria .................................................................... 4 1.3. Lagriinae beetles and their unexplored symbiosis with bacteria ................................................ 6 1.4. Thesis outline ..........................................................................................................
    [Show full text]
  • The Lithistid Demospongiae in New Zealand: Species Composition and Distribution
    Please do not remove this page The lithistid Demospongiae in New Zealand: species composition and distribution Kelly, Michelle; Ellwood, Michael; Lincoln, Tubbs; Buckeridge, John https://researchrepository.rmit.edu.au/discovery/delivery/61RMIT_INST:ResearchRepository/12247292150001341?l#13248428070001341 Kelly, M., Ellwood, M., Lincoln, T., & Buckeridge, J. (2006). The lithistid Demospongiae in New Zealand: species composition and distribution. Serie Livros 28, Porifera Research: Biodiversity, Innovation and Sustainability, 393–404. https://researchrepository.rmit.edu.au/discovery/fulldisplay/alma9921860555001341/61RMIT_INST:Resea rchRepository Document Version: Published Version Repository homepage: https://researchrepository.rmit.edu.au © Museu Nacional, Brasil Downloaded On 2021/09/28 08:43:28 +1000 Please do not remove this page Thank you for downloading this document from the RMIT Research Repository 7KH50,75HVHDUFK5HSRVLWRU\LVDQRSHHQDFFHVVGDWDEDVHVKRZFDVLQJWWKHUHVHDUFK RXWSXWVRI50,78QLYHUVLW\UHVHDUFKHUV 50,755HVHDUFK5HHSRVLWRU\KWWSUHVHDUFKEDQNUPLWHGXDX Citation: Kelly, M, Ellwood, M, Lincoln, T and Buckeridge, J 2006, 'The lithistid Demospongiae in New Zealand: species composition and distribution', in Serie Livros 28, Porifera Research: Biodiversity, Innovation and Sustainability, Rio di Janeiro, Brasil, 7-13 May 2006, pp. 393-404. See this record in the RMIT Research Repository at: https://researchbank.rmit.edu.au/view/rmit:3846 Version: Published Version Copyright Statement: © Museu Nacional, Brasil Link to Published Version: http://trove.nla.gov.au/work/26588484 PLEASE DO NOT REMOVE THIS PAGE PORIFERA RESEARCH: BIODIVERSITY, INNOVATION AND SUSTAINABILITY - 2007 393 The lithistid Demospongiae in New Zealand waters: species composition and distribution Michelle Kelly(1*), Michael Ellwood(2), Lincoln Tubbs(3), John Buckeridge(4) (1) National Centre for Aquatic Biodiversity and Biosecurity, National Institute of Water and Atmospheric Research (NIWA) Ltd, Newmarket, Auckland, New Zealand.
    [Show full text]
  • Natural Products from the Lithistida: a Review of the Literature Since 2000
    Mar. Drugs 2011, 9, 2643-2682; doi:10.3390/md9122643 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Natural Products from the Lithistida: A Review of the Literature since 2000 Priscilla L. Winder, Shirley A. Pomponi and Amy E. Wright * Harbor Branch Oceanographic Institution at Florida Atlantic University, Center for Marine Biomedical and Biotechnology Research, 5600 US 1 North, Fort Pierce, FL 34946, USA; E-Mails: [email protected] (P.L.W.); [email protected] (S.A.P.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-772-242-2459; Fax: +1-772-242-2332. Received: 27 September 2011; in revised form: 9 November 2011 / Accepted: 6 December 2011 / Published: 15 December 2011 Abstract: Lithistid sponges are known to produce a diverse array of compounds ranging from polyketides, cyclic and linear peptides, alkaloids, pigments, lipids, and sterols. A majority of these structurally complex compounds have very potent and interesting biological activities. It has been a decade since a thorough review has been published that summarizes the literature on the natural products reported from this amazing sponge order. This review provides an update on the current taxonomic classification of the Lithistida, describes structures and biological activities of 131 new natural products, and discusses highlights from the total syntheses of 16 compounds from marine sponges of the Order Lithistida providing a compilation of the literature since the last review published in 2002. Keywords: Lithistida; lithistid; Theonella; desmas; natural product 1. Introduction The Order Lithistida is a polyphyletic assemblage of sponges grouped together based on interlocking siliceous spicules called desmas that make up their skeleton [1,2].
    [Show full text]
  • In Vitro Determination of Marine Spon Effect Against Human Breas Ination
    Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 5, Issue, 02, pp. 124-128, February, 2013 ISSN: 0975-833X RESEARCH ARTICLE In vitro Determination of Marine Sponge Hyrtios erectus Secondary Metabolite Effect against Human Breast and Larynx Cancer Cell Lines 1Ramachandran, M. 2Titus Immanuel, 1Manley Backyavathy, P. and 1*Balwin Nambikkairaj 1Department of Zoology, Voorhees College, Thiruvalluvar University, Vellore, Tamil Nadu, India 2Fisheries Division, Central Agricultural Research Institute, Port Blair, A and N Islands, India ARTICLE INFO ABSTRACT Article History: Marine sponges are rich sources of novel secondary metabolite and they are potential drug molecule to antitumor Received 19th November, 2012 and antiprolific drug development. Hyrtios erectus was extracted and purified through different solvent fractions Received in revised form methods. Pure compound was obtained as brownish amorphous powder. The positive test for dragendorff reagent 24th December, 2012 was indicated as alkaloid group. Cytotoxicity was tested on Normal (Vero) cell line non tumor cells, Human Accepted 17th January, 2013 Breast cancer cell line (MCF-7) and Human epithelial larynx cancer cell line (Hep-2) using microculture th tetrazolium (MTT) assay for anticancer activity. Sponge pure compound was non‐toxic to (Vero) cells but highly Published online 14 February, 2013 cytotoxicity to (53%) MCF-7 cells and low toxic to Hep-2(32%) was recorded at 25μg/ml concentration. Each concentrations express individual results of cells viability with cytotoxicity increase and decrease of their Key words: concentration level of pure compound. In this research further investigation require for this sponge purified Hyrtios erectus, compound in order to chemical structure elucidations as well as pre clinical study for anticancer activity.
    [Show full text]
  • 7967B8bd483179cea03dd7a102
    RESEARCH ARTICLE Metagenomic Analysis of the Sponge Discodermia Reveals the Production of the Cyanobacterial Natural Product Kasumigamide by ‘Entotheonella’ Yu Nakashima1, Yoko Egami2, Miki Kimura1, Toshiyuki Wakimoto2*, Ikuro Abe1* 1 Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan, a11111 2 Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan * [email protected] (TW); [email protected] (IA) Abstract Sponge metagenomes are a useful platform to mine cryptic biosynthetic gene clusters OPEN ACCESS responsible for production of natural products involved in the sponge-microbe association. Citation: Nakashima Y, Egami Y, Kimura M, Wakimoto T, Abe I (2016) Metagenomic Analysis Since numerous sponge-derived bioactive metabolites are biosynthesized by the symbiotic of the Sponge Discodermia Reveals the Production bacteria, this strategy may concurrently reveal sponge-symbiont produced compounds. of the Cyanobacterial Natural Product Accordingly, a metagenomic analysis of the Japanese marine sponge Discodermia calyx Kasumigamide by `Entotheonella'. PLoS ONE 11 has resulted in the identification of a hybrid type I polyketide synthase-nonribosomal pep- (10): e0164468. doi:10.1371/journal. pone.0164468 tide synthetase gene (kas). Bioinformatic analysis of the gene product suggested its involvement in the biosynthesis of kasumigamide, a tetrapeptide originally isolated from Editor: Torsten Thomas, University of New South Wales, AUSTRALIA freshwater free-living cyanobacterium Microcystis aeruginosa NIES-87. Subsequent inves- tigation of the sponge metabolic profile revealed the presence of kasumigamide in the Received: April 26, 2016 sponge extract. The kasumigamide producing bacterium was identified as an `Entotheo- Accepted: September 26, 2016 nella' sp. Moreover, an in silico analysis of kas gene homologs uncovered the presence of Published: October 12, 2016 kas family genes in two additional bacteria from different phyla.
    [Show full text]
  • Inventory of Sponge Fauna from the Singapore Strait to Taiwan Strait Along the Western Coastline of the South China Sea
    Lim et al.: Inventory of sponges along the western coastline of South China Sea RAFFLES BULLETIN OF ZOOLOGY Supplement No. 34: 104–129 Date of publication: 29 June 2016 http://zoobank.org/urn:lsid:zoobank.org:pub:C725BB33-2729-4721-930B-F6738AC7E57D Inventory of sponge fauna from the Singapore Strait to Taiwan Strait along the western coastline of the South China Sea Swee-Cheng Lim1*, Sumaitt Putchakarn2, Minh-Quang Thai3, Dexiang Wang4 & Yusheng M Huang5 Abstract. An inventory of the sponge fauna from the Singapore Strait to the Taiwan Strait along the western coastline of the South China Sea was compiled from published and grey literature from the following regions: Singapore, peninsular Malaysia, Thailand, Cambodia, Vietnam, southern China and Taiwan. This study provides a partial update to the “Checklist of sponges (Porifera) of the South China Sea region” published 15 years ago. A total of 388 sponge species belonging to 24 orders, 78 families and 158 genera are listed, with the following regional species diversities: Singapore (130); east coast of peninsular Malaysia (25); Gulf of Thailand (90); Vietnam (141); southern China (138); and Taiwan (64). A total of 12 new species and over 200 new records were added to the Porifera inventory of the South China Sea since 2001. Of the 388 species, only 16 species (4%) are widespread. They are: Aaptos suberitoides, Acanthella cavernosa, Biemna fortis, Cinachyrella australiensis, Clathria (Thalysias) reinwardti, Coelocarteria singaporensis, Echinodictyum asperum, Hyrtios erectus, Haliclona (Gellius) cymaeformis, Iotrochota baculifera, I. purpurea, Mycale (Zygomycale) parishii, Neopetrosia exigua, Oceanapia sagittaria, Spheciospongia vagabunda, Xestospongia testudinaria. Only X. testudinaria, M.
    [Show full text]
  • Porifera, Demospongiae, Tetractinellida), with the Description of Three New Species
    European Journal of Taxonomy 506: 1–25 ISSN 2118-9773 https://doi.org/10.5852/ejt.2019.506 www.europeanjournaloftaxonomy.eu 2019 · Kelly M. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:0D5F8DFB-C1AC-47F5-9129-C9241DF3DB04 Molecular study supports the position of the New Zealand endemic genus Lamellomorpha in the family Vulcanellidae (Porifera, Demospongiae, Tetractinellida), with the description of three new species Michelle KELLY 1,*, Paco CÁRDENAS 2,*, Nicola RUSH 3, Carina SIM-SMITH 4, Diana MACPHERSON 5, Mike PAGE 6 & Lori J. BELL 7 1,3,4 Coasts and Oceans National Centre, National Institute of Water and Atmospheric Research, P.O. Box 109–695, Newmarket, Auckland, New Zealand. 2 Pharmacognosy, Department of Medicinal Chemistry, BioMedical Centre, Husargatan 3, Uppsala University, 751 23 Uppsala, Sweden. 5 Coasts and Oceans National Centre, National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington, New Zealand. 6 Coasts and Oceans National Centre, National Institute of Water and Atmospheric Research, P.O. Box 893, Nelson, New Zealand. 7 Coral Reef Research Foundation, Box 1765, Koror, 96940 Palau. * Corresponding authors: [email protected] 1, [email protected] 2 3 Email: [email protected] 4 Email: [email protected] 5 Email: [email protected] 6 Email: [email protected] 7 Email: [email protected] 1 urn:lsid:zoobank.org:author:F9B821F7-90D0-40C5-8FB3-E96FB0502A4D 2 urn:lsid:zoobank.org:author:9063C523-49FC-427E-9E84-DBC31C5DB6D3 3 urn:lsid:zoobank.org:author:D3B1B062-6550-46C0-B562-DDDC42EEE215 4 urn:lsid:zoobank.org:author:F0205A9D-64B1-4561-8D6B-13429DC01FF3 5 urn:lsid:zoobank.org:author:106CF6B0-9E37-40BB-A85B-0C08010FFEFB 6 urn:lsid:zoobank.org:author:75F24D6D-DB93-4CFC-8978-55BE8404BEB3 7 urn:lsid:zoobank.org:author:4D42296F-6565-4E8F-AEBA-202E240B320C Abstract.
    [Show full text]