(Acari: Phytoseiidae) Fed with Tetranychus Urticae Yu-Jing Li, Qing-Yan Liu, Jing Chang, Yong-Hong Jia, Rui-Xia Meng

Total Page:16

File Type:pdf, Size:1020Kb

(Acari: Phytoseiidae) Fed with Tetranychus Urticae Yu-Jing Li, Qing-Yan Liu, Jing Chang, Yong-Hong Jia, Rui-Xia Meng Effects of temperature on a Chinese population of Amblyseius andersoni (Acari: Phytoseiidae) fed with Tetranychus urticae Yu-Jing Li, Qing-Yan Liu, Jing Chang, Yong-Hong Jia, Rui-Xia Meng To cite this version: Yu-Jing Li, Qing-Yan Liu, Jing Chang, Yong-Hong Jia, Rui-Xia Meng. Effects of temperature on a Chinese population of Amblyseius andersoni (Acari: Phytoseiidae) fed with Tetranychus urticae. Acarologia, Acarologia, 2019, 59 (4), pp.475-483. 10.24349/acarologia/20194344. hal-02362860 HAL Id: hal-02362860 https://hal.archives-ouvertes.fr/hal-02362860 Submitted on 14 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Acarologia A quarterly journal of acarology, since 1959 Publishing on all aspects of the Acari All information: http://www1.montpellier.inra.fr/CBGP/acarologia/ [email protected] Acarologia is proudly non-profit, with no page charges and free open access Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari. Subscriptions: Year 2019 (Volume 59): 450 € http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php Previous volumes (2010-2017): 250 € / year (4 issues) Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France ISSN 0044-586X (print), ISSN 2107-7207 (electronic) The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01) Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. Effects of temperature on a Chinese population of Amblyseius andersoni (Acari: Phytoseiidae) fed with Tetranychus urticae Yu-Jing Lia , Qing-Yan Liua , Jing Changa , Yong-Hong Jiaa , Rui-Xia Menga a College of Hoticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010019, China. Original research ABSTRACT The development and fecundity of Amblyseius andersoni (Chant) fed with Tetranychus urticae Koch was studied at five different temperatures (17, 20, 25, 30 and 35 °C) and life parameters of the population were calculated. The development, reproduction, longevity, and life table parameters of A. andersoni were significantly affected by the different temperatures. The duration of the egg, larval, protonymph, deutonymph and total immature stages were reduced when the temperature increased. The total oviposition of A. andersoni was highest at 25 °C and lowest at 35 °C, and the daily average oviposition increased as the temperature increased, but few eggs were laid at 17 °C. The values of the intrinsic rate of increase (rm, 0.108–0.200), net reproduction rate (R0, 18.71–36.47) and the mean generation time (t, 14.68–29.73) significantly differed among the five temperatures. The highest net reproduction rate (R0 = 36.47) was obtained at 25 °C. The results of this study indicated that A. andersoni has a high inherent potential for the control of the T. urticae at certain temperatures. Keywords Amblyseius andersoni; Tetranychus urticae; temperature; population dynamics; life table Introduction The two-spotted spider mite, Tetranychus urticae Koch, is one of the most serious agricultural pests in the world. It is a polyphagous species able to feed on more than 1,100 plant species belonging to more than 250 plant families (Migeon and Dorkeld 2010). This phytophagous mite is widely distributed and is responsible for important yield losses in cultivated crops by Received 28 January 2019 damaging leaf tissue and sucking cell contents (Grbic et al. 2011; Gerson and Weintraub 2012; Accepted 16 October 2019 Published 14 November 2019 Meck et al. 2013). This pest species develops well under conditions of high temperature and low relative humidity, displaying explosive growth (Hussey and Scopes 1985). In China, T. Corresponding author Rui-Xia Meng: [email protected] urticae only occurred sporadically before the 1990’s, and it spread rapidly later (Gu et al. 1996, Zhang and Shen 2001) and thus becomes a serious problem requiring a large use of pesticides. Academic editor One explanation for this increase is that the widespread use of pesticide has eliminated natural Tixier, Marie-Stéphane enemies especially predatory mites (Choi et al. 2004, Prischmann et al. 2005). The challenge is thus the development of biological control strategies (Bustos et al. 2016). DOI Species of the family Phytoseiidae are the most common plant inhabiting predatory mites; 10.24349/acarologia/20194344 they play an important role in the natural control of phytophagous mites and insects. Several ISSN 0044-586X (print) phytoseiid species are commercially produced for the control of pest mites (McMurtry et al. ISSN 2107-7207 (electronic) 2013). Biological control of T. urticae with predatory mites, such as Phytoseiulus persimilis Copyright Athias-Henriot, has acquired special significance for a long time (Hussey and Scopes 1985, Li Y.J. et al. Skirvin et al. 2002). P. persimilis and Neoseiulus californicus (McGregor) are the subject of Distributed under Creative Commons CC-BY 4.0 How to cite this article Li Y.J. et al. (2019), Effects of temperature on a Chinese population of Amblyseius andersoni (Acari: Phytoseiidae) fed with Tetranychus urticae. Acarologia 59(4): 475-483; DOI 10.24349/acarologia/20194344 ongoing research in China, and have shown potential use in biological control of T. urticae (Xu et al. 2015, Wu et al. 2016). Recently, another phytoseiid mite, Amblyseius andersoni (Chant), was found on wild Chinese wolfberry in the city of Bayan Nur in Inner Mongolia in 2017 ; it is a new species recorded in China (Liu et al. 2019). Amblyseius andersoni a generalist phytoseiid species commonly found in apple orchards in several countries (Croft 1994, Duso and Pasini 2003), especially in Europe (Komlovszky and Jenser 1987; Hegyi et al. 2003, Tixier et al. 2014). A survey conducted in Syria, showed A. andersoni was a dominant species on citrus trees and on wild plants within or around orchards (Barbar, 2013). Unlike other phytoseiid mite (e.g. N. californicus and P. persimilis), adult longevity of A. andersoni is relatively long under experimental conditions (Amano and Chant, 1977). This predatory mite was often observed feeding on alternative foods (McMurtry 1992) and reaching high population levels (McMurtry and Rodriquez 1987). Some authors showed that, it can keep the population of spider mites under the economic threshold levels in fruit orchards (Duso 1992, Duso and Pasini 2003). The ability of A. andersoni to control phytophagous mites depends on several factors, such as the climatic conditions in the area (Croft et al. 1993), the morphological characteristics of plant leaves (Duso and Vettorazzo 1999), inter-specific competition (Duso 1989) and the impact of pesticides (Duso et al. 1992, Pozzebon et al. 2002). Many studies have demonstrated that temperature significantly affects predatory mite performance (e.g. functional response, mating, and oviposition behaviour), and ultimately fitness (Skirvin and Fenlon 2003, Nguyen and Amano 2009, Jafari et al. 2010, 2012, Xia et al. 2012, Wang et al. 2014). In this paper, we studied the effects of temperature on a population of A. andersoni fed with T. urticae. The life table parameters of A. andersoni were also studied providing useful data for biological control applications. Materials and methods Mite species and populations The T. urticae population used in this study was obtained from the leaves of mulberry in Salaqi, Tumut Right Banner, Baotou City, Inner Mongolia Autonomous Region (40º20’N, 110º19’E) and kept on lima bean plants in an environmental chamber at 25 ± 1 °C, 60 ± 5% RH, and L:D = 16:8. The population of A. andersoni was collected on Chinese wolfberry leaves in Urad Front Banner, Bayan Nur City, Inner Mongolia Autonomous Region (40º43’N, 108º39’E), in September 2017. The population was kept in laboratory on excised bean leaves heavily infested with all stages of T. urticae (25 ± 1 °C). The predator and prey individuals were reared for two generations before use in the experiments. Experimental setup Experiments were carried out in the laboratory at 25 ± 1 °C, 60 ± 5% RH, and L:D = 16:8. However, since leaflets on which the experiments were conducted were placed on water- saturated cotton we can suggest that humidity reached higher levels. Excised leaves infested with the different stages of T. urticae were placed dorsal side down on absorbent cotton in a large glass petri dish (12 cm in diameter and 1.5 cm in depth). The absorbent cotton was saturated with distilled water to prevent mite escape. Furthermore, the petri dish was placed on a plastic tray (40 x 35 x 2.5 cm) filled with distilled water. For the study on developmental times, ovipositing females of A. andersoni were kept on detached leaflets with abundant prey. At 16 °C, eggs did not hatch, so it was impossible start the development experiments at this temperature. Therefore, experiments were carried out at 17, 20, 25, 30 and 35 °C. Eggs were removed every 6 h from the mass rearing and placed singly on detached leaflets (4 cm in diameter) which abundant prey for 30 replicates for each temperature considered. To determine the duration of the immature stages (egg, larva, protonymph and deutonymph), inspections were carried out twice a day under a stereomicroscope until the Li Y.J.
Recommended publications
  • Preselection of Predatory Mites to Improve Year-Round Biological
    UvA-DARE (Digital Academic Repository) Preselection of predatory mites to improve year-round biological control of Western flower thrips in greenhouse crops van Houten, Y.M.; van Rijn, P.C.J.; Tanigoshi, L.K.; van Stratum, P.; Bruin, J. Publication date 1995 Published in Entomologia Experimentalis et Applicata Link to publication Citation for published version (APA): van Houten, Y. M., van Rijn, P. C. J., Tanigoshi, L. K., van Stratum, P., & Bruin, J. (1995). Preselection of predatory mites to improve year-round biological control of Western flower thrips in greenhouse crops. Entomologia Experimentalis et Applicata, 74, 225-234. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:24 Sep 2021 Entomologia Experimentalis etApplicata 74: 225-234, 1995.
    [Show full text]
  • A Preliminary Assessment of Amblyseius Andersoni (Chant) As a Potential Biocontrol Agent Against Phytophagous Mites Occurring on Coniferous Plants
    insects Article A Preliminary Assessment of Amblyseius andersoni (Chant) as a Potential Biocontrol Agent against Phytophagous Mites Occurring on Coniferous Plants Ewa Puchalska 1,* , Stanisław Kamil Zagrodzki 1, Marcin Kozak 2, Brian G. Rector 3 and Anna Mauer 1 1 Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland; [email protected] (S.K.Z.); [email protected] (A.M.) 2 Department of Media, Journalism and Social Communication, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland; [email protected] 3 USDA-ARS, Great Basin Rangelands Research Unit, 920 Valley Rd., Reno, NV 89512, USA; [email protected] * Correspondence: [email protected] Simple Summary: Amblyseius andersoni (Chant) is a predatory mite frequently used as a biocontrol agent against phytophagous mites in greenhouses, orchards and vineyards. In Europe, it is an indige- nous species, commonly found on various plants, including conifers. The present study examined whether A. andersoni can develop and reproduce while feeding on two key pests of ornamental coniferous plants, i.e., Oligonychus ununguis (Jacobi) and Pentamerismus taxi (Haller). Pinus sylvestris L. pollen was also tested as an alternative food source for the predator. Both prey species and pine pollen were suitable food sources for A. andersoni. Although higher values of population parameters Citation: Puchalska, E.; were observed when the predator fed on mites compared to the pollen alternative, we conclude that Zagrodzki, S.K.; Kozak, M.; pine pollen may provide adequate sustenance for A.
    [Show full text]
  • Food Stress Causes Sex-Specific Maternal Effects in Mites Andreas Walzer* and Peter Schausberger
    © 2015. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2015) 218, 2603-2609 doi:10.1242/jeb.123752 RESEARCH ARTICLE Food stress causes sex-specific maternal effects in mites Andreas Walzer* and Peter Schausberger ABSTRACT 1987; mammals: Duquette and Millar, 1995) and/or by reducing Life history theory predicts that females should produce few large eggs offspring size in favor of offspring number (Fox and Czesak, 2000; under food stress and many small eggs when food is abundant. We Bonduriansky and Head, 2007). In size-dimorphic species, food- tested this prediction in three female-biased size-dimorphic predatory stressed females may additionally, or alternatively, adjust offspring mites feeding on herbivorous spider mite prey: Phytoseiulus persimilis, sex ratio because of differing production costs of sons and daughters a specialized spider mite predator; Neoseiulus californicus, a generalist (Trivers and Willard, 1973; Charnov, 1982). Maternal adjustment of preferring spider mites; Amblyseius andersoni, a broad diet generalist. offspring size may have profound effects on both maternal and Irrespective of predator species and offspring sex, most females laid offspring fitness, independent of any genotypic effects (Mousseau only one small egg under severe food stress. Irrespective of predator and Fox, 1998; Bonduriansky and Day, 2009). Maternal or trans- species, the number of female but not male eggs decreased with generational life history effects triggered by food stress during the increasing maternal food stress. This sex-specific effect was probably reproductive phase may influence offspring survival, growth, due to the higher production costs of large female than small male developmental time and/or body size (Bashey, 2006; Johnson eggs.
    [Show full text]
  • Predatory Mites (Acari: Phytoseiidae) on Wild Blackberry in Norway
    Predatory mites (Acari: Phytoseiidae) on wild blackberry in Norway Results from a search for Amblyseius andersoni in August 2016 NIBIO REPORT | VOL. 6 | NO. 166 | 2020 Nina Trandem, Karin Westrum, Anette Sundbye, João Pedro I. Martin, Gilberto J. de Moraes Divisjon for bioteknologi og plantehelse TITTEL/TITLE Predatory mites (Acari: Phytoseiidae) on wild blackberry in Norway - Results from a search for Amblyseius andersoni in August 2016 FORFATTER(E)/AUTHOR(S) Nina Trandem, Karin Westrum, Anette Sundbye, João Pedro I. Martin, Gilberto J. de Moraes DATO/DATE: RAPPORT NR./ TILGJENGELIGHET/AVAILABILITY: PROSJEKTNR./PROJECT NO.: SAKSNR./ARCHIVE NO.: REPORT NO.: 03.12.2020 6/166/2020 Open 8777-20 18/01434 ISBN: ISSN: ANTALL SIDER/ ANTALL VEDLEGG/ NO. OF PAGES: NO. OF APPENDICES: 978-82-17-02708-9 2464-1162 14 OPPDRAGSGIVER/EMPLOYER: KONTAKTPERSON/CONTACT PERSON: Norwegian Agriculture Agency Anette Sundbye STIKKORD/KEYWORDS: FAGOMRÅDE/FIELD OF WORK: Biologisk kontroll, rovmidd Akarologi, biologisk kontroll Biological control, predatory mites Acarology, biological control SAMMENDRAG/SUMMARY: Rovmidden Amblyseius andersoni er ønsket som ny nytteorganisme mot skadedyr i norske hagebruksvekster. Arten ble aldri funnet av Torgeir Edland, som undersøkte norsk rovmiddfauna på åtti- og nittitallet. Ettersom den er funnet på bjørnebær i Sverige og Danmark, og et mildere klima kan ha endret forholdene for arten siden Edlands studier, gjorde vi i 2016 et rettet søk etter A. andersoni i ville bjørnebær (Rubus tomentosus, sensu lato). Nesten 1500 potensielle rovmidd (Acari: Phytoseiidae) ble funnet på ca. 550 bjørnebærblader samlet ved Sandefjord, Grimstad, Fredrikstad og Ås. Over en tredjedel av middene ble undersøkt ved Laboratory of Acarology ved Universitetet i São Paulo (Brasil).
    [Show full text]
  • Unexpected Effects of Local Management and Landscape Composition on Predatory Mites and Their Food Resources in Vineyards
    insects Article Unexpected Effects of Local Management and Landscape Composition on Predatory Mites and Their Food Resources in Vineyards Stefan Möth 1,* , Andreas Walzer 1, Markus Redl 1, Božana Petrovi´c 1, Christoph Hoffmann 2 and Silvia Winter 1 1 Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor-Mendel-Straße 33, 1180 Vienna, Austria; [email protected] (A.W.); [email protected] (M.R.); [email protected] (B.P.); [email protected] (S.W.) 2 Julius Kühn-Institute (JKI), Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, 76833 Siebeldingen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +43-1-47654-95329 Simple Summary: Sustainable agriculture becomes more important for biodiversity conservation and environmental protection. Viticulture is characterized by relatively high pesticide inputs, which could decrease arthropod populations and biological pest control in vineyards. This problem could be counteracted with management practices such as the implementation of diverse vegetation cover in the vineyard inter-rows, reduced pesticide input in integrated or organic vineyards, and a di- verse landscape with trees and hedges. We examined the influence of these factors on predatory Citation: Möth, S.; Walzer, A.; Redl, mites, which play a crucial role as natural enemies for pest mites on vines, and pollen as impor- M.; Petrovi´c,B.; Hoffmann, C.; Winter, tant alternative food source for predatory mites in 32 organic and integrated Austrian vineyards. S. Unexpected Effects of Local Predatory mites benefited from integrated pesticide management and spontaneous vegetation cover Management and Landscape in vineyard inter-rows.
    [Show full text]
  • SF158 Cane Fruit
    Project title: Integrated Pest Management (IPM) of Cane Fruit Pests and Diseases Project number: SF 158 Project leader: Erika F. Wedgwood, RSK ADAS Ltd. Report: Final report, September 2020 Previous report: Annual reports 2016, 2017, 2018 & 2019 Key staff: Erika Wedgwood (RSK ADAS Ltd.) Ruth D’urban-Jackson (RSK ADAS Ltd.) Tim Pettitt (formerly University of Worcester) Janet Allen (RSK ADAS Ltd.) Jude Bennison (RSK ADAS Ltd.) Elysia Bartel (RSK ADAS Ltd.) Chantelle Jay (NIAB-EMR) Charles Whitfield (NIAB-EMR) Sam Brown (RSK ADAS Ltd.) Kerry Boardman (RSK ADAS Ltd.) Chris Dyer (RSK ADAS Ltd.) Location of project: RSK ADAS Ltd. ADAS Boxworth, Cambridge, CB23 4NN. NIAB-EMR East Malling, Kent, ME19 6BJ. Commercial plantations across the UK. Industry Representative: Richard Harnden, Berry Gardens Salih Hodzhov, W.B. Chambers and Son Louise Sutherland, Freiston Associates Ltd. Date project commenced: 1 March 2015 Agriculture and Horticulture Development Board 2020. All rights reserved DISCLAIMER While the Agriculture and Horticulture Development Board seeks to ensure that the information contained within this document is accurate at the time of printing, no warranty is given in respect thereof and, to the maximum extent permitted by law the Agriculture and Horticulture Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or indirectly in relation to information and opinions contained in or omitted from this document. © Agriculture and Horticulture Development
    [Show full text]
  • (Acari: Phytoseiidae) in the UK
    Establishment potential of non-native glasshouse biological control agents, with emphasis on Typhlodromips montdorensis (Schicha) (Acari: Phytoseiidae) in the UK by Ian Stuart Hatherly A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Biosciences The University of Birmingham September 2004 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Typhlodromips montdorensis is a non-native predatory mite used for control of red spider mite and thrips, but is not yet licensed for use in the UK. Current legislation requires that non-native glasshouse biological control agents may not be introduced into the UK without a risk assessment of establishment potential outside of the glasshouse environment. This work focuses on the application of a recently developed protocol to assess the establishment potential of T. montdorensis in the UK. Further, the use of alternative prey outside the glasshouse by, Macrolophus caliginosus is examined, and interactions between Neoseiulus californicus, Typhlodromus pyri and T. montdorensis are investigated. Laboratory results demonstrate that T. montdorensis has a developmental threshold of 10.7°C, lacks cold tolerance and is unable to enter diapause when tested under two different regimes.
    [Show full text]
  • Duc Tung Nguyen Artificial and Factitious Foods for the Production
    es y mit en or t tion and eda oduc ung Nguy T oseiid pr Duc or the pr yt oods f t of ph emen titious f tion enhanc tificial and fac Ar popula Artificial and factitious foods for the production and Duc Tung Nguyen population enhancement of phytoseiid predatory mites 2015 ISBN 978-90-5989-764-9 To my family Promoter: Prof. dr. ir. Patrick De Clercq Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Belgium Chair of the examination committee: Prof. dr. ir. Geert Haesaert Department of Applied Biosciences Faculty of Bioscience Engineering, Ghent University, Belgium Members of the examination committee: Prof. dr. Gilbert Van Stappen Department of Animal Production Faculty of Bioscience Engineering, Ghent University, Belgium Prof. dr. ir. Luc Tirry Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Belgium Prof. dr. ir. Stefaan De Smet Department of Animal Production Faculty of Bioscience Engineering, Ghent University, Belgium Prof. dr. Felix Wäckers Lancaster Environment Centre University of Lancaster, United Kingdom Prof. dr. Nguyen Van Dinh Department of Entomology Faculty of Agronomy Vietnam National University of Agriculture, Vietnam Dean: Prof. dr. ir. Guido Van Huylenbroeck Rector: Prof. dr. Anne De Paepe Artificial and factitious foods for the production and population enhancement of phytoseiid predatory mites by Duc Tung Nguyen Thesis submitted in the fulfillment of the requirements for the Degree of Doctor (PhD) in Applied Biological Sciences Dutch translation: Artificiële en onnatuurlijke voedselbronnen voor de productie en de populatie-ondersteuning van roofmijten uit de familie Phytoseiidae Please refer to this work as follows: Nguyen, D.T.
    [Show full text]
  • Not Seeing the Mites for the Hairs. Comment on Möth Et Al. Unexpected Effects of Local Management and Landscape Composition On
    insects Comment Not Seeing the Mites for the Hairs. Comment on Möth et al. Unexpected Effects of Local Management and Landscape Composition on Predatory Mites and Their Food Resources in Vineyards. Insects 2021, 12, 180 Peter Schausberger Department of Behavioral and Cognitive Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; [email protected] 1. Synopsis Möth et al. (2021) [1] investigated the effects of pest management regime (integrated vs. organic), and field and landscape elements on plant-inhabiting mite abundance and pollen deposition in vineyards. One of their main conclusions, dubbed “unexpected”, is higher predatory mite abundance and pollen deposition in integrated rather than organic vineyards. Möth et al. (2021) [1] sampled leaves from highly diverse grape varieties, Citation: Schausberger, P. Not Seeing however, varieties and associated variability in mite microhabitat quality, which is largely the Mites for the Hairs. Comment on determined by leaf surface morphology, were neglected in sampling plans and analyses. Möth et al. Unexpected Effects of However, leaf surface morphology is a decisive factor for the occurrence and abundance Local Management and Landscape of grape-inhabiting mites. Retrospectively scrutinizing the diversity and heterogeneity of Composition on Predatory Mites and sampled varieties and associated differences in leaf morphological characteristics, that is, Their Food Resources in Vineyards. hairiness of the leaf underside, revealed higher microhabitat quality in vineyards subjected Insects 2021, 12, 180. Insects 2021, 12, to integrated pest management than in those subjected to organic pest management. In- 671. https://doi.org/10.3390/ tegrating leaf hairiness as an explanatory variable into analyses challenges the claims by insects12080671 Möth et al.
    [Show full text]
  • How Predatory Mites Cope with the Web of Their Tetranychid Prey: a Functional View on Dorsal Chaetotaxy in the Phytoseiidae
    UvA-DARE (Digital Academic Repository) How predatory mites cope with the web of their tetranychid prey: a functional view on dorsal chaetotaxy in the Phytoseiidae Sabelis, M.W.; Bakker, F.M. DOI 10.1007/BF01193804 Publication date 1992 Published in Experimental and Applied Acarology Link to publication Citation for published version (APA): Sabelis, M. W., & Bakker, F. M. (1992). How predatory mites cope with the web of their tetranychid prey: a functional view on dorsal chaetotaxy in the Phytoseiidae. Experimental and Applied Acarology, 16, 203-225. https://doi.org/10.1007/BF01193804 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:03 Oct 2021 Experimental & AppliedAcarology, 16 ( 1992 ) 203-225 203 Elsevier Science Publishers B.V., Amsterdam ACARI 654 How predatory mites cope with the web of their tetranychid prey: a functional view on dorsal chaetotaxy in the Phytoseiidae Maurice W.
    [Show full text]
  • Amblyseius Andersoni
    Anderline aa Amblyseius andersoni Spider mite control Product description Anderline aa is a product containing the predatory mite Amblyseius andersoni Phytoseiidae, Acari, which is widespread in Europe and North America. It is a predator of various species of phytophagous mite, including Tetranychus spp, Panonychus spp and Eriophyidae. It is supplied as units of 25,000 mites in our patented Gemini sachets. A box holds 100 sachets, each containing a breeding colony of 250 predators at the time of packing. The sachet formulation ensures that mites continue to breed, and are released onto the crop, over a period of several weeks. How does it work? Gemini sachets are water resistant, and can be used in crops with overhead irrigation, or those grown outside. Amblyseius andersoni is a predatory mite which feeds on many types of small arthropod prey and pollen. It is widely reported in the literature as a predator of spider mites on fruit crops such as apples, peaches, grapes and raspberries.This is the only Recent predatory research mite at for WUR spider (PPO) mite controlin the Net whichherlands is available identified in a A.controlled andersoni release as a formulation.promising predator forAnderline use on aaornamental is also available plants grown as loose for gardens.material in bulk bags or cardboard tubes. Adult female mites lay single eggs onto leaf hairs, and these eggs hatch after 2-3 days to give larvae. As with other mites in the same family, these moult to produce protonymphs and then deutonymphs as they grow. All mobile stages are predatory, and will feed on eggs, juveniles and adults of spider mites.
    [Show full text]
  • Integrated Pest Management of Western Flower Thrips
    2014 Integrated Pest Management of Western Flower Thrips © Jeremy Granadillo Kryss Facun Sarmiento 3355535 Supervisor: Dr. Kirsten Leiss Examiner: Dr. A.C.M. van Wees 4/7/2014 2 | P a g e Abstract Western flower thrips (WFT), Frankliniella occidentalis, is one of the most serious pests in agri- and horticulture worldwide. It is a highly polyphagous insect causing direct damage by feeding on plant parts such as foliage and flowers. In addition, it is a major vector for several plant viruses which leads to indirect damage. IPM programme for F. occidentalis already exist but has not led to full control of this pest. The overuse of pesticides in ornamental crops due to low tolerance to damage and pests characteristics such as short generation time, high fecundity, and parthenogenesis has led to resistance development in F. occidentalis. Moreover, its thigmotactic and cryptic behaviour makes it hard to combat chemically. Strategies that are essential part of IPM are biological, chemical and cultural control. Biotechnological advancement has made it easier to detect resistant cultivars against F. occidentalis. Moreover, host plant resistance has shown promising use and can be combined with biological control to strengthen IPM. Chemicals are still unavoidable in the horticulture for example spinosad therefore alternative natural insecticide such as pyrethrins are being used. For biological control predatory mites, bugs and entomopathogens are used while for cultural control mechanical trapping and trap plants are used. In addition, plant volatiles are combined to use pull-push strategies and to increase the efficiency of mechanical practices. The best control would be to eventually use all tactics of IPM to combat F.
    [Show full text]