An Assessment of the Use of Rotary Wing Aircraft for Primary And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
10 Seiten Heli!
Neuer EC130 T2 Das Schweizer Luftfahrt-Magazin Nr. 11/November 2012 CHF on 8.20 Tour / € 5.50 Cover Story 10 Seiten Heli! Military Aviation History Civil Aviation Deutsche Eurofighter Erfolglose Bericht von bei Red Flag Dewoitine D.27 der ILA «Trotz Sistierung 365 Tage fliegen.» In die Prämie eingerechneter Nutzungsrabatt/ Luftfahrtversicherung Bedürfnisgerechter Versicherungsschutz Keine Hinterlegung des Lufttüchtigkeitszeugnisses Keine Meldung der Sistierung Jetzt Offerte beantragen: Urs Spiegelberg, 052 261 58 33 AXA_Luftfahrt_210x297_cmyk_d.indd 1 06.09.2012 16:17:16 Cockpit 11 2012 Editorial 3 «Trotz Sistierung 365 Tage fliegen.» Take-off Liebe Leserinnen und Leser Ein aus Sicht der zivilen Luft- Was bei Bombardier auch auffällt, ist die Sorgfalt, mit der die Ka- fahrt ereignisreiches Jahr nadier zu Werke gehen. In den Fertigungshallen in Montreal sind geht bald zu Ende. Ereignis- überall Modelle im Massstab 1:1 zu sehen, sogar für die Herstellung reich nicht in dem Sinn, dass eines in heutiger Zeit antiquiert wirkenden Vogels aus Holz war in dieser Zeit haufenweise man sich nicht zu schade. Nichts soll dem Zufall überlassen wer- neue, revolutionäre Würfe den. Mit Genugtuung dürfen sie auch die Erprobung des PW1524G angekündigt wurden, son- verfolgen, die bisher programmgemäss verlaufen ist. Laut Herstel- dern dass die Hersteller die ler Pratt&Whitney sind beim Getriebefan nach Absolvierung von Früchte ihrer Anstrengun- mehr als drei Vierteln des Testprogramms keine nennenswerten gen allmählich ernten kön- Probleme aufgetreten. Keine Selbstverständlichkeit bei der in der nen, das Kundeninteresse für kommerziellen Luftfahrt zum ersten Mal verwendeten Triebwerk- ihre modernisierten Bestseller mehr als geweckt haben und im technologie. Und schliesslich: Die Kunden, die das Muster als erste Hintergrund mit Hochdruck an ihren neuen Projekten arbeiten. -
Eurocopter's EC175 Helicopter Confirms Its Position As
Eurocopter’s EC175 helicopter confirms its position as leader in the medium-sized twin-engine helicopter market segment Marignane, France, December 12, 2012 Eurocopter has conducted the first flight of its no. 1 series-production EC175, and confirmed the excellent performance of this next-generation multi-role helicopter. The maiden flight occurred last week at Eurocopter’s Marignane, France headquarters facility, with company pilot Augustin Dupuis at the controls. “With this first production series aircraft now airborne, the EC175 helicopter is a reality, and Eurocopter is very pleased to bring this new product in its civil range to the market,” said Lutz Bertling, Eurocopter’s President & CEO. “This first flight is the occasion to confirm our objective – which was to develop, in cooperation with our industrial Chinese partner, AVIC – the safest and best medium-sized rotorcraft, which also is a leader in terms of competitiveness, power efficiency and comfort. Following the success of Eurocopter’s EC130 T2 and the EC145 T2, the EC175 is yet another example of our strategy to provide outstanding value to customers.” Eurocopter today announced performance figures that ensure the EC175’s competitive edge. Its recommended cruise speed is 150 kts. – 10 kts. faster than the previous figure without affecting payload range – while the maximum cruise speed exceeds 165 kts., all at extremely low vibration levels. Eurocopter’s program flight tests to date also have confirmed the EC175’s excellent power performance including: hover out of ground effect (HOGE) at maximum take-off weight at 4,500 ft. at ISA+20°C conditions; excellent one engine inoperative (OEI) hover performance, which ensures safety during hosting for search and rescue missions ; extensive power reserve and heli-deck performance (PC1) at maximum take-off weight in ISA+20°C conditions –available with application of the latest certified version of Pratt & Whitney Canada’s PT6C-67E engines. -
Turning the Blades – the New EASA Rotorcraft Roadmap Team Takes Off!
ROTORCRAFT ROADMAP 1 Turning the blades – the new EASA Rotorcraft Roadmap team takes off! Working in partnership - a success story he Rotorcraft Roadmap combines safety 2nd-largest fleet in the world behind the US. It also with a more agile and innovative approach. has a strong manufacturing industry with Airbus TFollowing the outstanding example of the Helicopters and Leonardo Helicopters covering GA Roadmap and its team, this common effort of 70% of the worldwide civil market for the 1 ton+ FS, CT and SM has led to another cross-Directorate range. Still, the rotorcraft industry continues to success story! This background feature outlines the be underestimated in Europe compared to fixed reasons behind the urgent need for changes, the wing aeroplanes, the automotive industry, or current situation of Europe’s helicopter fleets and also railways. operations and about safety! It also takes a closer look at the Rotorcraft Roadmap, its short-, mid- Helicopters are an important part of our daily lives and long-term goals, what are the next steps, and and our society’s functioning – they are used for what has been achieved so far. essential activities such as aerial work in mountains, agriculture, offshore, or for emergency operations to Europe has a strong rotorcraft industry. With more save lives. than 7 700 helicopters flying, Europe has the Region of the world Number of Rotorcraft in Europe - a strong industry (by state of registration) civil rotorcraft Leonardo AW189 USA 9,073 EASA Member states 7,762 Asia 5,363 Latin America 4,383 Russia 3,249 Oceania 2,885 Africa 2,446 Canada 2,409 Middle East 1,056 Europe (non-EASA) 954 Central America 511 Airbus AS350 Grand Total 40,091 With more than 7 700 civil rotorcraft in operation, Europe is number two in the world. -
Design of a Hoistable Helicopter Platform for 60M Yacht
Design of a hoistable helicopter platform for 60m yacht Zsolt Papp Master Thesis presented in partial fulfillment of the requirements for the double degree: “Advanced Master in Naval Architecture” conferred by University of Liege "Master of Sciences in Applied Mechanics, specialization in Hydrodynamics, Energetics and Propulsion” conferred by Ecole Centrale de Nantes developed at University of Genoa in the framework of the “EMSHIP” Erasmus Mundus Master Course in “Integrated Advanced Ship Design” Ref. 159652-1-2009-1-BE-ERA MUNDUS-EMMC Supervisor: Prof. Dario Boote, University of Genoa Reviewer: Prof. Philippe Rigo, University of Liege Genoa, February 2012 2 Zsolt PAPP TABLE OF CONTENTS DECLARATION OF AUTHORSHIP ................................................................................... 6 ACKNOWLEDGEMENTS ................................................................................................... 7 ABSTRACT (English)........................................................................................................... 8 PRESENTAZIONE (Italiano) ................................................................................................ 9 ABSTRAKTE (Deutsch) ......................................................................................................10 1. INTRODUCTION ...........................................................................................................11 1.1. Overview ..................................................................................................................11 -
Loss of Control and Collision with Water Involving Eurocopter EC120B, VH
Loss of control and collision with water involving Eurocopter EC120B, VH-WII Hardy Reef, 72 km north-north-east of Hamilton Island Airport, Queensland on 21 March 2018 ATSB Transport Safety Report Aviation Occurrence Investigation (Systemic) AO-2018-026 Final – 16 June 2021 Cover photo: CQ Plane Spotting Released in accordance with section 25 of the Transport Safety Investigation Act 2003 Publishing information Published by: Australian Transport Safety Bureau Postal address: PO Box 967, Civic Square ACT 2608 Office: 62 Northbourne Avenue Canberra, ACT 2601 Telephone: 1800 020 616, from overseas +61 2 6257 2463 Accident and incident notification: 1800 011 034 (24 hours) Email: [email protected] Website: www.atsb.gov.au © Commonwealth of Australia 2021 Ownership of intellectual property rights in this publication Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Commonwealth of Australia. Creative Commons licence With the exception of the Coat of Arms, ATSB logo, and photos and graphics in which a third party holds copyright, this publication is licensed under a Creative Commons Attribution 3.0 Australia licence. Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided that you attribute the work. The ATSB’s preference is that you attribute this publication (and any material sourced from it) using the following wording: Source: Australian Transport Safety Bureau Copyright in material obtained from other agencies, private individuals or organisations, belongs to those agencies, individuals or organisations. Where you want to use their material you will need to contact them directly. -
THE INCOMPLETE GUIDE to AIRFOIL USAGE David Lednicer
THE INCOMPLETE GUIDE TO AIRFOIL USAGE David Lednicer Analytical Methods, Inc. 2133 152nd Ave NE Redmond, WA 98052 [email protected] Conventional Aircraft: Wing Root Airfoil Wing Tip Airfoil 3Xtrim 3X47 Ultra TsAGI R-3 (15.5%) TsAGI R-3 (15.5%) 3Xtrim 3X55 Trener TsAGI R-3 (15.5%) TsAGI R-3 (15.5%) AA 65-2 Canario Clark Y Clark Y AAA Vision NACA 63A415 NACA 63A415 AAI AA-2 Mamba NACA 4412 NACA 4412 AAI RQ-2 Pioneer NACA 4415 NACA 4415 AAI Shadow 200 NACA 4415 NACA 4415 AAI Shadow 400 NACA 4415 ? NACA 4415 ? AAMSA Quail Commander Clark Y Clark Y AAMSA Sparrow Commander Clark Y Clark Y Abaris Golden Arrow NACA 65-215 NACA 65-215 ABC Robin RAF-34 RAF-34 Abe Midget V Goettingen 387 Goettingen 387 Abe Mizet II Goettingen 387 Goettingen 387 Abrams Explorer NACA 23018 NACA 23009 Ace Baby Ace Clark Y mod Clark Y mod Ackland Legend Viken GTO Viken GTO Adam Aircraft A500 NASA LS(1)-0417 NASA LS(1)-0417 Adam Aircraft A700 NASA LS(1)-0417 NASA LS(1)-0417 Addyman S.T.G. Goettingen 436 Goettingen 436 AER Pegaso M 100S NACA 63-618 NACA 63-615 mod AerItalia G222 (C-27) NACA 64A315.2 ? NACA 64A315.2 ? AerItalia/AerMacchi/Embraer AMX ? 12% ? 12% AerMacchi AM-3 NACA 23016 NACA 4412 AerMacchi MB.308 NACA 230?? NACA 230?? AerMacchi MB.314 NACA 230?? NACA 230?? AerMacchi MB.320 NACA 230?? NACA 230?? AerMacchi MB.326 NACA 64A114 NACA 64A212 AerMacchi MB.336 NACA 64A114 NACA 64A212 AerMacchi MB.339 NACA 64A114 NACA 64A212 AerMacchi MC.200 Saetta NACA 23018 NACA 23009 AerMacchi MC.201 NACA 23018 NACA 23009 AerMacchi MC.202 Folgore NACA 23018 NACA 23009 AerMacchi -
Firefighting Aircraft of Australia 2018/19
Firefighting aircraft of Australia 2018/19 Aerial Fire Fighting National Aerial Firefighting Centre Aerial firefighting is the use of aircraft to support firefighting and fire management operations. In Australia, individual States and Territories are responsible for the management of bushfires and One of the earliest documented uses of aerial firefighting in Australia was when the Forests a range of other emergencies, and for most land management. State and Territory governments Commission Victoria utilised Westland Wapiti aircraft from the Royal Australian Air Force for fire and the Australian Government have recognised the importance of collaboration and cooperation detection and observation flights in the late 1920s. in aerial firefighting and have established the National Aerial Firefighting Centre to support and facilitate collaboration across Australia The use of aircraft across Australia for firefighting has developed over time with the adoption of fire bombing, fire crew transport & insertion, reconnaissance & mapping, aerial incendiary The National Aerial Firefighting Centre facilitates the coordination and procurement of a fleet of operations and other specialist roles including night fire bombing. highly specialised firefighting aircraft that are readily available for use by State and Territory emergency service and land management agencies across Australia. The primary purpose of aerial firefighting is to support those on the ground, both ground firefighting crews and communities at risk. While firebombing is the most common use of aircraft, This national aircraft fleet complements aerial firefighting resources that are arranged directly by the use of aircraft for gathering information for incident management teams and community the States and Territories. Some services in the national aerial firefighting fleet receive funding warnings has grown markedly in recent years. -
EXHIBIT 12 Golden Eagle Indifference to Heli-Skiing and Military Helicopters in Northern Utah
EXHIBIT 12 Golden Eagle Indifference to Heli-Skiing and Military Helicopters in Northern Utah TERYL G. GRUBB,1 United States Forest Service, Rocky Mountain Research Station, 2500 S Pine Knoll Drive, Flagstaff, AZ 86001, USA DAVID K. DELANEY, United States Army Engineer Research and Development Center, Construction Engineering Research Laboratory, 2902 Newmark Drive, Champaign, IL 61822, USA WILLIAM W. BOWERMAN, Department of Forestry & Natural Resources, 261 Lehotsky Hall, Clemson University, Clemson, SC 29634, USA MICHAEL R. WIERDA, Department of Forestry & Natural Resources, 261 Lehotsky Hall, Clemson University, Clemson, SC 29634, USA Journal of Wildlife Management 74(6):1275–1285; 2010; DOI: 10.2193/2009-337 Management and Conservation Article Golden Eagle Indifference to Heli-Skiing and Military Helicopters in Northern Utah TERYL G. GRUBB,1 United States Forest Service, Rocky Mountain Research Station, 2500 S Pine Knoll Drive, Flagstaff, AZ 86001, USA DAVID K. DELANEY, United States Army Engineer Research and Development Center, Construction Engineering Research Laboratory, 2902 Newmark Drive, Champaign, IL 61822, USA WILLIAM W. BOWERMAN, Department of Forestry & Natural Resources, 261 Lehotsky Hall, Clemson University, Clemson, SC 29634, USA MICHAEL R. WIERDA, Department of Forestry & Natural Resources, 261 Lehotsky Hall, Clemson University, Clemson, SC 29634, USA ABSTRACT In 2006–2007, during Wasatch Powderbird Guides (WPG) permit renewal for heli-skiing in the Tri-Canyon Area (TCA) of the Wasatch Mountains, Utah, USA, we recorded 303 helicopter passes between 0 m and 3,000 m (horizontal distance) near 30L individual golden eagles (Aquila chrysaetos) in 22 nesting territories, through passive observation and active experimentation with civilian and military (Apache AH-64) helicopters. -