Amblyseius Andersoni

Total Page:16

File Type:pdf, Size:1020Kb

Amblyseius Andersoni Anderline aa Amblyseius andersoni Spider mite control Product description Anderline aa is a product containing the predatory mite Amblyseius andersoni Phytoseiidae, Acari, which is widespread in Europe and North America. It is a predator of various species of phytophagous mite, including Tetranychus spp, Panonychus spp and Eriophyidae. It is supplied as units of 25,000 mites in our patented Gemini sachets. A box holds 100 sachets, each containing a breeding colony of 250 predators at the time of packing. The sachet formulation ensures that mites continue to breed, and are released onto the crop, over a period of several weeks. How does it work? Gemini sachets are water resistant, and can be used in crops with overhead irrigation, or those grown outside. Amblyseius andersoni is a predatory mite which feeds on many types of small arthropod prey and pollen. It is widely reported in the literature as a predator of spider mites on fruit crops such as apples, peaches, grapes and raspberries.This is the only Recent predatory research mite at for WUR spider (PPO) mite controlin the Net whichherlands is available identified in a A.controlled andersoni release as a formulation.promising predator forAnderline use on aaornamental is also available plants grown as loose for gardens.material in bulk bags or cardboard tubes. Adult female mites lay single eggs onto leaf hairs, and these eggs hatch after 2-3 days to give larvae. As with other mites in the same family, these moult to produce protonymphs and then deutonymphs as they grow. All mobile stages are predatory, and will feed on eggs, juveniles and adults of spider mites. They are also able to feed on Eriophyid mites, commonly known as Rust or Russet Mites, which are tiny, worm like mites which can cause major damage on some crops. As days become shorter and temperatures decrease in early autumn the mites will enter diapause, a state in which they can successfully survive winter conditions. They are reported to become active again as early as January, but this will be dependent upon ambient temperature and food availability. Amblyseius andersoni can be produced in a bran-based medium using stored product mites as food. Until recently, only Amblyseius cucumeris had been reared in this way, and only Amblyseius cucumeris had been sold in sachets as a Controlled Release System (CRS). This system essentially places a breeding colony of predators onto the plant, even before the target pest is present. This breeding colony is contained within a small paper sachet, which is carefully designed to maintain that colony in good condition. Predatory mites continue to emerge from the sachets over a period of several weeks, and in much higher numbers than can be achieved by a single release of a loose product. A. andersoni now joins A. cucumeris as a CRS product, and is ideal for preventive control of spider mites on a number of crops. It is available in our unique Gemini sachets. This is the first spider mite predator to become available in a controlled release formulation. Gemini sachets are a patented development of Syngenta Bioline. Each sachet consists of a pair of compartments containing breeding colonies of predatory mites. The key advantages of this sachet design are: It is resistant to water, and so maintains the breeding population in good condition. It is suitable for use in outdoor crops Predatory mites are released onto the crop over several weeks, and can be introduced before the prey is present. Release rates are higher than can be achieved with other spider mite predators, such as Phytoseiulus persimilis and Amblyseius californicus. Amblyseius andersoni has also been tested as a predator of Eriophyid mites, including the Tomato Rust Mite Aculops lycopersici. In tests against this pest, A. andersoni has shown an ability to spread over the tomato plants and to breed on a diet of Aculops lycopersici. Initial trials in Switzerland, using rates of 100 A. andersoni per plant as a single release of loose product, confirmed this interest. The sachet formulation releases much larger numbers of mites over several weeks. In commercial trials using sachets, growers have reported that the damage caused by Aculops was markedly reduced, that infested plants remained healthy, and that the spread of infestation was reduced or prevented. When and where should you use it? Apply the sachets to any convenient location on the plant, such as a leaf petiole, twig or small branch. In crops grown against supports, or trained along wires, the sachets can be placed on these structures, but should always be shaded from direct sunlight. In tomato crops, where the product is used against Aculops lycopersici, place the sachets as high as possible on the plant. There are two reasons for doing this:- The lower leaves of tomato plants are routinely removed, and with them so are sachets placed low on the plant. Placing the sachets as high as possible maintains them on the plant for longer. Aculops lycopersici form large populations which move up the stem of the plant as a rust-coloured mass. Some mites will be found up to 20 cms ahead of this ‘wave-front’. Placing the sachets above this mass will allow the predators to feed on the advancing mites before they cause damage: placing sachets lower down means that the predators are approaching this mass from below, and are only able to remove pest mites after the damage has been caused. How should you use it? For best results, apply the sachets when pest mite numbers are low. The predatory mites will then be able to feed on small colonies of pest mites and prevent them growing and causing major damage. Curative use has also been successful on some crops such as cucumbers and some species of hardy ornamental plants. Individual Gemini sachets are packed flat into boxes in units of 100. To use the sachets, pick each sachet up with a finger and thumb at the central line. The twin compartments of the sachet should hang down from this central line, forming an inverted ‘V’ shape. Make sure that the printed face of the sachet is facing outwards, and that the un-printed face, on which the emergence holes are situated, is facing inwards. This ensures that water cannot enter the sachet. Alternatively for indoor crops Anderline aa is also available in Mini Sachets with a hook attached. They should be introduced at 2 metre spacing along the crop row. INSTRUCTIONS FOR USE OF Anderline aa (Amblyseius andersoni) • Keep the product in the shade until use. • Open the box of sachets in the crop. • Lift each sachet out by the centre ‘hinge’ and allow the compartments to hang down to form a tent, with the printed side uppermost. • Place each sachet over a leaf petiole or crop wire. The weight of the two compartments will hold the sachet in place. STORAGE • Use as soon as possible after receipt. • Keep at 10°C - 15°C until ready to use. • DO NOT REFRIGERATE When should you not use it? Anderline is intended as a preventive treatment for spider mite and other mite pests, which is best used before pest populations have reached high levels. If pest mite populations are very high, and major damage is visible on the crop, use an alternative treatment such as an acaricide prior to the introduction of Anderline. What will it do? Used as directed, Anderline will control or limit spider mite populations and significantly reduce pest damage. On some crops no other treatment is necessary. In other crops the additional use of Phytoseiulus persimilis or acaricides to control pest mite outbreaks may be necessary. What will it not do, and what are the control options? Amblyseius andersoni will not give control of whitefly, thrips or aphids. It is a predatory mite which is intended for control of mite pests. Where pest populations are high at the time of release, control may be slow to occur and damage to the crop will continue. In such cases it is preferable to reduce the initial pest populations with a local application of an acaricide such as Vertimec®, Dynamec® or Avid® (abamectin). Predators can be released within one week except in very low light levels, when degradation of surface residues of the acaricide is slower. Small pest populations will always be present around the area of visible damage, and spot treatments with acaricides or predatory mites may miss these. Always introduce sachets to areas surrounding those with obvious damage, as well as to visibly infested areas. For outbreaks of spider mite in situations where acaricides are not acceptable, use high rate applications of the predatory mite Phytoseiulus persimilis or Amblyseius californicus. The predatory beetle Stethorus punctillum may also be available in some countries. Anderline aa has been developed for use on hardy ornamental plants and fruit crops. The range of hardy ornamental plants is very large, and leaf structure is very variable, with some such as Buddleia davidii having softly hairy leaves, whilst others such as Choysia ternata have glossy, aromatic leaves. It is not possible to test the performance of the product on all possible species and varieties, or in all growing conditions. Chemical compatibility Amblyseius andersoni is reported to be one of the first predatory mites to invade fruit crops after insecticide treatments are reduced. Strains which are resistant to pyrethroid insecticides are reported from Italy. The strain which is in commercial use is not specifically selected for resistance, so always use caution when applying crop protection products. The structure of the sachet will protect the colony of mites from many treatments, so even if mites on the foliage are killed, fresh mites will emerge from the sachets to replace these.
Recommended publications
  • Preselection of Predatory Mites to Improve Year-Round Biological
    UvA-DARE (Digital Academic Repository) Preselection of predatory mites to improve year-round biological control of Western flower thrips in greenhouse crops van Houten, Y.M.; van Rijn, P.C.J.; Tanigoshi, L.K.; van Stratum, P.; Bruin, J. Publication date 1995 Published in Entomologia Experimentalis et Applicata Link to publication Citation for published version (APA): van Houten, Y. M., van Rijn, P. C. J., Tanigoshi, L. K., van Stratum, P., & Bruin, J. (1995). Preselection of predatory mites to improve year-round biological control of Western flower thrips in greenhouse crops. Entomologia Experimentalis et Applicata, 74, 225-234. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:24 Sep 2021 Entomologia Experimentalis etApplicata 74: 225-234, 1995.
    [Show full text]
  • A Preliminary Assessment of Amblyseius Andersoni (Chant) As a Potential Biocontrol Agent Against Phytophagous Mites Occurring on Coniferous Plants
    insects Article A Preliminary Assessment of Amblyseius andersoni (Chant) as a Potential Biocontrol Agent against Phytophagous Mites Occurring on Coniferous Plants Ewa Puchalska 1,* , Stanisław Kamil Zagrodzki 1, Marcin Kozak 2, Brian G. Rector 3 and Anna Mauer 1 1 Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland; [email protected] (S.K.Z.); [email protected] (A.M.) 2 Department of Media, Journalism and Social Communication, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland; [email protected] 3 USDA-ARS, Great Basin Rangelands Research Unit, 920 Valley Rd., Reno, NV 89512, USA; [email protected] * Correspondence: [email protected] Simple Summary: Amblyseius andersoni (Chant) is a predatory mite frequently used as a biocontrol agent against phytophagous mites in greenhouses, orchards and vineyards. In Europe, it is an indige- nous species, commonly found on various plants, including conifers. The present study examined whether A. andersoni can develop and reproduce while feeding on two key pests of ornamental coniferous plants, i.e., Oligonychus ununguis (Jacobi) and Pentamerismus taxi (Haller). Pinus sylvestris L. pollen was also tested as an alternative food source for the predator. Both prey species and pine pollen were suitable food sources for A. andersoni. Although higher values of population parameters Citation: Puchalska, E.; were observed when the predator fed on mites compared to the pollen alternative, we conclude that Zagrodzki, S.K.; Kozak, M.; pine pollen may provide adequate sustenance for A.
    [Show full text]
  • Food Stress Causes Sex-Specific Maternal Effects in Mites Andreas Walzer* and Peter Schausberger
    © 2015. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2015) 218, 2603-2609 doi:10.1242/jeb.123752 RESEARCH ARTICLE Food stress causes sex-specific maternal effects in mites Andreas Walzer* and Peter Schausberger ABSTRACT 1987; mammals: Duquette and Millar, 1995) and/or by reducing Life history theory predicts that females should produce few large eggs offspring size in favor of offspring number (Fox and Czesak, 2000; under food stress and many small eggs when food is abundant. We Bonduriansky and Head, 2007). In size-dimorphic species, food- tested this prediction in three female-biased size-dimorphic predatory stressed females may additionally, or alternatively, adjust offspring mites feeding on herbivorous spider mite prey: Phytoseiulus persimilis, sex ratio because of differing production costs of sons and daughters a specialized spider mite predator; Neoseiulus californicus, a generalist (Trivers and Willard, 1973; Charnov, 1982). Maternal adjustment of preferring spider mites; Amblyseius andersoni, a broad diet generalist. offspring size may have profound effects on both maternal and Irrespective of predator species and offspring sex, most females laid offspring fitness, independent of any genotypic effects (Mousseau only one small egg under severe food stress. Irrespective of predator and Fox, 1998; Bonduriansky and Day, 2009). Maternal or trans- species, the number of female but not male eggs decreased with generational life history effects triggered by food stress during the increasing maternal food stress. This sex-specific effect was probably reproductive phase may influence offspring survival, growth, due to the higher production costs of large female than small male developmental time and/or body size (Bashey, 2006; Johnson eggs.
    [Show full text]
  • Predatory Mites (Acari: Phytoseiidae) on Wild Blackberry in Norway
    Predatory mites (Acari: Phytoseiidae) on wild blackberry in Norway Results from a search for Amblyseius andersoni in August 2016 NIBIO REPORT | VOL. 6 | NO. 166 | 2020 Nina Trandem, Karin Westrum, Anette Sundbye, João Pedro I. Martin, Gilberto J. de Moraes Divisjon for bioteknologi og plantehelse TITTEL/TITLE Predatory mites (Acari: Phytoseiidae) on wild blackberry in Norway - Results from a search for Amblyseius andersoni in August 2016 FORFATTER(E)/AUTHOR(S) Nina Trandem, Karin Westrum, Anette Sundbye, João Pedro I. Martin, Gilberto J. de Moraes DATO/DATE: RAPPORT NR./ TILGJENGELIGHET/AVAILABILITY: PROSJEKTNR./PROJECT NO.: SAKSNR./ARCHIVE NO.: REPORT NO.: 03.12.2020 6/166/2020 Open 8777-20 18/01434 ISBN: ISSN: ANTALL SIDER/ ANTALL VEDLEGG/ NO. OF PAGES: NO. OF APPENDICES: 978-82-17-02708-9 2464-1162 14 OPPDRAGSGIVER/EMPLOYER: KONTAKTPERSON/CONTACT PERSON: Norwegian Agriculture Agency Anette Sundbye STIKKORD/KEYWORDS: FAGOMRÅDE/FIELD OF WORK: Biologisk kontroll, rovmidd Akarologi, biologisk kontroll Biological control, predatory mites Acarology, biological control SAMMENDRAG/SUMMARY: Rovmidden Amblyseius andersoni er ønsket som ny nytteorganisme mot skadedyr i norske hagebruksvekster. Arten ble aldri funnet av Torgeir Edland, som undersøkte norsk rovmiddfauna på åtti- og nittitallet. Ettersom den er funnet på bjørnebær i Sverige og Danmark, og et mildere klima kan ha endret forholdene for arten siden Edlands studier, gjorde vi i 2016 et rettet søk etter A. andersoni i ville bjørnebær (Rubus tomentosus, sensu lato). Nesten 1500 potensielle rovmidd (Acari: Phytoseiidae) ble funnet på ca. 550 bjørnebærblader samlet ved Sandefjord, Grimstad, Fredrikstad og Ås. Over en tredjedel av middene ble undersøkt ved Laboratory of Acarology ved Universitetet i São Paulo (Brasil).
    [Show full text]
  • Unexpected Effects of Local Management and Landscape Composition on Predatory Mites and Their Food Resources in Vineyards
    insects Article Unexpected Effects of Local Management and Landscape Composition on Predatory Mites and Their Food Resources in Vineyards Stefan Möth 1,* , Andreas Walzer 1, Markus Redl 1, Božana Petrovi´c 1, Christoph Hoffmann 2 and Silvia Winter 1 1 Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor-Mendel-Straße 33, 1180 Vienna, Austria; [email protected] (A.W.); [email protected] (M.R.); [email protected] (B.P.); [email protected] (S.W.) 2 Julius Kühn-Institute (JKI), Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, 76833 Siebeldingen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +43-1-47654-95329 Simple Summary: Sustainable agriculture becomes more important for biodiversity conservation and environmental protection. Viticulture is characterized by relatively high pesticide inputs, which could decrease arthropod populations and biological pest control in vineyards. This problem could be counteracted with management practices such as the implementation of diverse vegetation cover in the vineyard inter-rows, reduced pesticide input in integrated or organic vineyards, and a di- verse landscape with trees and hedges. We examined the influence of these factors on predatory Citation: Möth, S.; Walzer, A.; Redl, mites, which play a crucial role as natural enemies for pest mites on vines, and pollen as impor- M.; Petrovi´c,B.; Hoffmann, C.; Winter, tant alternative food source for predatory mites in 32 organic and integrated Austrian vineyards. S. Unexpected Effects of Local Predatory mites benefited from integrated pesticide management and spontaneous vegetation cover Management and Landscape in vineyard inter-rows.
    [Show full text]
  • SF158 Cane Fruit
    Project title: Integrated Pest Management (IPM) of Cane Fruit Pests and Diseases Project number: SF 158 Project leader: Erika F. Wedgwood, RSK ADAS Ltd. Report: Final report, September 2020 Previous report: Annual reports 2016, 2017, 2018 & 2019 Key staff: Erika Wedgwood (RSK ADAS Ltd.) Ruth D’urban-Jackson (RSK ADAS Ltd.) Tim Pettitt (formerly University of Worcester) Janet Allen (RSK ADAS Ltd.) Jude Bennison (RSK ADAS Ltd.) Elysia Bartel (RSK ADAS Ltd.) Chantelle Jay (NIAB-EMR) Charles Whitfield (NIAB-EMR) Sam Brown (RSK ADAS Ltd.) Kerry Boardman (RSK ADAS Ltd.) Chris Dyer (RSK ADAS Ltd.) Location of project: RSK ADAS Ltd. ADAS Boxworth, Cambridge, CB23 4NN. NIAB-EMR East Malling, Kent, ME19 6BJ. Commercial plantations across the UK. Industry Representative: Richard Harnden, Berry Gardens Salih Hodzhov, W.B. Chambers and Son Louise Sutherland, Freiston Associates Ltd. Date project commenced: 1 March 2015 Agriculture and Horticulture Development Board 2020. All rights reserved DISCLAIMER While the Agriculture and Horticulture Development Board seeks to ensure that the information contained within this document is accurate at the time of printing, no warranty is given in respect thereof and, to the maximum extent permitted by law the Agriculture and Horticulture Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or indirectly in relation to information and opinions contained in or omitted from this document. © Agriculture and Horticulture Development
    [Show full text]
  • (Acari: Phytoseiidae) in the UK
    Establishment potential of non-native glasshouse biological control agents, with emphasis on Typhlodromips montdorensis (Schicha) (Acari: Phytoseiidae) in the UK by Ian Stuart Hatherly A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Biosciences The University of Birmingham September 2004 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Typhlodromips montdorensis is a non-native predatory mite used for control of red spider mite and thrips, but is not yet licensed for use in the UK. Current legislation requires that non-native glasshouse biological control agents may not be introduced into the UK without a risk assessment of establishment potential outside of the glasshouse environment. This work focuses on the application of a recently developed protocol to assess the establishment potential of T. montdorensis in the UK. Further, the use of alternative prey outside the glasshouse by, Macrolophus caliginosus is examined, and interactions between Neoseiulus californicus, Typhlodromus pyri and T. montdorensis are investigated. Laboratory results demonstrate that T. montdorensis has a developmental threshold of 10.7°C, lacks cold tolerance and is unable to enter diapause when tested under two different regimes.
    [Show full text]
  • (Acari: Phytoseiidae) Fed with Tetranychus Urticae Yu-Jing Li, Qing-Yan Liu, Jing Chang, Yong-Hong Jia, Rui-Xia Meng
    Effects of temperature on a Chinese population of Amblyseius andersoni (Acari: Phytoseiidae) fed with Tetranychus urticae Yu-Jing Li, Qing-Yan Liu, Jing Chang, Yong-Hong Jia, Rui-Xia Meng To cite this version: Yu-Jing Li, Qing-Yan Liu, Jing Chang, Yong-Hong Jia, Rui-Xia Meng. Effects of temperature on a Chinese population of Amblyseius andersoni (Acari: Phytoseiidae) fed with Tetranychus urticae. Acarologia, Acarologia, 2019, 59 (4), pp.475-483. 10.24349/acarologia/20194344. hal-02362860 HAL Id: hal-02362860 https://hal.archives-ouvertes.fr/hal-02362860 Submitted on 14 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Acarologia A quarterly journal of acarology, since 1959 Publishing on all aspects of the Acari All information: http://www1.montpellier.inra.fr/CBGP/acarologia/ [email protected] Acarologia is proudly non-profit, with no page charges and free open access Please help us maintain this system by encouraging your institutes to subscribe to the
    [Show full text]
  • Duc Tung Nguyen Artificial and Factitious Foods for the Production
    es y mit en or t tion and eda oduc ung Nguy T oseiid pr Duc or the pr yt oods f t of ph emen titious f tion enhanc tificial and fac Ar popula Artificial and factitious foods for the production and Duc Tung Nguyen population enhancement of phytoseiid predatory mites 2015 ISBN 978-90-5989-764-9 To my family Promoter: Prof. dr. ir. Patrick De Clercq Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Belgium Chair of the examination committee: Prof. dr. ir. Geert Haesaert Department of Applied Biosciences Faculty of Bioscience Engineering, Ghent University, Belgium Members of the examination committee: Prof. dr. Gilbert Van Stappen Department of Animal Production Faculty of Bioscience Engineering, Ghent University, Belgium Prof. dr. ir. Luc Tirry Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Belgium Prof. dr. ir. Stefaan De Smet Department of Animal Production Faculty of Bioscience Engineering, Ghent University, Belgium Prof. dr. Felix Wäckers Lancaster Environment Centre University of Lancaster, United Kingdom Prof. dr. Nguyen Van Dinh Department of Entomology Faculty of Agronomy Vietnam National University of Agriculture, Vietnam Dean: Prof. dr. ir. Guido Van Huylenbroeck Rector: Prof. dr. Anne De Paepe Artificial and factitious foods for the production and population enhancement of phytoseiid predatory mites by Duc Tung Nguyen Thesis submitted in the fulfillment of the requirements for the Degree of Doctor (PhD) in Applied Biological Sciences Dutch translation: Artificiële en onnatuurlijke voedselbronnen voor de productie en de populatie-ondersteuning van roofmijten uit de familie Phytoseiidae Please refer to this work as follows: Nguyen, D.T.
    [Show full text]
  • Not Seeing the Mites for the Hairs. Comment on Möth Et Al. Unexpected Effects of Local Management and Landscape Composition On
    insects Comment Not Seeing the Mites for the Hairs. Comment on Möth et al. Unexpected Effects of Local Management and Landscape Composition on Predatory Mites and Their Food Resources in Vineyards. Insects 2021, 12, 180 Peter Schausberger Department of Behavioral and Cognitive Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; [email protected] 1. Synopsis Möth et al. (2021) [1] investigated the effects of pest management regime (integrated vs. organic), and field and landscape elements on plant-inhabiting mite abundance and pollen deposition in vineyards. One of their main conclusions, dubbed “unexpected”, is higher predatory mite abundance and pollen deposition in integrated rather than organic vineyards. Möth et al. (2021) [1] sampled leaves from highly diverse grape varieties, Citation: Schausberger, P. Not Seeing however, varieties and associated variability in mite microhabitat quality, which is largely the Mites for the Hairs. Comment on determined by leaf surface morphology, were neglected in sampling plans and analyses. Möth et al. Unexpected Effects of However, leaf surface morphology is a decisive factor for the occurrence and abundance Local Management and Landscape of grape-inhabiting mites. Retrospectively scrutinizing the diversity and heterogeneity of Composition on Predatory Mites and sampled varieties and associated differences in leaf morphological characteristics, that is, Their Food Resources in Vineyards. hairiness of the leaf underside, revealed higher microhabitat quality in vineyards subjected Insects 2021, 12, 180. Insects 2021, 12, to integrated pest management than in those subjected to organic pest management. In- 671. https://doi.org/10.3390/ tegrating leaf hairiness as an explanatory variable into analyses challenges the claims by insects12080671 Möth et al.
    [Show full text]
  • How Predatory Mites Cope with the Web of Their Tetranychid Prey: a Functional View on Dorsal Chaetotaxy in the Phytoseiidae
    UvA-DARE (Digital Academic Repository) How predatory mites cope with the web of their tetranychid prey: a functional view on dorsal chaetotaxy in the Phytoseiidae Sabelis, M.W.; Bakker, F.M. DOI 10.1007/BF01193804 Publication date 1992 Published in Experimental and Applied Acarology Link to publication Citation for published version (APA): Sabelis, M. W., & Bakker, F. M. (1992). How predatory mites cope with the web of their tetranychid prey: a functional view on dorsal chaetotaxy in the Phytoseiidae. Experimental and Applied Acarology, 16, 203-225. https://doi.org/10.1007/BF01193804 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:03 Oct 2021 Experimental & AppliedAcarology, 16 ( 1992 ) 203-225 203 Elsevier Science Publishers B.V., Amsterdam ACARI 654 How predatory mites cope with the web of their tetranychid prey: a functional view on dorsal chaetotaxy in the Phytoseiidae Maurice W.
    [Show full text]
  • Integrated Pest Management of Western Flower Thrips
    2014 Integrated Pest Management of Western Flower Thrips © Jeremy Granadillo Kryss Facun Sarmiento 3355535 Supervisor: Dr. Kirsten Leiss Examiner: Dr. A.C.M. van Wees 4/7/2014 2 | P a g e Abstract Western flower thrips (WFT), Frankliniella occidentalis, is one of the most serious pests in agri- and horticulture worldwide. It is a highly polyphagous insect causing direct damage by feeding on plant parts such as foliage and flowers. In addition, it is a major vector for several plant viruses which leads to indirect damage. IPM programme for F. occidentalis already exist but has not led to full control of this pest. The overuse of pesticides in ornamental crops due to low tolerance to damage and pests characteristics such as short generation time, high fecundity, and parthenogenesis has led to resistance development in F. occidentalis. Moreover, its thigmotactic and cryptic behaviour makes it hard to combat chemically. Strategies that are essential part of IPM are biological, chemical and cultural control. Biotechnological advancement has made it easier to detect resistant cultivars against F. occidentalis. Moreover, host plant resistance has shown promising use and can be combined with biological control to strengthen IPM. Chemicals are still unavoidable in the horticulture for example spinosad therefore alternative natural insecticide such as pyrethrins are being used. For biological control predatory mites, bugs and entomopathogens are used while for cultural control mechanical trapping and trap plants are used. In addition, plant volatiles are combined to use pull-push strategies and to increase the efficiency of mechanical practices. The best control would be to eventually use all tactics of IPM to combat F.
    [Show full text]