Toxicological Workingpaper

Total Page:16

File Type:pdf, Size:1020Kb

Toxicological Workingpaper 80th JECFA - Chemical and Technical Assessment (CTA), 2015 © FAO 2015 MIXED -GLUCANASE, CELLULASE AND XYLANASE FROM RASAMSONIA EMERSONII Chemical and Technical Assessment (CTA) Prepared by Jannavi R. Srinivasan, Ph. D., and reviewed by Inge Meyland 1. Summary This Chemical and Technical Assessment summarizes data and information on the mixed - glucanase, cellulase, and xylanase enzyme preparation submitted to JECFA by DSM Food Specialties (DSM, 2015). This document also discusses published information relevant to - glucanase, cellulase, xylanase, and R. emersonii, the production organism. This document uses the following expressions: “-glucanase”, “cellulase” and “xylanase” to refer to the enzymes and their amino acid sequence, and “mixed -glucanase, cellulase and xylanase enzyme preparation” to refer to the preparation formulated for commercial use. -glucanase is an enzyme that catalyses the hydrolysis of 1,4-bonds in -D-glucans that contain 1,3- bonds. Cellulase is an enzyme that catalyses the endohydrolysis of 1,4--D-glucosidic bonds in cellulose, lichenin and cereal -D-glucans and the hydrolysis of 1,4-linkages in -D-glucans that also has 1,3-linkages. Xylanase is an enzyme that catalyses the hydrolysis of 1,4--D-xylosidic bonds in xylans. The mixed -glucanase, cellulase, and xylanase enzyme preparation is used as a processing aid in brewing, grain processing and in the production of potable alcohol at up to 25.5 milligrams of Total Organic Solids per kilogram of raw material (mg TOS/kg RM). The mixed glucanase, cellulase and xylanase enzyme preparation is manufactured by a submerged fed-batch pure culture fermentation of a pure culture of R. emersonii carrying the glucanase, cellulase, and xylanase genes. R. emersonii is a non-pathogenic microorganism with a history of use in commercial food enzyme production. Tests have been performed to demonstrate that the R. emersonii production strain is nontoxigenic; it does not produce toxins or antibiotics under conditions used for enzyme production. Authorities in the U. S. (NIH, 1998), Germany (Germany, 2013) Switzerland (Switzerland, 2004) and Netherlands (Netherlands, 2011) consider R. emersonii to be a Risk Group 1 microorganism. It is not listed as a pathogen in Belgium (Belgium, 2010). The production strain, R. emersonii, DS28601, is from the original parent wild-type strain R. emersonii, obtained from an external source. DS28601 has been identified by the Centraal Bureau voor Schimmelcultures (CBS), Baarn, The Netherlands as Rasamsonia emersonii (CBS, 1988). The glucanase, cellulase, and xylanase enzymes are secreted to the fermentation broth and are subsequently purified and concentrated. The final enzyme product is standardized with glycerol, and stabilized with Sodium Benzoate, to desired activity. The glucanase, cellulase, and xylanase enzyme preparation complies with the General Specifications and Considerations for Enzyme Preparations Used in Food Processing (FAO/WHO, 2006). Mixed β-Glucanase, Cellulase And Xylanase From Rasamsonia Emersonii (CTA) 2015 - Page (1) of (8) © FAO 2015 β-Glucanase, xylanase and cellulase from R. emersonii have been found in food, and there are no indications for allergic reactions due to their ingestion. Two β-glucanases, a xylanase and a cellulase from R. emersonii have been evaluated for potential allergenicity using the bioinformatics criteria recommended by FAO/WHO (2001) and Codex (2009). 2. Description Light brown to dark brown liquid. 3. Method of Manufacture 3.1 R. emersonii R. emersonii has been taxonomically identified to be from the genus Rasamsonia by the Dutch culture collection, the Centraalbureau voor Schimmelcultures (CBS, Utrecht, the Netherlands) in 1964. R. emersonii is a filamentous eukaryotic fungus. It can reproduce by both asexual and sexual processes; it neither sporulates nor does it produce acid or base. R. emersonii has been isolated from hot environments such as compost, but also from soil and outdoor air (Houbraken, 2012) (Harrington, 1979). The full genome of R emersonii CBS393.64 has been sequenced (Germany, 2013). The CBS393.64 strain has been isolated in 1961 from a compost heap in Italy (Stolk, 1965), and has been deposited in the culture collection of the Centraalbureau voor Schimmelcultures; it is capable of growing at pH 3.5-5.5, and at 45-50°C. R. emersonii is also found in the literature as Penicillium emersonii or Geosmithia emersonii. It was recently renamed from Talaromyces emersonii to Rasamsonia emersonii based on genetic analyses (Houbraken, 2012). The taxonomy of R. emersonii is described as follows: Kingdom: Fungi Division: Ascomycota Sub-division: Pezizomycotina Class: Euriotomycetes Order: Eurotiales Family: Tricocomaceae Genus: Rasamsonia Section: Emersonii Species: Rasamsonia emersonii R. emersonii has been classified as a Risk Group 1 microorganism (i.e., not associated with disease in healthy adult humans) by the U.S. National Institutes of Health. It has also been classified as a Risk Group 1 microorganism in the German Federal Office of Consumer Protection and Food Safety (BVL), by the Dutch Commission on Genetic Modification, and in the Swiss Agency for the Environment, Forests and Landscape, SAEF, lists. R. emersonii is a non-pathogenic microbe with a history of use in food enzyme manufacture. R. emersonii is not on the list of pathogens on the Belgian Biosafety Server. Strains of R. emersonii that have been deposited in DSMZ (Germany, 2014) Culture Collections are classified as Biosafety Level 1. Additionally, according to EU Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work (EU, 2000). R. emersonii does not appear on the list of pathogens in Annex III of the Directive. Mixed β-Glucanase, Cellulase And Xylanase From Rasamsonia Emersonii (CTA) 2015 - Page 2 of (8) © FAO 2015 R. emersonii has been described in the literature as a safe source of food-processing enzymes (Belitz, 2008, Fraatz, M. A., 2014). In 2014, the United States Food and Drug Administration (US- FDA) did not question the conclusion that mixed glucanase, cellulase, and xylanase enzyme preparation from R. emersonii strain is Generally Recognized As Safe (GRAS) under the intended conditions of use (GRAS Notice (GRN) 479). 3.2 R. emersonii Production Strain The R. emersonii production strain is identified as DS28601. This production strain has been tested to be genetically stable under laboratory conditions with no significant degeneration in yield or appearance of morphological variants. DS28601 is an improvement of the wild type R. emersonii strain for increased production of glucanase, cellulase, and xylanase; the glucanase, cellulase, and xylanase preparation from R. emersonii has been on the market since 1985. Unpublished data indicate that the production strain does not produce mycotoxins under large-scale fermentation conditions. 3.3 Fermentation, Recovery, and Formulation glucanase, cellulase, and xylanase are produced by a controlled aerobic submerged fed-batch pure culture fermentation of a pure culture of R. emersonii. The equipment to produce glucanase, cellulase, and xylanase from R. emersonii is carefully designed, constructed, operated, cleaned, and maintained to prevent contamination by foreign microorganisms. Measures are in place during the various fermentation steps for physical and chemical quality control; microbiological analyses are also routinely done to ensure absence of foreign microorganisms. Periodic samples are removed to test for enzyme generating ability. The fermentation broth carrying the liquid enzyme is separated from the biomass that contains the production organism and spent fermentation media, by several filtration steps (polish and germ reduction). The liquid filtrate containing the enzyme is then concentrated by ultrafiltration, to remove low molecular weight compounds. 40-45% glycerol is added to the polished liquid enzyme concentrate, to standardize to desired activity. Sodium benzoate is added as a stabilizing agent, and the liquid enzyme preparation is filtered again prior to packaging. The glucanase, cellulase, and xylanase enzyme preparation conforms to the General specifications for enzyme preparations used in food processing (JECFA, 2006), and the enzyme preparation is tested to be free from the production organism. 4. Characterization 4.1 Beta-glucanase -glucanase catalyses the hydrolysis of (1→3) - or (1→4) linkages in β-D-glucans when the glucose residue whose reducing group is involved in the linkage to be hydrolysed is itself substituted at C-3. The Chemical Abstract Service Registry Number (CAS No.) of -glucanase is CAS No. 62213-14- 3. -glucanase is classified by the Enzyme Commission of the International Union of Biochemistry and Molecular Biology (IUBMB, online edition) as follows: Accepted name: endo-1,3(4)--glucanase Other names(s): endo-1,3-β-D-glucanase; laminarinase; laminaranase; β-1,3-glucanase; β-1,3-1,4-glucanase; endo-1,3-β-glucanase; endo-β-1,3(4)-glucanase; Mixed β-Glucanase, Cellulase And Xylanase From Rasamsonia Emersonii (CTA) 2015 - Page 3 of (8) © FAO 2015 endo-β-1,3-1,4-glucanase; endo-β-(1→3)-D-glucanase; endo-1,3-1,4-β- D-glucanase; endo-β-(1-3)-D-glucanase; endo-β-1,3-glucanase IV; endo-1,3-β-D-glucanase; 1,3-(1,3;1,4)-β-D-glucan 3(4)- glucanohydrolase Reaction: Endohydrolysis of (1→3)- or (1→4)-linkages in β-D-glucans when the glucose residue whose reducing group is involved in the linkage to be hydrolysed
Recommended publications
  • Agency Response Letter GRAS Notice No. GRN 000675
    . Janet Oesterling Novozymes North America, Inc. 77 Perry Chapel Church Road Franklinton, NC 27525 Re: GRAS Notice No. GRN 000675 Dear Ms. Oesterling: The Food and Drug Administration (FDA, we) completed our evaluation of GRN 000675. We received the notice, dated October 10, 2016, that you submitted in accordance with the agency’s proposed regulation, proposed 21 CFR 170.36 (62 FR 18938; April 17, 1997; Substances Generally Recognized as Safe (GRAS); the GRAS proposal) on July 17, 2016, and filed it on October 14, 2016. We received amendments containing clarifying information on February, 22, 2017 and March 09, 2017. FDA published the GRAS final rule on August 17, 2016 (81 FR 54960), with an effective date of October 17, 2016. As GRN 000675 was pending on the effective date of the GRAS final rule, we requested some additional information consistent with the format and requirements of the final rule. We received an amendment responding to this request on October 24, 2016. The subject of the notice is xylanase enzyme preparation produced by Trichoderma reesei carrying a xylanase gene from Talaromyces leycettanus (xylanase enzyme preparation). The notice informs us of the view of Novozymes North America, Inc. (Novozymes) that xylanase enzyme preparation is GRAS, through scientific procedures, for use as an enzyme at levels up to 48.33 mg Total Organic Solids (TOS) per kg raw material in brewing, cereal beverage processing, baking, and processing of cereal grains such as corn, wheat, barley, and oats. Commercial enzyme preparations that are used in food processing typically contain an enzyme component that catalyzes the chemical reaction as well as substances used as stabilizers, preservatives, or diluents.
    [Show full text]
  • Novel Xylan Degrading Enzymes from Polysaccharide Utilizing Loci of Prevotella Copri DSM18205
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.419226; this version posted December 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Novel xylan degrading enzymes from polysaccharide utilizing loci of Prevotella copri DSM18205 Javier A. Linares-Pastén1*, Johan Sebastian Hero2, José Horacio Pisa2, Cristina Teixeira1, Margareta Nyman3, Patrick Adlercreutz1, M. Alejandra Martinez2,4, Eva Nordberg Karlsson1** 1Biotechnology, Dept of Chemistry, Lund University, P.O.Box 124, 221 00 Lund, Sweden. 2Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, San Miguel de Tucumán, Argentina. 3 Dept Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden. 4Facultad de Ciencias Exactas y Tecnología, UNT. Av. Independencia 1800, San Miguel de Tucumán, 4000, Argentina. Corresponding authors: *e-mail: [email protected] ** e-mail: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.419226; this version posted December 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Prevotella copri DSM18205 is a bacterium, classified under Bacteroidetes that can be found in the human gastrointestinal tract (GIT). The role of P. copri in the GIT is unclear, and elevated numbers of the microbe have been reported both in dietary fiber- induced improvement in glucose metabolism but also in conjunction with certain inflammatory conditions.
    [Show full text]
  • Exogenous Enzymes As Zootechnical Additives in Animal Feed: a Review
    catalysts Review Exogenous Enzymes as Zootechnical Additives in Animal Feed: A Review Brianda Susana Velázquez-De Lucio 1, Edna María Hernández-Domínguez 1, Matilde Villa-García 1, Gerardo Díaz-Godínez 2, Virginia Mandujano-Gonzalez 3, Bethsua Mendoza-Mendoza 4 and Jorge Álvarez-Cervantes 1,* 1 Cuerpo Académico Manejo de Sistemas Agrobiotecnológicos Sustentables, Posgrado Biotecnología, Universidad Politécnica de Pachuca, Zempoala 43830, Hidalgo, Mexico; [email protected] (B.S.V.-D.L.); [email protected] (E.M.H.-D.); [email protected] (M.V.-G.) 2 Centro de Investigación en Ciencias Biológicas, Laboratorio de Biotecnología, Universidad Autónoma de Tlaxcala, Tlaxcala 90000, Tlaxcala, Mexico; [email protected] 3 Ingeniería en Biotecnología, Laboratorio Biotecnología, Universidad Tecnológica de Corregidora, Santiago de Querétaro 76900, Querétaro, Mexico; [email protected] 4 Instituto Tecnológico Superior del Oriente del Estado de Hidalgo, Apan 43900, Hidalgo, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-771-5477510 Abstract: Enzymes are widely used in the food industry. Their use as a supplement to the raw Citation: Velázquez-De Lucio, B.S.; material for animal feed is a current research topic. Although there are several studies on the Hernández-Domínguez, E.M.; application of enzyme additives in the animal feed industry, it is necessary to search for new Villa-García, M.; Díaz-Godínez, G.; enzymes, as well as to utilize bioinformatics tools for the design of specific enzymes that work in Mandujano-Gonzalez, V.; certain environmental conditions and substrates. This will allow the improvement of the productive Mendoza-Mendoza, B.; Álvarez-Cervantes, J.
    [Show full text]
  • Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application
    biomolecules Review Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application 1, , 2 3 1 4, Neha Srivastava * y, Rishabh Rathour , Sonam Jha , Karan Pandey , Manish Srivastava y, Vijay Kumar Thakur 5,* , Rakesh Singh Sengar 6, Vijai K. Gupta 7,* , Pranab Behari Mazumder 8, Ahamad Faiz Khan 2 and Pradeep Kumar Mishra 1,* 1 Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India; [email protected] 2 Department of Bioengineering, Integral University, Lucknow 226026, India; [email protected] (R.R.); [email protected] (A.F.K.) 3 Department of Botany, Banaras Hindu University, Varanasi 221005, India; [email protected] 4 Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India; [email protected] 5 Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK 6 Department of Agriculture Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel, University of Agriculture and Technology, Meerut 250110, U.P., India; [email protected] 7 Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia 8 Department of Biotechnology, Assam University, Silchar 788011, India; [email protected] * Correspondence: [email protected] (N.S.); vijay.Kumar@cranfield.ac.uk (V.K.T.); [email protected] (V.K.G.); [email protected] (P.K.M.); Tel.: +372-567-11014 (V.K.G.); Fax: +372-620-4401 (V.K.G.) These authors have equal contribution. y Received: 29 March 2019; Accepted: 28 May 2019; Published: 6 June 2019 Abstract: The biomass to biofuels production process is green, sustainable, and an advanced technique to resolve the current environmental issues generated from fossil fuels.
    [Show full text]
  • Mapping the Transglycosylation Relevant Sites of Cold-Adapted -D
    International Journal of Molecular Sciences Article Mapping the Transglycosylation Relevant Sites of Cold-Adapted β-d-Galactosidase from Arthrobacter sp. 32cB Maria Rutkiewicz 1,2,* , Marta Wanarska 3 and Anna Bujacz 1 1 Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; [email protected] 2 Macromolecular Structure and Interaction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany 3 Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; [email protected] * Correspondence: [email protected] Received: 30 June 2020; Accepted: 24 July 2020; Published: 28 July 2020 Abstract: β-Galactosidase from Arthrobacter sp. 32cB (ArthβDG) is a cold-adapted enzyme able to catalyze hydrolysis of β-d-galactosides and transglycosylation reaction, where galactosyl moiety is being transferred onto an acceptor larger than a water molecule. Mutants of ArthβDG: D207A and E517Q were designed to determine the significance of specific residues and to enable formation of complexes with lactulose and sucrose and to shed light onto the structural basis of the transglycosylation reaction. The catalytic assays proved loss of function mutation E517 into glutamine and a significant drop of activity for mutation of D207 into alanine. Solving crystal structures of two new mutants, and new complex structures of previously presented mutant E441Q enables description of introduced changes within active site of enzyme and determining the importance of mutated residues for active site size and character.
    [Show full text]
  • Synthesis of Three Advanced Biofuels from Ionic Liquid-Pretreated Switchgrass Using Engineered Escherichia Coli
    Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli Gregory Bokinskya,b, Pamela P. Peralta-Yahyaa,b, Anthe Georgea,c, Bradley M. Holmesa,c, Eric J. Steena,d, Jeffrey Dietricha,d, Taek Soon Leea,e, Danielle Tullman-Erceka,f, Christopher A. Voigtg, Blake A. Simmonsa,c, and Jay D. Keaslinga,b,d,e,f,1 aJoint BioEnergy Institute, 5885 Hollis Avenue, Emeryville, CA 94608; bQB3 Institute, University of California, San Francisco, CA 94158; cSandia National Laboratories, P.O. Box 969, Livermore, CA 94551; dDepartment of Bioengineering, and ePhysical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; fDepartment of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720; and gDepartment of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Alexis T. Bell, University of California, Berkeley, CA, and approved November 2, 2011 (received for review May 2, 2011) One approach to reducing the costs of advanced biofuel production Unfortunately, several challenges must be overcome before from cellulosic biomass is to engineer a single microorganism to lignocellulose can be considered an economically competitive both digest plant biomass and produce hydrocarbons that have feedstock for biofuel production. One of the more significant chal- the properties of petrochemical fuels. Such an organism would lenges is the need for large quantities of glycoside hydrolase (GH) require pathways for hydrocarbon
    [Show full text]
  • Enzyme Applications in Pulp and Paper Industry
    Enzyme Applications in Pulp and Paper: An Introduction to Applications Dr. Richard Venditti Associate Professor - Director of Graduate Programs Department of Wood and Paper Science Biltmore Hall Room 1204 Raleigh NC 27695-8005 Tel. (919) 515-6185 Fax. (919) 515-6302 Email: [email protected] Slides courtesy of Phil Hoekstra. Endo-Beta 1,4 Xylanase Enzymes • Are proteins that catalyze chemical reactions • Biological cells need enzymes to perform needed functions • The starting molecules that enzymes process are called substrates and these are converted to products Endo-Beta 1,4 Xylanase Cellulase enzyme which acts on cellulose substrate to make product of glucose. Endo-Beta 1,4 Xylanase Enzymes • Are extremely selective for specific substrates • Activity affected by inhibitors, pH, temperature, concentration of substrate • Commercial enzyme products are typically mixtures of different enzymes, the enzymes often complement the activity of one another Endo-Beta 1,4 Xylanase Types of Enzymes in Pulp and Paper and Respective Substrates • Amylase --- starch • Cellulase --- cellulose fibers • Protease --- proteins • Hemicellulases(Xylanase) ---hemicellulose • Lipase --- glycerol backbone, pitch • Esterase --- esters, stickies • Pectinase --- pectins Endo-Beta 1,4 Xylanase Enzyme Applications in Pulp and Paper • Treat starches for paper applications • Enhanced bleaching • Treatment for pitch • Enhanced deinking • Treatment for stickies in paper recycling • Removal of fines • Reduce refining energy • Cleans white water systems • Improve
    [Show full text]
  • Stabilisation and Encapsulation Studies on Xylanase for Animal Feed Improvement
    1 Stabilisation and Encapsulation Studies on Xylanase for Animal Feed Improvement Desirée Meredith Miles Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Biochemistry and Molecular Biology May 2004 The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others 11 Acknowledgements I would like to give special thanks to my academic supervisor, Dr. P. Millner, who has given me consistent advice and encouragement throughout the three years of my research. I also thank my former supervisors, Drs. T. Gibson, G. Nelson, G. Graham and D. Wales. For guidance and supportive criticisms, I wish to thank the former directors of Postgraduate Training Partnership, Drs. P. Hamlyn and S. Mukhopadhyay. Special thanks to Mr. D. Borrille and Mr. I. Hardy from department of food science, for their technical assistance with problems I had encountered with replication of processing conditioner, to the staff of British Textile Technology Group and to Dr. H. Graham from Danisco for advise. British Textile Technology Group and Danisco for their sponsorship and financial support are gratefully acknowledged. Much gratitude is given to God and my family, especially my parents and brother, for encouragement and support throughout the years; I could not have done it without them. Ili To Nicola Miles IV Abstract Pig and poultry feeds contain materials that are derived from plant and animals. Most of the plant materials are indigestible because they contain non-starch polysaccharides and as a result the animal suffers from anti-nutritional effects.
    [Show full text]
  • Screening of Protease, Cellulase, Amylase and Xylanase From
    F1000Research 2018, 7:1704 Last updated: 06 AUG 2021 RESEARCH ARTICLE Screening of protease, cellulase, amylase and xylanase from the salt-tolerant and thermostable marine Bacillus subtilis strain SR60 [version 1; peer review: 1 approved with reservations, 1 not approved] Bruno Oliveira de Veras 1, Yago Queiroz dos Santos 2, Katharina Marquez Diniz1, Gabriela Silva Campos Carelli2, Elizeu Antunes dos Santos2 1Department of Biochemistry, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil 2Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, 59078-970, Brazil v1 First published: 26 Oct 2018, 7:1704 Open Peer Review https://doi.org/10.12688/f1000research.16542.1 Latest published: 26 Oct 2018, 7:1704 https://doi.org/10.12688/f1000research.16542.1 Reviewer Status Invited Reviewers Abstract Background: The marine environment harbours different 1 2 microorganisms that inhabit niches with adverse conditions, such as temperature variation, pressure and salinity. To survive these version 1 particular conditions, marine bacteria use unique metabolic and 26 Oct 2018 report report biochemical features, producing enzymes that may have industrial value. 1. Jorge Olmos-Soto, Centro de Investigación Methods: The aim of this study was to observe the production of multiple thermoenzymes and haloenzymes, including protease, Científica y de Educación Superior de cellulase, amylase and xylanase, from bacterial strains isolated from Ensenada (CICESE), Ensenada, Mexico coral reefs Cabo Branco, Paraiba State, Brazil. Strain SR60 was identified by the phylogenetic analysis to be Bacillus subtilis through a 2. Shohreh Ariaeenejad , Agricultural 16S ribosomal RNA assay. To screening of multiples enzymes B. subtilis Biotechnology Research Institute of Iran SR60 was inoculated in differential media to elicit the production of extracellular enzymes with the addition of a range of salt (ABRII), Agricultural Research Education and concentrations (0, 0.25, 0.50, 1.0, 1.25 and 1.5 M NaCl).
    [Show full text]
  • Production of Β-Glucosidase on Solid-State Fermentation by Lichtheimia Ramosa in Agroindustrial Residues
    Electronic Journal of Biotechnology 18 (2015) 314–319 Contents lists available at ScienceDirect Electronic Journal of Biotechnology Production of β-glucosidase on solid-state fermentation by Lichtheimia ramosa in agroindustrial residues: Characterization and catalytic properties of the enzymatic extract Nayara Fernanda Lisboa Garcia a, Flávia Regina da Silva Santos a, Fabiano Avelino Gonçalves b, Marcelo Fossa da Paz a, Gustavo Graciano Fonseca b, Rodrigo Simões Ribeiro Leite a,⁎ a Laboratório de Enzimologia e Processos Fermentativos, Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, MS, Brazil b Laboratório de Bioengenharia, Faculdade de Engenharia, Universidade Federal da Grande Dourados, Dourados, MS, Brazil article info abstract Article history: Background: β-Glucosidases catalyze the hydrolysis of cellobiose and cellodextrins, releasing glucose as the main Received 18 February 2015 product. This enzyme is used in the food, pharmaceutical, and biofuel industries. The aim of this work is to Accepted 15 May 2015 improve the β-glucosidase production by the fungus Lichtheimia ramosa by solid-state fermentation (SSF) Available online 27 June 2015 using various agroindustrial residues and to evaluate the catalytic properties of this enzyme. Results: A high production of β-glucosidase, about 274 U/g of dry substrate (or 27.4 U/mL), was obtained by Keywords: cultivating the fungus on wheat bran with 65% of initial substrate moisture, at 96 h of incubation at 35°C. The Cellobiase enzymatic extract also exhibited carboxymethylcellulase (CMCase), xylanase, and β-xylosidase activities. The Cellulases and hemicellulases β – Industrial enzymes optimal activity of -glucosidase was observed at pH 5.5 and 65°C and was stable over a pH range of 3.5 10.5.
    [Show full text]
  • Fungal Xylanase Xylanase Aus Pilz Xylanase Fongiques
    (19) TZZ _¥¥¥_T (11) EP 2 183 363 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 9/24 (2006.01) C12P 7/10 (2006.01) 08.06.2016 Bulletin 2016/23 C12P 19/14 (2006.01) C11D 3/386 (2006.01) (21) Application number: 08797046.3 (86) International application number: PCT/US2008/071982 (22) Date of filing: 01.08.2008 (87) International publication number: WO 2009/018537 (05.02.2009 Gazette 2009/06) (54) FUNGAL XYLANASE XYLANASE AUS PILZ XYLANASE FONGIQUES (84) Designated Contracting States: (56) References cited: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR WO-A1-98/15633 WO-A2-00/20555 HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT WO-A2-01/79507 WO-A2-2008/008070 RO SE SI SK TR US-A1- 2004 002 136 US-A1- 2006 053 514 US-A1- 2006 134 747 US-A1- 2006 218 671 (30) Priority: 02.08.2007 US 833133 US-A1- 2007 077 630 (43) Date of publication of application: • GUSAKOV ALEXANDER V ET AL: "Purification, 12.05.2010 Bulletin 2010/19 cloning and characterisation of two forms of thermostable and highly active (73) Proprietor: Danisco US Inc. cellobiohydrolase I (Cel7A) produced by the Palo Alto, CA 94304 (US) industrial strain of Chrysosporium lucknowense" ENZYME AND MICROBIAL (72) Inventors: TECHNOLOGY, vol. 36, no. 1, 6 January 2005 • GUSAKOV, Alexander, Vasilievich (2005-01-06), pages 57-69, XP002608583 ISSN: Moscow 115054 (RU) 0141-0229 • PUNT, Peter, J.
    [Show full text]
  • Optimization of Β-Glucosidase, Β-Xylosidase and Xylanase
    Int. J. Mol. Sci. 2013, 14, 2875-2902; doi:10.3390/ijms14022875 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Optimization of β-Glucosidase, β-Xylosidase and Xylanase Production by Colletotrichum graminicola under Solid-State Fermentation and Application in Raw Sugarcane Trash Saccharification Ana L. R. L. Zimbardi 1, Cesar Sehn 1, Luana P. Meleiro 1, Flavio H. M. Souza 1, Douglas C. Masui 2, Monica S. F. Nozawa 3, Luis H. S. Guimarães 2, João A. Jorge 2 and Rosa P. M. Furriel 1,* 1 Department of Chemistry, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of SãoPaulo, Bandeirantes Avenue, 3900, Ribeirão Preto, SP 14040-901, Brazil; E-Mails: [email protected] (A.L.R.L.Z.); [email protected] (C.S.); [email protected] (L.P.M.); [email protected] (F.H.M.S.) 2 Department of Biology, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, SP 14040-901, Brazil; E-Mails: [email protected] (D.C.M.); [email protected] (L.H.S.G.); [email protected] (J.A.J.) 3 Laboratory of Gene Expression and Microbiology, Department of Graduation, University Nilton Lins, Prof. Nilton Lins Avenue, 3259, Manaus, AM 69058-040, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-16-3602-3749; Fax: +55-16-3602-4838. Received: 5 September 2012; in revised form: 12 December 2012 / Accepted: 9 January 2013 / Published: 30 January 2013 Abstract: Efficient, low-cost enzymatic hydrolysis of lignocellulosic residues is essential for cost-effective production of bioethanol.
    [Show full text]