Essays on the History of Inductive Probability

Total Page:16

File Type:pdf, Size:1020Kb

Essays on the History of Inductive Probability This page intentionally left blank Symmetry and Its Discontents This volume brings together a collection of essays on the history and philosophy of probability and statistics by one of the eminent scholars in these subjects. Written over the last fifteen years, they fall into three broad categories. The first deals with the use of symmetry arguments in inductive probability, in particular, their use in deriving rules of succession (Carnap’s “continuum of inductive methods”). The second group deals with four outstanding individuals who made lasting contributions to probability and statistics in very different ways: Frank Ramsey, R. A. Fisher, Alan Turing, and Abraham de Moivre. The last group of essays deals with the problem of “predicting the unpredictable” – making predictions when the range of possible outcomes is unknown in ad- vance. The essays weave together the history and philosophy of these subjects and document the fascination that they have exercised for more than three centuries. S. L. Zabell is professor of mathematics and statistics at Northwestern Uni- versity. A Fellow of the Institute of Mathematical Statistics and the American Statistical Association, he serves on the editorial boards of Cambridge Studies in Probability, Induction, and Decision Theory, and The Collected Works of Rudolph Carnap. He received the Distinguished Teaching Award from North- western University in 1992. Cambridge Studies in Probability, Induction, and Decision Theory General editor: Brian Skyrms Advisory editors: Ernest W. Adams, Ken Binmore, Jeremy Butterfield, Persi Diaconis, William L. Harper, John Harsanyi, Richard C. Jeffrey, James M. Joyce, Wlodek Rabinowicz, Wolfgang Spohn, Patrick Suppes, Sandy Zabell Ellery Eells, Probabilistic Causality Richard Jeffrey, Probability and the Art of Judgment Robert C. Koons, Paradoxes of Belief and Strategic Rationality Cristina Bicchieri and Maria Luisa Dalla Chiara (eds.), Knowledge, Belief, and Strategic Interactions Patrick Maher, Betting on Theories Cristina Bicchieri, Rationality and Coordination J. Howard Sobel, Taking Chances Jan von Plato, Creating Modern Probability: Its Mathematics, Physics, and Philosophy in Historical Perspective Ellery Eells and Brian Skyrms (eds.), Probability and Conditionals Cristina Bicchieri, Richard Jeffrey, and Brian Skyrms (eds.), The Dynamics of Norms Patrick Suppes and Mario Zanotti, Foundations of Probability with Applications Paul Weirich, Equilibrium and Rationality Daniel Hausman, Causal Asymmetries William A. Dembski, The Design Inference James M. Joyce, The Foundations of Causal Decision Theory Yair Guttmann, The Concept of Probability in Statistical Physics Joseph B. Kadane, Mark B. Schervish, and Teddy Seidenfeld (eds.), Rethinking the Foundations of Statistics Phil Dowe, Physical Causation Sven Ove Haussan, The Structure of Values and Norms Paul Weirich, Decision Space Symmetry and Its Discontents Essays on the History of Inductive Probability S. L. ZABELL Northwestern University Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge ,UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridg e.org /9780521444705 © S. L. Zabell 2005 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2005 - ---- eBook (NetLibrary) - --- eBook (NetLibrary) - ---- hardback - --- hardback - ---- paperback - --- paperback Cambridge University Press has no responsibility for the persistence or accuracy of s for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. For Dick Jeffrey, mentor and friend. Contents Preface page ix part one. probability 1. Symmetry and Its Discontents3 2. The Rule of Succession 38 3. Buffon, Price, and Laplace: Scientific Attribution in the 18th Century 74 4. W. E. Johnson’s “Sufficientness” Postulate 84 part two. personalities 5. The Birth of the Central Limit Theorem [with Persi Diaconis] 99 6. Ramsey, Truth, and Probability 119 7. R. A. Fisher on the History of Inverse Probability 142 8. R. A. Fisher and the Fiducial Argument 161 9. Alan Turing and the Central Limit Theorem 199 part three. prediction 10. Predicting the Unpredictable 217 11. The Continuum of Inductive Methods Revisited 243 Index 275 ix Preface These essays tell the story of inductive probability, from its inception in the work of Thomas Bayes to some surprising current developments. Hume and Bayes initiated a dialogue between inductive skepticism and probability the- ory that persists in various forms throughout the history of the subject. The skeptic insists that we start in a state of ignorance. How does one quan- tify ignorance? If knowledge gives rise to asymmetric probabilities, perhaps ignorance is properly characterized by symmetry. And non-trivial prior sym- metries generate non-trivial inductive inference. Then perhaps symmetries are not quite such innocent representations of ignorance as one might have thought. That is a sketch of the theme that is developed in the title essay, “Symmetry and its Discontents”, and that runs throughout the book. In the second section of this book, we meet Sir Alexander Cuming, who instigated important investigations by De Moivre and Stirling, before be- ing sent to prison for fraud. We view Ramsey’s famous essay “Truth and Probability” against the Cambridge background of Robert Leslie Ellis, John Venn and John Maynard Keynes. Fisher’s discussion of inverse probabili- ties is set in the context of Boole, Venn, Edgeworth and Pearson and his various versions of the fiducial argument are examined. We learn of Alan Turing’s undergraduate rediscovery of Lindeberg’s central limit theorem, and of his later use of Bayesian methods in breaking the German naval code in World War II. The last section deals with developments in inductive probability, which are still not generally well-known, and that some philosophers have thought impossible. The question is how a Bayesian theory can deal in a principled way with the possibility of new categories that have not been foreseen. On the face of it the problem appears to be intractable, but a deeper analysis shows that something sensible can be done. The development of the appropriate mathematics is a story that stretches from the beginnings of the subject to the end of the twentieth century. xi These essays have appeared, over almost twenty years, in a variety of disparate and sometimes obscure places. I remember eagerly waiting for the next installment. Each essay is like a specially cut gem, and it gives me great satisfaction that they can be brought together and presented in this volume. Brian Skyrms xii PART ONE Probability 1 Symmetry and Its Discontents The following paper consists of two parts. In the first it is argued that Bruno de Finetti’s theory of subjective probability provides a partial resolution of Hume’s problem of induction, if that problem is cast in a certain way. De Finetti’s solution depends in a crucial way, however, on a symmetry assumption – exchangeability – and in the second half of the paper the broader question of the use of symmetry arguments in probability is analyzed. The problems and difficulties that can arise are explicated through historical ex- amples which illustrate how symmetry arguments have played an important role in probability theory throughout its development. In a concluding section the proper role of such arguments is discussed. 1. the de finetti representation theorem Let X1, X2, X3,...be an infinite sequence of 0,1-valued random variables, which may be thought of as recording when an event occurs in a sequence of repeated trials (e.g., tossing a coin, with 1 if heads, 0 if tails). The sequence is said to be exchangeable if all finite sequences of the same length with the same number of ones have the same probability, i.e., if for all positive integers n and permutations σ of {1, 2, 3,...,n}, P[X1 = e1, X2 = e2,...,Xn = en] = P[X1 = eσ(1), X2 = eσ(2),...,Xn = eσ(n)], where ei denotes either a 0 or a 1. For example, when n = 3, this means that P[1, 0, 0] = P[0, 1, 0] = P[0, 0, 1] and P[1, 1, 0] = P[1, 0, 1] = P[0, 1, 1]. (Note, however, that P[1, 0, 0] is not assumed to equal P[1, 1, 0]; in general, these probabilities may be quite different.) Reprinted with permission from Brian Skyrms and William L. Harper (eds.), Causation, Chance, and Credence 1 (1988): 155–190, c 1988 by Kluwer Academic Publishers. 3 In 1931 the Italian probabilist Bruno de Finetti proved his famous de Finetti Representation Theorem. Let X1, X2, X3,... be an infinite ex- changeable sequence of 0,1-valued random variables, and let Sn = X1 + X2 +···+Xn denote the number of ones in a sequence of length n. Then it follows that: 1. the limiting frequency Z =: limn→∞(Sn/n) exists with probability 1. 2. if µ(A) =: P[Z ∈ A] is the probability distribution of Z, then 1 n k n−k P[Sn = k] = p (1 − p) dµ(p) 0 k for all n and k.1 This remarkable result has several important implications. First, contrary to popular belief, subjectivists clearly believe in the existence of infinite limiting relative frequencies – at least to the extent that they are willing to talk about an (admittedly hypothetical) infinite sequence of trials.2 The existence of such limiting frequencies follows as a purely mathematical consequence of the assumption of exchangeability.3 When an extreme subjectivist such as de Finetti denies the existence of objective chance or physical probability, what is really being disputed is whether limiting frequencies are objective or physical properties. There are several grounds for such a position, but all center around the question of what “object” an objective probability is a property of.
Recommended publications
  • F:\RSS\Me\Society's Mathemarica
    School of Social Sciences Economics Division University of Southampton Southampton SO17 1BJ, UK Discussion Papers in Economics and Econometrics Mathematics in the Statistical Society 1883-1933 John Aldrich No. 0919 This paper is available on our website http://www.southampton.ac.uk/socsci/economics/research/papers ISSN 0966-4246 Mathematics in the Statistical Society 1883-1933* John Aldrich Economics Division School of Social Sciences University of Southampton Southampton SO17 1BJ UK e-mail: [email protected] Abstract This paper considers the place of mathematical methods based on probability in the work of the London (later Royal) Statistical Society in the half-century 1883-1933. The end-points are chosen because mathematical work started to appear regularly in 1883 and 1933 saw the formation of the Industrial and Agricultural Research Section– to promote these particular applications was to encourage mathematical methods. In the period three movements are distinguished, associated with major figures in the history of mathematical statistics–F. Y. Edgeworth, Karl Pearson and R. A. Fisher. The first two movements were based on the conviction that the use of mathematical methods could transform the way the Society did its traditional work in economic/social statistics while the third movement was associated with an enlargement in the scope of statistics. The study tries to synthesise research based on the Society’s archives with research on the wider history of statistics. Key names : Arthur Bowley, F. Y. Edgeworth, R. A. Fisher, Egon Pearson, Karl Pearson, Ernest Snow, John Wishart, G. Udny Yule. Keywords : History of Statistics, Royal Statistical Society, mathematical methods.
    [Show full text]
  • MODES for Windows Print
    Marshall Library of Economics Marshall Papers Section 9 Autobiography and personal honours Identity code Marshall 9 Description level 3 Content Summary This diverse section contains the few remaining biographical notes by Alfred, longer notes on Alfred by Mary Marshall, lists of recipients of complimentary copies of Marshall's books and subscribers to his portrait fund, his academic honours, a large scrapbook of newspaper cuttings about Alfred's career kept by Mary and her album of watercolour paintings of places visited on European travels Identity code Marshall 9/1 Previous number Marshall LBB 34 (part) [uncertain attribution] Description level 4 Record creation Person Role writer Name Marshall, Alfred Date undated Document form Record type notes Specific type autobiographical Acquisition Summary Possibly a late accession as formerly in Large Brown Box Content Summary Single page annotated 'Reminiscences' down left side by Marshall. Recounts how when at school was told not to take account of accents in pronouncing Greek words and therefore decided to save time by not learning them or using them in written work. The result was he received the only very heavy punishment of his life. 'This suggested to me that classical studies do not induce an appreciation of the value of time; and I turned away from them as far as I could towards mathematics'. Summary In later years he has observed that fine students of science are greedy of time, whereas many classical men value it lightly. Is most grateful to his headmaster [Revd James Augustus Hessey] for making him think out essays in Latin. Person Name Hessey, James Augustus, Revd Subject keywords Physical descript Summary 1 p.
    [Show full text]
  • The Interpretation of Probability: Still an Open Issue? 1
    philosophies Article The Interpretation of Probability: Still an Open Issue? 1 Maria Carla Galavotti Department of Philosophy and Communication, University of Bologna, Via Zamboni 38, 40126 Bologna, Italy; [email protected] Received: 19 July 2017; Accepted: 19 August 2017; Published: 29 August 2017 Abstract: Probability as understood today, namely as a quantitative notion expressible by means of a function ranging in the interval between 0–1, took shape in the mid-17th century, and presents both a mathematical and a philosophical aspect. Of these two sides, the second is by far the most controversial, and fuels a heated debate, still ongoing. After a short historical sketch of the birth and developments of probability, its major interpretations are outlined, by referring to the work of their most prominent representatives. The final section addresses the question of whether any of such interpretations can presently be considered predominant, which is answered in the negative. Keywords: probability; classical theory; frequentism; logicism; subjectivism; propensity 1. A Long Story Made Short Probability, taken as a quantitative notion whose value ranges in the interval between 0 and 1, emerged around the middle of the 17th century thanks to the work of two leading French mathematicians: Blaise Pascal and Pierre Fermat. According to a well-known anecdote: “a problem about games of chance proposed to an austere Jansenist by a man of the world was the origin of the calculus of probabilities”2. The ‘man of the world’ was the French gentleman Chevalier de Méré, a conspicuous figure at the court of Louis XIV, who asked Pascal—the ‘austere Jansenist’—the solution to some questions regarding gambling, such as how many dice tosses are needed to have a fair chance to obtain a double-six, or how the players should divide the stakes if a game is interrupted.
    [Show full text]
  • Network Map of Knowledge And
    Humphry Davy George Grosz Patrick Galvin August Wilhelm von Hofmann Mervyn Gotsman Peter Blake Willa Cather Norman Vincent Peale Hans Holbein the Elder David Bomberg Hans Lewy Mark Ryden Juan Gris Ian Stevenson Charles Coleman (English painter) Mauritz de Haas David Drake Donald E. Westlake John Morton Blum Yehuda Amichai Stephen Smale Bernd and Hilla Becher Vitsentzos Kornaros Maxfield Parrish L. Sprague de Camp Derek Jarman Baron Carl von Rokitansky John LaFarge Richard Francis Burton Jamie Hewlett George Sterling Sergei Winogradsky Federico Halbherr Jean-Léon Gérôme William M. Bass Roy Lichtenstein Jacob Isaakszoon van Ruisdael Tony Cliff Julia Margaret Cameron Arnold Sommerfeld Adrian Willaert Olga Arsenievna Oleinik LeMoine Fitzgerald Christian Krohg Wilfred Thesiger Jean-Joseph Benjamin-Constant Eva Hesse `Abd Allah ibn `Abbas Him Mark Lai Clark Ashton Smith Clint Eastwood Therkel Mathiassen Bettie Page Frank DuMond Peter Whittle Salvador Espriu Gaetano Fichera William Cubley Jean Tinguely Amado Nervo Sarat Chandra Chattopadhyay Ferdinand Hodler Françoise Sagan Dave Meltzer Anton Julius Carlson Bela Cikoš Sesija John Cleese Kan Nyunt Charlotte Lamb Benjamin Silliman Howard Hendricks Jim Russell (cartoonist) Kate Chopin Gary Becker Harvey Kurtzman Michel Tapié John C. Maxwell Stan Pitt Henry Lawson Gustave Boulanger Wayne Shorter Irshad Kamil Joseph Greenberg Dungeons & Dragons Serbian epic poetry Adrian Ludwig Richter Eliseu Visconti Albert Maignan Syed Nazeer Husain Hakushu Kitahara Lim Cheng Hoe David Brin Bernard Ogilvie Dodge Star Wars Karel Capek Hudson River School Alfred Hitchcock Vladimir Colin Robert Kroetsch Shah Abdul Latif Bhittai Stephen Sondheim Robert Ludlum Frank Frazetta Walter Tevis Sax Rohmer Rafael Sabatini Ralph Nader Manon Gropius Aristide Maillol Ed Roth Jonathan Dordick Abdur Razzaq (Professor) John W.
    [Show full text]
  • Die Rezeption Der John Maynard Keynes Manuskripte Von 1904 Bis 1911 Anregungen Für Die Deutschsprachige Diskussion
    Die Rezeption der John Maynard Keynes Manuskripte von 1904 bis 1911 Anregungen für die deutschsprachige Diskussion Elke Muchlinski Fachbereich Wirtschaftswissenschaft Diskussionsbeiträge Economics 2011/7 978-3-941240-49-0 2 Die Rezeption der John Maynard Keynes Manuskripte von 1904 bis 1911. Anregungen für eine deutschsprachige Diskussion. Elke Muchlinski, Berlin/Halle 1 „The object of analysis is, not to provide a machine, or method of blind manipulation, which will furnish an infallible answer, but to provide ourselves with an organised and orderly thinking out particular problems” (Keynes C.W., VII, 297). Engl. Title: Key words: Philosophy, ethics, theory of probability, theory of knowledge, animal spirits, Bloomsbury Group, uncertainty versus risk, economic methodology and language The John Maynard Keynes-Manuscripts from 1904 to 1911 – A proposal for a Discussion in German Literature. Abstract: This paper provides textual evidence of Keynes’s writing and composing on issues which are linked to philosophy, moral science and economics. As a philosopher Keynes was concerned with contemporary discussion on knowledge, probability, judgment and methods of reasoning. He participated in the Bloomsbury Group. He developed a distinct view on ethics, egoism, individual and conventional judgment, animal spirits and responsibility. He denied that expectations can be reduced to mathematical calculation. He developed ways to theorize about uncertainty, confidence and the future. The project Keynes as a philosopher is of great importance in English- and French-speaking discourses. Unfortunately it has not been received and recognized in German discourses. 1 Muchlinski, Elke PD Dr. Freie Universität Berlin/Universität Halle Lehrstuhlvertretung „Monetäre Ökonomik/Internationale monetäre Institutionen“, [email protected] http://www.fu-berlin.de/wiwiss/institute/wirtschaftspolitik-geschichte/muchlinski 3 1.
    [Show full text]
  • Chapter 1: What Is Statistics? Christopher J
    Chapter 1: What is Statistics? Christopher J. Wild, Jessica M. Utts, and Nicholas J. Horton Christopher J. Wild University of Auckland, New Zealand President, American Statistical Association Jessica M. Utts University of California, Irvine, United States Chair, Statistical Education Section, ASA Nicholas J. Horton Amherst College, United States e-mail: [email protected], [email protected], [email protected] Abstract What is Statistics? We attempt to answer this question as it relates to grounding research in statistics education. We discuss the nature of statistics (the science of learning from data), its history and traditions, what characterises statistical thinking and how it differs from mathematics, connections with computing and data science, why learning statistics is essential, and what is most important. Finally, we attempt to gaze into the future, drawing upon what is known about the fast-growing demand for statistical skills and the portents of where the discipline is heading, especially those arising from data science and the promises and problems of big data. Key Words Discipline of statistics; Statistical thinking; Value of statistics; Statistical fundamentals; Decision making; Trends in statistical practice; Data science; Computational thinking 1.1 Introduction In this, the opening chapter of the International Handbook of Research in Statistics Education, we ask the question, “What is statistics?” This question is not considered in isolation, however, but in the context of grounding research in statistics education. Educational endeavour in statistics can be divided very broadly into “What?” and “How?” The “What?” deals with the nature and extent of the discipline to be conveyed, whereas any consideration of “How?” (including “When?”) brings into play a host of additional factors, such as cognition and learning theories, audience and readiness, attitudes, social interactions with teachers and other students, and learning and assessment strategies and systems.
    [Show full text]
  • A Complete Bibliography of Publications in Biometrika for the Decade 1960–1969
    A Complete Bibliography of Publications in Biometrika for the decade 1960{1969 Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 19 May 2021 Version 1.02 Title word cross-reference #4315 [Har79]. 0 · 1 [dVW66]. 2 × 2 [BH60a, BH61a, OI61a, OI61b, Pla64]. 50 [Bar66d]. k [Bur60b]. A [Hol66, Mar63]. A + B [Mar63]. b2 [Pea65b]. β [Mos62]. β2 [JNAP63, JNAP65]. χ [JP69, JP70]. χ2 2 [Hit62, MA65, Put64, Tik65b, Wis63a, Wis63b, You62]. χr [Sen67]. d [dVW66]. Ek=M=1 [Bur60c]. [RK69a]. exp(−a)+ka = 1 [BDM60]. exp(b) − b=(1 − p) = 1 [BDM63]. F [Ati62, BDO60, CB63, CB66, GS62b, PB61, Pri64a, SZ60, Tik65b, Tik66]. GI=G=1 [Kin62]. GI=M=1 [Fin60a]. k [DG68a, Kor69, Maa66]. M [Har69a, Pea69, Cro61, Lin60]. M=M=1 [GS65]. X2 [Wis63a, Wis63b]. N [Gil65, Hai65b, ST66, Arc62, Arc64, Hof63]. p [Rao68b, Rao69]. Q [Gow66a]. 3 2 2 R [Mil65a]. ρ [Sno63]. S [Bur60a, Bar66d].p s = 1 [Bar66d].p smax=s0 2 2 [Cha67a]. SU [Joh65b]. σB/σ [Sis68]. b1 [Pea65b]. β1 [JNAP63]. 1 2 P m p 0 f(Yt) [Con65]. β1 [JNAP65]. t [Amo64, FKM67, GJ68, Haj61, HPW61, Joh61, MSA66, Owe65, SA62a, Sis64]. 2 2 2 2 T0 [IS64]. U [Maa66]. UM;N [Ste65b]. UN [PS62b, Ste63a, Ste64, Tik65a]. (s) 2 2 V1 [Bar66d]. VN [Ste65a].
    [Show full text]
  • MODES for Windows Print
    Marshall Library of Economics J.N. Keynes Papers Sections 2 - 5 Identity code JNKeynes 2/1 Previous number Keynes 3(37-48) Description level 4 Record creation Date 8.6.1951 (postmark) Place Document form Record type Correspondence Specific type Envelope Language English Acquisition Summary Deposited by Mrs. J.N. [Florence Ada] Keynes Content Summary Envelope addressed to Mrs. F.A. Keynes, J.P., but address crossed out. Annotated in ink, in Mrs. Keynes's hand, "Letters in reference to 'Formal Logic' by J.N.K." Once contained letters now numbered JNKeynes 2/2 - 2/13. Free field Subject keywords JNKeynes - Studies and Exercises in Formal Logic Physical descript Summary Brown manila envelope, 229 mm x 151 mm Condition Somewhat creased; small tear and small red stain on reverse Identity code JNKeynes 2/2 Previous number Keynes 3(38) Description level 4 Record creation Person Role Writer Name Bryant, Sophie Descriptor Doctor of Science, Moral Science branch, London University Person Role Recipient Name Keynes, John Neville Descriptor Lecturer in Moral Science, Cambridge University Date 10.4.1884 Place London, N., 2 Anson Road Document form Record type Correspondence Specific type Letter Language English Acquisition Summary Deposited by Mrs. J.N. [Florence Ada] Keynes Content Summary Thanks Keynes for sending her copy of ['Studies and Exercises in] Formal Logic'. Compliments him on methodology. Subject keywords JNKeynes - Studies and Exercises in Formal Logic Physical descript Summary 1 sheet; 3 pp. text Condition Sound Publication record Type Reference Identity code JNKeynes 2/3 Previous number Keynes 3(37) Description level 4 Record creation Person Role Writer Name d'Alfonso, Nicolo Descriptor Professor of Philosophy Person Role Recipient Name Keynes, John Neville Descriptor Lecturer in Moral Science, Cambridge University Date 5.6.1886 Place Italy, Santa Severina di Calabria Document form Record type Correspondence Specific type Letter Language French Acquisition Summary Deposited by Mrs.
    [Show full text]
  • 1 the MAKING of INDEX NUMBERS in the EARLY 1920S
    THE MAKING OF INDEX NUMBERS IN THE EARLY 1920s: A CLOSER LOOK AT THE FISHER–MITCHELL DEBATE Felipe Almeida Victor Cruz e Silva Universidade Federal do Paraná Universidade Estadual de Ponta Grossa Área 1 - História do Pensamento Econômico e Metodologia RESUMO O surgimento sistemático da abordagem axiomática dos números de índice ocorreu no início dos anos 1920, um período marcado pelo pluralismo na academia econômic estadunidense. Promovida por Irving Fisher, a abordagem axiomática dos números de índice teve como objetivo selecionar uma fórmula ideal universalmente válida para números de índice, empregando uma série de testes estatísticos. No entanto, desde a primeira apresentação da abordagem de Fisher, no Encontro Anual da Associação Estadunidense de Estatística em 1920, até a publicação de seu livro “The Making of Index Numbers” em 1922, Fisher enfrentou uma série de críticas, não endereçadas à sua fórmula ideal propriamente dita, mas à própria idéia de uma fórmula universal para números de índice. Os principais indivíduos envolvidos nesse debate foram Wesley Mitchell, Warren Persons, Correa Walsh (que foi o único que apoiou a proposta de Fisher) e Allyn Young. Entre eles, o principal representante dos antagonistas de Fisher era Mitchell. Este estudo argumenta que as divergências entre Fisher e Mitchell resultam de seus distintos entendimentos da economia como uma "ciência". Portanto, o objetivo deste estudo é ilustrar como Fisher, como economista matemático, privilegiou a universalidade das teorias econômicas, enquanto Mitchell, como institucionalista, entendeu a economia como uma disciplina contextual e histórica e como essas preconcepções estão presentes no debate sobre números de índice. Para ilustrar suas posições, este estudo explora evidências baseadas em arquivo.
    [Show full text]
  • AN INVESTIGATION INTO the FORMATION of CONSENSUS AROUND NEOCLASSICAL ECONOMICS in the 1950S
    THE ECLIPSE OF INSTITUTIONALISM? AN INVESTIGATION INTO THE FORMATION OF CONSENSUS AROUND NEOCLASSICAL ECONOMICS IN THE 1950s A Dissertation Submitted to the Temple University Graduate Board In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy By Julie Ragatz May, 2019 Committee Members: Dr. Miriam Solomon, Department of Philosophy Dr. David Wolfsdorf, Department of Philosophy Dr. Dimitrios Diamantaras, Department of Economics Dr. Matthew Lund, Department of Philosophy, Rowan University, External Reader © Copyright 2019 by Julie Ragatz Norton All Rights Reserved ii ABSTRACT The Eclipse of Institutionalism? An Investigation into the Formation of Consensus Around Neoclassical Economics in the 1950s Julie Ragatz Norton Temple University, 2019 Doctoral Advisory Committee Chair: Dr. Miriam Solomon As the discipline of economics professionalized during the interwar period, two schools of thought emerged: institutionalism and neoclassical economics. By 1954, after the publication of Arrow and Debreu’s landmark article on general equilibrium theory, consensus formed around neoclassical economics. This outcome was significantly influenced by trends in the philosophy of science, notably the transformation from the logical empiricism of the Vienna Circle to an ‘Americanized’ version of logical empiricism that was dominant through the 1950s. This version of logical empiricism provided a powerful ally to neoclassical economics by affirming its philosophical and methodological commitments as examples of “good science”. This dissertation explores this process of consensus formation by considering whether consensus would be judged normatively appropriate from the perspective of three distinct approaches to the philosophy of science; Carl Hempel’s logical empiricism, Thomas Kuhn’s account of theory change and Helen Longino’s critical contextual empiricism.
    [Show full text]
  • Francis Ysidro Edgeworth
    Francis Ysidro Edgeworth Previous (Francis Xavier) (/entry/Francis_Xavier) Next (Francis of Assisi) (/entry/Francis_of_Assisi) Francis Ysidro Edgeworth (February 8, 1845 – February 13, 1926) was an Irish (/entry/Ireland) polymath, a highly influential figure in the development of neo­ classical economics, and contributor to the development of statistical theory. He was the first to apply certain formal mathematical techniques to individual decision making in economics. Edgeworth developed utility theory, introducing the indifference curve and the famous "Edgeworth box," which have become standards in economic theory. He is also known for the "Edgeworth conjecture" which states that the core of an economy shrinks to the set of competitive equilibria as the number of agents in the economy gets large. The high degree of originality demonstrated in his most important book on economics, Mathematical Psychics, was matched only by the difficulty in reading it. A deep thinker, his contributions were far ahead of his time and continue to inform the fields of (/entry/File:Edgeworth.jpeg) microeconomics (/entry/Microeconomics) and areas such as welfare economics. Francis Y. Edgeworth Thus, Edgeworth's work has advanced our understanding of economic relationships among traders, and thus contributes to the establishment of a better society for all. Life Contents Ysidro Francis Edgeworth (the order of his given names was later reversed) 1 Life was born on February 8, 1845 in Edgeworthstown, Ireland (/entry/Ireland), into 2 Work a large and wealthy landowning family. His aunt was the famous novelist Maria 2.1 Edgeworth conjecture Edgeworth, who wrote the Castle Rackrent. He was educated by private tutors 2.2 Edgeworth Box until 1862, when he went on to study classics and languages at Trinity College, 2.3 Edgeworth limit theorem Dublin.
    [Show full text]
  • INFORMATION to USERS the Most Advanced Technology Has Been Used to Photo­ Graph and Reproduce This Manuscript from the Microfilm Master
    INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI University Microfilms International A Bell & Howell Information Company 3 00 Nortfi Z eeb Road, Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9011133 Sudden leaps: The young Alfred Marshall Butler, Robert William, Ph.D.
    [Show full text]