geosciences Article Analysis of Enhanced Geothermal System Development Scenarios for District Heating and Cooling of the Göttingen University Campus Dmitry Romanov 1,2,3,* and Bernd Leiss 1,2 1 Geoscience Centre, Department of Structural Geology and Geodynamics, Georg-August-Universität Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany;
[email protected] 2 Universitätsenergie Göttingen GmbH, Hospitalstraße 3, 37073 Göttingen, Germany 3 HAWK Hildesheim/Holzminden/Faculty of Resource Management, Göttingen University of Applied Sciences and Arts, Rudolf-Diesel-Straße 12, 37075 Göttingen, Germany * Correspondence:
[email protected] or
[email protected] Abstract: The huge energy potential of Enhanced Geothermal Systems (EGS) makes them perspective sources of non-intermittent renewable energy for the future. This paper focuses on potential scenarios of EGS development in a locally and in regard to geothermal exploration, poorly known geolog- ical setting—the Variscan fold-and-thrust belt —for district heating and cooling of the Göttingen University campus. On average, the considered single EGS doublet might cover about 20% of the heat demand and 6% of the cooling demand of the campus. The levelized cost of heat (LCOH), net Citation: Romanov, D.; Leiss, B. present value (NPV) and CO2 abatement cost were evaluated with the help of a spreadsheet-based Analysis of Enhanced Geothermal model. As a result, the majority of scenarios of the reference case are currently not profitable. Based System Development Scenarios for on the analysis, EGS heat output should be at least 11 MWth (with the brine flow rate being 40 l/s District Heating and Cooling of the and wellhead temperature being 140 ◦C) for a potentially profitable project.