Digital Pen and Paper Technology: a Tool for Data Capture and Patient Management

Total Page:16

File Type:pdf, Size:1020Kb

Digital Pen and Paper Technology: a Tool for Data Capture and Patient Management Clinical PRACTICE DEVELOPMENT Digital pen and paper technology: a tool for data capture and patient management As pressure for scarce health service resources rises, tissue viability services are coming under increasing pressure to justify both their service provision and treatment decisions, as well as demonstrate quality outcomes. In this paper we demonstrate how digital pen and paper technology can be used to capture and computerise patient data, while maintaining a convenient paper record without removing healthcare professionals from the immediate care environment. Kathryn Vowden, Peter Vowden care organisations. This makes data healthcare professionals, with attention KEY WORDS exchange and ongoing analysis difficult. being focused on the computer screen Digital pen and paper (DPP) and keyboard rather than the patient. The technology authors were keen to avoid this when Capture of ongoing care Audit integrating computerised records into the data and incidence data is wound healing unit. Wound care form design challenging. This problem Information technology (IT) is not helped by the variety From the user’s perspective, digital of care settings and data pen and paper technology allows the healthcare professional to continue management systems working within a familiar environment xperience with the Bradford wound involved in the delivery of using pen and paper. To use the care audit (Vowden and Vowden, wound care. This makes technology requires no additional E2009a, b, c, d) highlighted the data exchange and ongoing computer skills and only asks that the difficulties, such as eliminating data and analysis difficult. user writes legibly. The technology transcription errors, and time involved consists of two components; paper in converting paper-based records to pre-printed with a unique patented dot a digital format for analysis. Capture of For a number of years the authors pattern (Anoto Group AB, Lund), that ongoing care data and incidence data is have used a standard wound assessment is overprinted with the data entry form equally challenging. This problem is not tool and have manually entered selected and a digital pen, consisting of a normal helped by the variety of care settings patient data into an Access-based ballpoint pen, an integrated digital camera, and data management systems involved database (Microsoft). A fortuitous an image processor, memory for data in the delivery of wound care, as both meeting with Longhand Data Ltd (York, storage and a mobile communication documentation and computer systems www.longhanddata.com/) introduced device and docking port which also acts differ markedly both within and between the unit to digital pen and paper (DPP) as a charger for the pen (Figure 1). Each technology and provided the opportunity pen has its own unique code that allows to develop a series of digital forms data to be related to that specific pen. based on the unit’s proven wound When writing, the pen takes a series of assessment tool. The authors experience snapshots, more than 50 pictures being developing this system was presented at captured per second. The captured Wounds UK conference in Harrogate images are automatically date and time in November of 2009 and provided the stamped and contain positional data Kathryn Vowden is Nurse Consultant, Bradford Teaching experience and information base from derived from the unique underlying Hospital NHS Foundation Trust and University of Bradford; which the National Wound Assessment dot pattern, that also links the data to a Peter Vowden is Consultant Vascular Surgeon, Bradford form reported by Fletcher (2010) was specific form. The pen can also capture Teaching Hospitals NHS Foundation Trust and Visiting developed. Information technology can nib pressure data that further assists in Professor of Wound Healing Research, University of Bradford act as a barrier between patient and text recognition. A managed database, 74 Wounds uk, 2010, Vol 6, No 2 Clinical PRACTICE DEVELOPMENT utilising this digital pen and paper and free text entries, and a supporting met all IT data security and encryption technology and based on the National coding sheet for fields relating to criteria, and that it was compatible with Wound Assessment Form is now treatment actions and dressings was the National Spine and Connecting For commercially available from e-fficient. developed. Versions of the forms were Health NHS (this aims to introduce trialed by the wound healing unit staff modern computer systems into the The pen-captured data is encrypted on a number of different acute and NHS nationally to integrate patient care. and downloaded either locally or chronic wound types until an acceptable, The NHS Care Records Service [NHS to a central server for processing, and user-friendly data entry tool was CRS] comprises national [the ‘Spine’] and interpretation and verification. The obtained that was acceptable to the leg local databases; http://onlinetog.org/cgi/ data downloaded from the pen is first ulcer and wound care nurses working content/full/10/1/27). assembled as a picture that combines within the vascular and wound healing data downloaded from the pen and the unit. Work continues to further refine this Results appropriate form. In this case, the final for specific chronic wound types, such as Over a six-month period starting in image was provided in pdf format. Text pressure ulcers, diabetic foot wounds and January 2009, the authors’ unit have recognition software converts written venous leg ulcers. recorded wound care activity on data to a computer readable format, over 500 referred patients using this in this case an xml file. This data was Currently, two specific forms have been DPP technology. The data has allowed validated and corrected where necessary, developed, one for general wound care individual patient activity to be reviewed by comparing the text contained in the and the other for patients with leg ulcers, and tools to allow analysis of outcome image file to the data held in the xml file each of these forms share a common using a TELER-based system of indicators (Figure 2). Once validated, the data can core data set. The leg ulcer form, for (Browne et al, 2005) are now being be exported to either a spreadsheet or example, contains additional data sets developed. This should allow more database for analysis. relating to Doppler assessment and accurate assessment of outcome over compression therapy. Data was collected time and will capture patient opinion Method for both inpatients and outpatients at as well as clinical data. Interim analysis The structure of the existing paper-based initial referral and for some patients as part of the data entry validation forms were analysed and converted to at their follow-up visits. One of our process is currently being undertaken. a series of digital fields consisting of tick main concerns in developing the DPP This process is being used to identify boxes, lists, specified alpha-numeric fields technology was to ensure that the system areas within the form which require modification, and to improve letter and number legibility for individual healthcare Ink cartridge and Bluetooth professionals. force sensor USB contacts Battery transceiver The first 436 wound care assessment records have been reviewed for transcription accuracy and validated against the hospital patient administration Camera Image Memory system (PAS), and are being used to processor inform staff training and form design. Examples of areas where accuracy needs to be improved include writing of certain letters, ‘E’ being the most commonly noted error (Figure 2), with the patient’s Right Up name field being the most likely area where this error occurred. This was easily rectified during data review. Numeric data was very accurate, approaching 99% accuracy. Free text fields were most difficult to review and use for analysis but the handwriting, despite being variable, was reasonably accurately translated into typed script. Left Down Discussion The NHS faces a huge challenge 0.3 mm computerising patient records across care settings. Patients with a wound Figure 1. Diagrammatic representation of the pen and paper technology. cross many professional and healthcare 76 Wounds uk, 2010, Vol 6, No 2 boundaries, receiving care from a variety of healthcare professionals working in separate disciplines at disparate locations within different provider organisations, and, like many care groups with chronic diseases, often have extensive care records. In many ways, the frequent care episodes patients with wounds Higher performance require exacerbate this problem. These difficulties have all contributed to the less intervention well-recognised deficit in accurate data collection on treatment outcomes for improved quality of life patients with wounds. The documentation system that the authors have developed jointly with Longhand allows a patient- held paper record with live data capture, without removing the healthcare profession from the clinical environment. Important lessons have been learnt, both in the form of design and data entry. The next stage is to trial this system more widely outside of the authors’ trust and to extend the system to other areas of care. Conclusion This pilot has demonstrated an effective method of data capture that is, in the authors’ opinion, applicable to all care settings and which has the potential to be compatible with existing data systems. It is simple to use, requires no computer skills, and frees clinical staff from a computer, allowing them to continue with a familiar paper-based record system. TM TM What have the authors’ unit learnt 3M Tegaderm Foam Adhesive from their early experience developing High Performance Foam Adhesive Dressing and using this data capture system? The first, and perhaps most important factor, is that it is easy to use, maintains the advantages of a paper record, yet overcomes the task of transcribing data from paper to computer. Coming In addition, the system has been found to work well. Analysis of the first 436 forms available for validation showed that a slower, consistent and accurate soon .
Recommended publications
  • Smart Quill and Its Specifications Sandhiya E, Srimitha S Dr.N.G.P
    International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 50 ISSN 2229-5518 Smart Quill and its Specifications Sandhiya E, Srimitha S Dr.N.G.P. Institute of Technology, Coimbatore – 641648. Abstract-This paper illustrates the electronic pen which is easy to read the data and also capturing of data. It is an easy handling and portable devices. It is also a user friendly prototype. It was invented in Sam bridge UK lab by Lyndsay Williams. This pen will make our work easy and in a comfortable manner and its quite interesting one. INTRODUCTION Figure 1: Parts explaining the Smart Quill. Smart quill is a digital pen which reduces our work and makes it caption. It uses multiple of softwares and that makes It has two types of accelerometers. everything in a simple manner. Since it is 1. Two access accelerometer portable it can be taken with us wherever we It measures in two axes. It uses ADXL202 want. It doesn’t need of any paper or note. It to measure in two axes. itself capture the images and also we can 2. Three axes accelerometer: share it It measure in three axes. It uses +/-2G Its also has same security which accelerometer to measure it in three axes. protects our pen from other issues. Since it is a wireless medium it has plenty of Active Pens: applications in IJSERthis digital world. This pen Since it have been already will make everyone to be got amazed and mentioned this pen is an electronic one so interested to work with it.
    [Show full text]
  • Pen Interfaces
    Understanding the Pen Input Modality Presented at the Workshop on W3C MMI Architecture and Interfaces Nov 17, 2007 Sriganesh “Sri-G” Madhvanath Hewlett-Packard Labs, Bangalore, India [email protected] © 2006 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice Objective • Briefly describe different aspects of pen input • Provide some food for thought … Nov 17, 2007 Workshop on W3C MMI Architecture and Interfaces Unimodal input in the context of Multimodal Interfaces • Multimodal interfaces are frequently used unimodally − Based on • perceived suitability of modality to task • User experience, expertise and preference • It is important that a multimodal interface provide full support for individual modalities − “Multimodality” cannot be a substitute for incomplete/immature support for individual modalities Nov 17, 2007 Workshop on W3C MMI Architecture and Interfaces Pen Computing • Very long history … predates most other input modalities − Light pen was invented in 1957, mouse in 1963 ! • Several well-studied aspects: − Hardware − Interface − Handwriting recognition − Applications • Many famous failures (Go, Newton, CrossPad) • Enjoying resurgence since 90s because of PDAs and TabletPCs − New technologies such as Digital Paper (e.g. Anoto) and Touch allow more natural and “wow” experiences Nov 17, 2007 Workshop on W3C MMI Architecture and Interfaces Pen/Digitizer Hardware … • Objective: Detect pen position, maybe more • Various technologies with own limitations and characteristics (and new ones still being developed !) − Passive stylus • Touchscreens on PDAs, some tablets • Capacitive touchpads on laptops (Synaptics) • Vision techniques • IR sensors in bezel (NextWindow) − Active stylus • IR + ultrasonic (Pegasus, Mimeo) • Electromagnetic (Wacom) • Camera in pen tip & dots on paper (Anoto) • Wide variation in form − Scale: mobile phone to whiteboard (e.g.
    [Show full text]
  • Public Digital Note-Taking in Lectures
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Public digital note-taking in lectures Permalink https://escholarship.org/uc/item/0j62q16k Author Malani, Roshni Publication Date 2009 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Public Digital Note-Taking in Lectures A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Computer Science and Engineering by Roshni Malani Committee in charge: William G. Griswold, Chair James D. Hollan James A. Levin Akos Rona-Tas Beth Simon 2009 Copyright Roshni Malani, 2009 All rights reserved. The dissertation of Roshni Malani is approved, and it is ac- ceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2009 iii DEDICATION To my beloved family. iv TABLE OF CONTENTS Signature Page .................................... iii Dedication ....................................... iv Table of Contents ................................... v List of Figures ..................................... viii List of Tables ..................................... ix Acknowledgements .................................. x Vita and Publications ................................. xii Abstract of the Dissertation .............................. xiii Chapter1 Introduction .............................. 1 1.1 Lecturing and Note-Taking ................... 2 1.2 Technologies for Lecturing and Note-Taking
    [Show full text]
  • Off-The-Shelf Stylus: Using XR Devices for Handwriting and Sketching on Physically Aligned Virtual Surfaces
    TECHNOLOGY AND CODE published: 04 June 2021 doi: 10.3389/frvir.2021.684498 Off-The-Shelf Stylus: Using XR Devices for Handwriting and Sketching on Physically Aligned Virtual Surfaces Florian Kern*, Peter Kullmann, Elisabeth Ganal, Kristof Korwisi, René Stingl, Florian Niebling and Marc Erich Latoschik Human-Computer Interaction (HCI) Group, Informatik, University of Würzburg, Würzburg, Germany This article introduces the Off-The-Shelf Stylus (OTSS), a framework for 2D interaction (in 3D) as well as for handwriting and sketching with digital pen, ink, and paper on physically aligned virtual surfaces in Virtual, Augmented, and Mixed Reality (VR, AR, MR: XR for short). OTSS supports self-made XR styluses based on consumer-grade six-degrees-of-freedom XR controllers and commercially available styluses. The framework provides separate modules for three basic but vital features: 1) The stylus module provides stylus construction and calibration features. 2) The surface module provides surface calibration and visual feedback features for virtual-physical 2D surface alignment using our so-called 3ViSuAl procedure, and Edited by: surface interaction features. 3) The evaluation suite provides a comprehensive test bed Daniel Zielasko, combining technical measurements for precision, accuracy, and latency with extensive University of Trier, Germany usability evaluations including handwriting and sketching tasks based on established Reviewed by: visuomotor, graphomotor, and handwriting research. The framework’s development is Wolfgang Stuerzlinger, Simon Fraser University, Canada accompanied by an extensive open source reference implementation targeting the Unity Thammathip Piumsomboon, game engine using an Oculus Rift S headset and Oculus Touch controllers. The University of Canterbury, New Zealand development compares three low-cost and low-tech options to equip controllers with a *Correspondence: tip and includes a web browser-based surface providing support for interacting, Florian Kern fl[email protected] handwriting, and sketching.
    [Show full text]
  • Pen-Based Computing Pens May Seem Old-Fashioned, but Some Researchers Think They Are the Future of Interaction
    Pen-Based Computing Pens may seem old-fashioned, but some researchers think they are the future of interaction. Can they teach this old dog some new tricks? By Gordon Kurtenbach DOI: 10.1145/1764848.1764854 hen I entered graduate school in 1986, I remember reading about the idea of using a pen as an input device to a computer. Little did I know that the idea had been around for long time, from the very early days of modern computing. Visionaries like Vannevar Bush in his famous 1945 article “As We May Think” and WIvan Sutherland’s SketchPad system from the early 1960s saw the potential of adapting the flexibility of writing and drawing on paper to computers. The heart of this vision was that the sion, which was only a slice of the rich has been found to be valuable, along pen would remove the requirement for variety of ways a pen can be used in with where it is going. typing skills in order to operate a com- human-computer interaction. This ar- puter. Instead of typing, a user would ticle is about those other things: the PRACTICALITIES simply write or draw, and the com- ways in which pen input to a computer There are some very practical issues puter would recognize and act upon that have dramatically affected the this input. The rationale was that by adoption of pen-based systems in the supporting this “natural” expression, marketplace. Earlier work on comput- computing would be accessible to ev- “The original er input techniques, coming from a eryone, usable in broad range of tasks heritage of data entry, largely abstract- from grandmothers entering recipes, vision of pen-based ed away some of the practical differ- to mathematicians solving problems computers was that ences to present a more programmatic with the aid of a computer.
    [Show full text]
  • STAEDTLER-Digitalpen-2.0-EN.Pdf
    Table of contents 1 Overview ......................................................................................................................................... 7 1.1 Key features .......................................................................................................................... 7 1.2 Package content .................................................................................................................... 8 1.3 Notes on safety ...................................................................................................................... 8 1.4 System requirements ............................................................................................................. 9 1.5 The STAEDTLER digital pen 2.0 ........................................................................................... 9 1.5.1 Description STAEDTLER digital pen 2.0 .................................................................. 9 1.5.2 Charging the STAEDTLER digital pen 2.0 .............................................................. 10 1.5.3 Inserting / replacing a refill ..................................................................................... 10 1.6 The receiver ......................................................................................................................... 11 1.6.1 Description of receiver............................................................................................ 12 1.6.2 Resetting the device ..............................................................................................
    [Show full text]
  • Sensing Techniques for Tablet+Stylus Interaction
    Sensing Techniques for Tablet+Stylus Interaction Ken Hinckley1, Michel Pahud1, Hrvoje Benko1, Pourang Irani1,2, Francois Guimbretiere1,3, Marcel Gavriliu1, Xiang 'Anthony' Chen1, Fabrice Matulic1, Bill Buxton1, & Andy Wilson1 1Microsoft Research, Redmond, WA 2University of Manitoba, Dept. of 3Cornell University, Information {kenh, benko, mpahud, bibuxton, Comp. Sci., Winnipeg, MB, Science Department, Ithaca, NY awilson}@microsoft.com Canada, [email protected] [email protected] ABSTRACT As witnessed by the proliferation in mobile sensing We explore grip and motion sensing to afford new [7,12,19,23,24,39], there is great potential to resolve such techniques that leverage how users naturally manipulate ambiguities using sensors, rather than foisting complexity on tablet and stylus devices during pen + touch interaction. We the user to establish the missing context [6]. As sensors and can detect whether the user holds the pen in a writing grip or computation migrate into tiny mobile devices, pens no longer tucked between his fingers. We can distinguish bare-handed need to be conceived primarily as passive intermediaries inputs, such as drag and pinch gestures produced by the without a life once they move away from the display. nonpreferred hand, from touch gestures produced by the hand holding the pen, which necessarily impart a detectable motion signal to the stylus. We can sense which hand grips the tablet, and determine the screen's relative orientation to the pen. By selectively combining these signals and using them to complement one another, we can tailor interaction to the context, such as by ignoring unintentional touch inputs while writing, or supporting contextually-appropriate tools such as a magnifier for detailed stroke work that appears Figure 1.
    [Show full text]
  • Towards an IMU-Based Pen Online Handwriting Recognizer
    Towards an IMU-based Pen Online Handwriting Recognizer Mohamad Wehbi1( ), Tim Hamann2, Jens Barth2, Peter Kaempf2, Dario Zanca1, and Bjoern Eskofier1 1 Machine Learning and Data Analytics Lab Friedrich-Alexander-Universit¨atErlangen-N¨urnberg, Germany [email protected] 2 STABILO International GmbH, Germany [email protected] Abstract. Most online handwriting recognition systems require the use of specific writing surfaces to extract positional data. In this paper we present a online handwriting recognition system for word recogni- tion which is based on inertial measurement units (IMUs) for digitizing text written on paper. This is obtained by means of a sensor-equipped pen that provides acceleration, angular velocity, and magnetic forces streamed via Bluetooth. Our model combines convolutional and bidirec- tional LSTM networks, and is trained with the Connectionist Temporal Classification loss that allows the interpretation of raw sensor data into words without the need of sequence segmentation. We use a dataset of words collected using multiple sensor-enhanced pens and evaluate our model on distinct test sets of seen and unseen words achieving a charac- ter error rate of 17.97% and 17.08%, respectively, without the use of a dictionary or language model. Keywords: Online Handwriting Recognition · Digital Pen · Inertial Measurement Unit · Time-Series Data. 1 Introduction The field of handwriting recognition has been studied for decades, increasing in popularity with the advancements of technology. This increase in popularity is due to the substantial number of people using handheld digital devices that arXiv:2105.12434v1 [cs.LG] 26 May 2021 provide access to such technologies, and the desire of people to save and share digital copies of written documents.
    [Show full text]
  • Towards Document Engineering on Pen and Touch-Operated Interactive Tabletops
    DISS. ETH NO. 21686 Towards Document Engineering on Pen and Touch-Operated Interactive Tabletops A dissertation submitted to ETH ZURICH for the degree of Doctor of Sciences presented by FABRICE MATULIC Diplôme d'Ingénieur ENSIMAG Diplom Informatik, Universität Karlsruhe (TH) accepted on the recommendation of Prof. Dr. Moira C. Norrie, examiner Prof. (FH) Dr. Michael Haller, co-examiner Dr. Ken Hinckley, co-examiner 2014 Document Authoring on Pen and Calibri 24 B I U © 2014 Fabrice Matulic Abstract In the last few years, the consumer device landscape has been significantly transformed by the rapid proliferation of smartphones and tablets, whose sales are fast overtaking that of traditional PCs. The highly user-friendly multitouch interfaces combined with ever more efficient electronics have made it possible to perform an increasingly wide range of activities on those mobile devices. One category of tasks, for which the desktop PC with mouse and keyboard remains the platform of choice, however, is office work. In particular, productivity document engineering tasks are still more likely to be carried out on a regular computer and with software, whose interfaces are based on the time-honoured "windows, icons, menus, pointer" (WIMP) paradigm. With the recent emergence of larger touch-based devices such as wall screens and digital tabletops (which overcome the limitations of mobile devices in terms of available screen real estate) as well as the resurgence of the stylus as an additional input instrument, the vocabulary of interactions at the disposal of interface designers has vastly broadened. Hybrid pen and touch input is a very new and promising interaction model that practitioners have begun to tap, but it has yet to be applied in office applications and document-centric productivity environments.
    [Show full text]
  • Performance Evaluation of Digital Pen for Capturing Data in Land Information Systems (Lis)
    PERFORMANCE EVALUATION OF DIGITAL PEN FOR CAPTURING DATA IN LAND INFORMATION SYSTEMS (LIS) HENDRO PRASTOWO March, 2011 SUPERVISORS: Drs. Jeroen J. Verplanke Ir. Christiaan H.J. Lemmen PERFORMANCE EVALUATION OF DIGITAL PEN FOR CAPTURING DATA IN LAND INFORMATION SYSTEMS (LIS) HENDRO PRASTOWO Enschede, The Netherlands, March, 2011 Thesis submitted to the Faculty of Geo-Information Science and Earth Observation of the University of Twente in partial fulfilment of the requirements for the degree of Master of Science in Geo-information Science and Earth Observation. Specialization: Land Administration SUPERVISORS: Drs. Jeroen J. Verplanke Ir. Christiaan H.J. Lemmen THESIS ASSESSMENT BOARD: Prof. Dr. J.A. Zevenbergen (Chair) Ir. M. A. Engels MBA (External Examiner, Vicrea) Drs. Jeroen J. Verplanke (First Supervisor) Ir. Christiaan H.J. Lemmen (Second Supervisor) Ir. M.C. Bronsveld (Observer) DISCLAIMER This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the author, and do not necessarily represent those of the Faculty. ABSTRACT The digital pen has been around for more than one decade for many applications except for an integrated survey and mapping functions (Schneider, 2008). The breakthrough approach of the digital pen technology 1 which has been re-designed for geospatial purposes may open a possibility of contribution to update the data changes for Land Information Systems (LIS). Experiences of using the digital pen for Geographic Information Systems (GIS) data collection describe some claims offering an effective and efficient data collection.
    [Show full text]
  • The Method of Computer User Interface Using Tablet and Pen Instead of Mouse and Key Board Is Known As Pen Computing
    The method of computer user interface using Tablet and Pen instead of mouse and key board is known as Pen Computing. Use of touch screen devices like Mobile phones, GPS, PDA etc using the Pen as input is also referred to as Pen Computing. Pen Computing essentially has a Stylus commonly known as the Pen and a hand writing detection device called Tablet. First Stylus called Styalator was used by Tom Dimond in 1957 as the computer input. Stylus and Digital Pen are slightly different even though they perform the functions of Pointing. Stylus pen is a small pen shaped device used to give inputs to the touch screen of Mobile phone, PC tablet etc while Digital pen is somewhat larger device with programmable buttons and havepressure sensitivity and erasing features. Stylus is mainly used as the input device of PDA (Personal Digital Assistant), Smart phones etc. Finger touch devices are becoming popular to replace the Stylus as in iPhone. The Digital pen is similar to a writing pen in shape and size with internal electronics. The Digital pen consists of 1. Pointer- Used to make markings on the Tablet. This is similar to the writing point of a Dot pen. 2. Camera device- To sense the markings as inputs. 3. Force sensor with Ink cadridge – Detects the pressure applied by the Pen into corresponding inputs. 4. Processor – A microprocessor based system to analyze and process the input data. 5.Memory – To store the memory on input data. 6.Communication system- To transfer the data to the Mobile phone or PC through Bluetooth technology.
    [Show full text]
  • HP Multicolour Digital Pen
    HP Multicolour Digital Pen Edward Banim, Julià Camps, Margaux Joetzjer, Joaquín Ruda and Anton Vendelstrand Abstract- There are many digital pens on the market; Gathering of information was also made via manuals, product however, none of them have more than one colour descriptions and on the Internet. integrated into their body. The “HP Multicolour Digital Pen” Creo Parametric and Solid Edge were used to model the pen. project consists of designing and creating a working Hand sketches, Adobe Photoshop, Paint.net and Illustrator prototype of a multicolour digital pen, for the company were used for the design work. Hewlett Packard. The pen is aimed at architects and constructors, who are still using traditional methods for Microsoft Project was used for administrative tasks such as the working on paper plans, and will help them make the Gantt chart. transition from the analogic to the digital world. The microcontroller used was the Arduino Pro Mini. The final product will work with Anoto technology, therefore, research regarding Anoto technology and pens using this This project is part of the European Project Semester (EPS) and technology are included in the report. This research International Design Project Semester (IDPS). The project comprises of: a general description of Anoto digital pens; results in a proposed solution, a design proposal, a prototype transmission methods used; processing units; pressure and potential development opportunities. sensors; erasing methods and, to conclude the research, a II. GOALS brief summary of other technologies available. Furthermore, a study of the market has been conducted to analyse the Develop a Smart pen project and make a working prototype features of different digital pens in the market.
    [Show full text]