THERMO-MECHANICAL BEHAVIOR of Β-EUCRYPTITE and EUCRYPTITE BASED COMPOSITES by Subramanian Ramalingam
Total Page:16
File Type:pdf, Size:1020Kb
THERMO-MECHANICAL BEHAVIOR OF β-EUCRYPTITE AND EUCRYPTITE BASED COMPOSITES by Subramanian Ramalingam A thesis submitted to the faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Materials Science) Golden, Colorado Date: ___________________ Signed: _____________________________ Subramanian Ramalingam Signed: _____________________________ Dr. Ivar E. Reimanis Thesis Advisor Golden, Colorado Date: ______________________ Signed: _____________________________ Dr. Michael J. Kaufman Professor and Head Department of Metallurgical and Materials Engineering ii ABSTRACT β-eucryptite (LiAlSiO4) has received widespread attention, both industrially and academically because of its low negative average coefficient of thermal expansion (CTE) and one dimensional Li-ion conductivity. β-eucryptite is also known to undergo a reversible pressure-induced phase transformation under compression at ~0.8 GPa to a metastable polymorph, ε-eucryptite. The present work evaluates the thermal and mechanical behavior of β- eucryptite and eucryptite composites with several different experiments. In the first set of experiments, nanoindentation was used to determine the activation volume of the pressure- induced phase transformation in polycrystalline and single crystal β-eucryptite. It is shown that the phase transformation is a thermally activated event. It is the first time that nanoindentation has been used to find the activation volume in a pressure-induced phase transformation. Results suggest that the nucleation event that marks the onset of the phase transformation is approximately the size of the silica and alumina tetrahedra comprising the -eucryptite structure. The effect of Zn doping on the phase transformation was also examined using in situ diamond anvil cell-Raman spectroscopy and nanoindentation experiments. The present work is the first to employ both techniques in a comparative manner to investigate pressure-induced phase transformation in the same material. This study demonstrates that, though the data obtained from the two techniques are complementary, important differences including the loading rate and the state of stress between the two techniques must be noted when understanding data from the two experiments. The next set of experiments examined the effect of Zn doping on the thermal expansion of β-eucryptite to understand the structure-property relationship in the material. The results revealed that doping significantly increases the bulk CTE – negative for pure β-eucryptite to iii slightly positive for Zn-doped β-eucryptite in the range from 25°C to 1000°C, and also lowers the tendency to microcracking. No difference in grain size was observed between the pure and doped samples, and all the ceramics exhibited high relative densities. It is believed that an intrinsic modification in the β-eucryptite structure is responsible for the observed behavior. In the final study, the potential of transformation toughening was examined by fabricating composites of 10 mol % yttria stabilized zirconia reinforced with varying amounts (0 to 20 vol. %) of β-eucryptite (LiAlSiO4) with the intent of stabilizing in situ the high-pressure eucryptite polytype, ε-eucryptite, so that the reverse transformation to β-eucryptite under a crack tip stress field may impart toughening by volume expansion. The results indicate that the change in toughness with volume fraction of β-eucryptite is best explained by considering a transformation toughening mechanism in conjunction with the toughening decrement predicted due to matrix tensile stresses which arise due to the thermal expansion mismatch. iv TABLE OF CONTENTS ABSTRACT ................................................................................................................................... iii LIST OF FIGURES ....................................................................................................................... ix LIST OF TABLES .........................................................................................................................xv ACKNOWLEDGEMENTS ......................................................................................................... xvi CHAPTER 1 INTRODUCTION .......................................................................................1 1.1 Background – Material Overview ................................................................2 1.2 Motivation for Research ..............................................................................4 1.3 Research Tasks.............................................................................................6 1.4 Thesis Layout ...............................................................................................7 CHAPTER 2 SYNTHESIS, PROCESSING AND CHARACTERIZATION OF β-EUCRYPTITE ................................................................................10 2.1 Synthesis ....................................................................................................10 2.1.1 Powder Metallurgy Route ..............................................................10 2.1.2 Sol-Gel Route.................................................................................11 2.2 Processing ..................................................................................................11 2.2.1 Pressureless Sintering ....................................................................12 2.2.2 Hot Pressing ...................................................................................13 2.3 Characterization .........................................................................................14 2.3.1 Phase Identification ........................................................................14 2.3.2 Density ...........................................................................................14 2.3.3 Microstructure ................................................................................15 2.3.4 Fracture Toughness ........................................................................16 CHAPTER 3 EFFECT OF DOPING ON THE THERMAL EXPANSION OF β-EUCRYPTITE PREPARED BY SOL-GEL METHODS .....................19 3.1 Abstract ......................................................................................................19 3.2 Introduction ................................................................................................19 3.3 Experimental Procedure .............................................................................22 v 3.3.1 Powder Preparation and Sintering .................................................22 3.3.2 Phase Identification and Microstructure ........................................23 3.3.3 Measurement of Thermal Expansion .............................................23 3.4 Results ........................................................................................................24 3.4.1 Phase Identification and Microstructure ........................................24 3.4.2 Thermal Expansion Behavior ........................................................26 3.5 Discussion ..................................................................................................28 3.6 Conclusions ................................................................................................31 3.7 Acknowledgements ....................................................................................31 CHAPTER 4 DETERMINING ACTIVATION VOLUME FOR THE PRESSURE-INDUCED PHASE TRANSFORMATION IN β-EUCRYPTITE THROUGH NANOINDENTATION ......................32 4.1 Abstract ......................................................................................................32 4.2 Introduction ................................................................................................33 4.3 Experimental Procedure .............................................................................35 4.3.1 Scanning Electron Microscopy Characterization ...........................35 4.3.2 Nanoindentation .............................................................................36 4.4 Results ........................................................................................................37 4.4.1 Nanoindentation .............................................................................37 4.4.2 Calculation of the Activation Volume for the Phase Transformation ....................................................................42 4.5 Discussion ..................................................................................................47 4.6 Conclusions ................................................................................................52 4.7 Acknowledgements ....................................................................................53 CHAPTER 5 IN SITU DIAMOND ANVIL CELL-RAMAN SPECTROSCOPY AND NANOINDENTATION STUDY OF THE PRESSURE- INDUCED PHASE TRANSFORMATION IN PURE AND ZINC-DOPED β-EUCRYPTITE .................................................................54 5.1 Abstract ......................................................................................................54 vi 5.2 Introduction ................................................................................................55 5.3 Experimental ..............................................................................................56 5.3.1 In Situ Diamond Anvil Cell-Raman Spectroscopy ........................56 5.3.2 Nanoindentation .............................................................................57