Canthariphile Insekten 2 Canthariphile Feuerkäfer Der Gattung Schizotus Nehmen Das Toxische Cantharidin Aus Schenkelböcken Auf

Total Page:16

File Type:pdf, Size:1020Kb

Canthariphile Insekten 2 Canthariphile Feuerkäfer Der Gattung Schizotus Nehmen Das Toxische Cantharidin Aus Schenkelböcken Auf Canthariphile Insekten 2 canthariphile Feuerkäfer der Gattung Schizotus nehmen das toxische Cantharidin aus Schenkelböcken auf. Das Gift wird ge- speichert und ggf. an Weibchen und Nachkommenschaft weiter- gereicht O O CH3 O CH 3 O Cantharidintransfer Aufnahme von Cantharidin in die Anhangsdrüsen und Männchen von Neopyrochroa Kopfgruben des Männchens (links). Bei der Balz beißt das spec. bei der Aufnahme von Weibchen (rechts) in die Kopfgruben des Männchens und Cantharidin überprüft dessen Cantharidingehalt. Das Weibchen legt cantharidinhaltige Eier ab. Der Bei der Kopula wird Cantharidin aus den chemische Schutz der Eier wird gewährleistet durch männlichen Anhangsdrüsen in die weiblichen das "Hochzeitsgeschenk" des Männchens in Form Geschlechtsorgane (Bursa) transferiert. von Cantharidin Balz bei Neopyrochroa spec. Weibchen (rechts) beißt in die Kopfgruben des Männchens Nach der Kopula wehrt das Weibchen Kopula (rechts) andere kopulations- bereite Männchen ab. Kopfgruben Männchen von des Neopyrochroa Männchens frisst an kristallinem Cantharidin Cantharidin- kristalle aus der Aus den Kopfgruben Kopfgrube eine der Männchen wird mit Männchens einer Nadel das fadenziehende Sekret gewonnen Toxin LD 50 (µg/kg) Molmasse Chemie Primärwirkung Bakterien-Toxin: Botulinum-Toxin (Clostridium botulinum) 0,00026 150 000 Peptidtoxin Lebensmittelvergiftungen Palytoxin, Toxin der Krustenanemone 0,15 2 300 Polyketid bildet Poren in Zellmembran (Palythoa spp.) Cantharidin (aus Ölkäfern u. Schenkelböcken) 1,0 196 Terpenanhydrid PP2A – Hemmer Froschtoxin: Batrachotoxin 2 538 Steroidalkaloid vermindert Inaktivierung (Phyllobates tricolor ) Na +-Kanäle Fischtoxin: Tetrodotoxin 9 319 Chinazolinan- Blockade Na +-Kanäle hydrid Muscheltoxin: Saxitoxin 9 281 Purinalkaloid Blockade Na +-Einstrom Skorpiontoxin (Androctonus australis ) 17 6 800 Peptidtoxin Wirkung auf Na +-Kanäle Schlangengift-Toxine: Taipoxin (aus 2 42 000 Polypeptid Neurotoxin: Atemlähmung, Herz- dem Gift des australischen Taipans aus 3 Unter- versagen, Kreislaufversagen Oxyuranus scutellatus ) einh. à 118-133 AS! Notexin (australische Tigerschlange, 25 13 500 Polypeptid Neurotoxin: zahlreiche Sympt. Notechis scutatus ) 1 Untereinh. 117 AS Kobra-Neurotoxin (Naja siamensis ) 75 7 800 Polypeptid 77AS Neurotoxin Maitotoxin (Fischvergift., marine Dinoflag.) 0,05 3 422 Polyketid Aktivierung Ca +-Kanäle, Muskel Okadasäure (aus Schwamm Hal. okadai ) 0,2 805 Polyketid PP2A-Hemmer 1 096 Ciguatoxin (Fischvergift., marine Dinoflag.) 0,45 1 112 Polyketide Öffnung Na+-Kanäle 1 128 Ricin (Samen Ricinusstrauch: R. communis ) 12,0 30 000 + 35 000 Peptid Inhibition Proteinsynthese Tubocurarin (aus Pfeilgift Curare 200 696 Indolalkaloid Muskelrelaxierung ; Angriff südamerik. Lianenarten) Glycinrezeptor Natriumcyanid 10 000 65 Hemmung Atmungskette Bakterien Tiere Pflanzen anorganische Verbindungen Gehalt an freiem Cantharidin sowie Gesamtcantharidin bei Schizotus pectinicornis in Abhängigkeit von der Dauer des Cantharidinangebotes. Geschlechtsorgane Kopf Restkörper Cantharidin aus Ölkäfern (Meloidae) und Schenkelböcken (Oedemeridae) Blasenbildung nach Kontakt mit cantharidin- haltiger Hämolymphe eines Ölkäfers O O O O O CH3 O CH CH 3 O Cantharidin3 O Palasonin Woher bekommen canthariphile Insekten ihr Cantharidin Parasitoide Braconidae Pyrochroidae Anthicidae Endomychidae Staphylinidae Ceratopogonidae Chrysomelidae Meloidae cantharidin Oedemeridae Anthomyiidae Miridae Cecidomyidae Tingidae Sciaridae Chloropidae Diapriidae Parasitoide Ant bioassay (Myrmica laevinodis ) with larvae of Notoxus monocerus and Oedemera femorata mortalities 100% 20% 0 12 6 4 O [min] O O duration of bitings 2 O 0 Notoxus monocerus N. monocerus Oedemera femorata non treated previously fed with cantharidin no/low amounts high amounts cantharidin cantharidin anthicid larvae (Notoxus ) oedemerid larvae canthariphilous cantharidin producing 80 - 70 - 2.0 - 60 - 59 - 1.5 - 40 - 30 - 1.0 - 20 - [ng/µg dw] 0.5 - 10 - cantharidin – titer observed copulations [n] 0 0.0 - unfed fed unfed fed “Female choice“ – test: Cantharidin – concentration one unfed male in the head of males one fed male Herzglykoside der Asclepiadaceen (Schwalbenwurzgewächse) (z.B. Asclepias : Seidenpflanze und Danaiden (Monarchfalter) Nicht nur die Raupe sondern auch der Falter ist durch die von der Raupe beim Fressen aufgenommenen Herzglykoside (v. a. Glykoside des Calotropagenins, R: fallweise verschiedene Zucker) ge- schützt. Blauhäher, die noch keine Erfahrung mit Danaus gemacht haben, erbrechen nach dem Fraß eines Schmetterlings und meiden danach nicht nur Danaus , sondern auch Nachahmer wie Limenitis. Herzglykosid-haltige Pflanzen Therapeutische und toxische Herzglykosid- Wirkung Bindungsstellen für Steroidinhibitoren Struktur der Na+/K+-ATPasen und Lage der der Na +/K+-ATPasen Herzglykosid-Bindungsstelle Aminosäuresequenz der Herzglykosid-Bindungsstelle Herzglykosid empfindlich Herzglykosid unempfindlich Kreislauf der Pyrrolizidinalkaloide im Ökosystem Ester Räuber Parasitoid O CH2O N Phytophage O Biotransformation in Leber R2 COO R1 CH2OOC N Ester O Pfade Ester R2 COO CH OOC R1 a) Milch O 2 CH2O b) Honig N O CH O c) Tees 2 N Nu CH Nu 1 2 2 N O N O Giftwirkung wird erhöht HO CHO HO CH3 N O CH O CH2OH 3 HOOC N N COOH O O N N N N Pharmakophage Insekten a. Lockwirkung eines giftigen "Arzneimittels" ("Apotheke Pflanze/Tier") b. Aufnahme des Giftes durch Fraß c. Entgiftung und Speicherung; dadurch chemischer Schutz d. Übertragung des Giftes als "Hochzeitsgeschenk vom Männchen aufs Weibchen (Kopula) e. Transfer des Giftes vom Weibchen in die Eier und Weitergabe in Larven und Puppenstadien (d.h.: auch Eier, Larven und Puppenstadien chemisch geschützt) f. Arzneimittel bewirkt Verhaltensänderung/berauschende Wirkung (manchmal aphrodisierend) g. Fitness-Steigerung: Erhöhung von Überlebens- und Paarungschancen Phylogenie der Staphylinidae nach Grebennikov & Newton (2009) 2. Steninae 1. Paederus Longitudinal section of a staphylinid abdomen showing position and morphological structure of defensive glands of adults/larvae (Dettner, 1993) D1 E1 Aleocharinae C larvae B Oxytelinae D3 D2 D E Aleocharinae Staphylininae 4 2 adults A BC/D E1 E2 F H A1Silphidae H Paederus Tachyporinae A3 G Paederinae glandular cells A2 Xantholininae (black) reservoir (stippled) A4 Steninae F Omaliinae/Proteininae G Paederinae Pederon OMe O OH OMe OH MM 501,61 Icadamid B Psymberin OMe O MM 599,77 MM 623,75 OH O OH MeO H O N OH O MeO O H OH O O N H O OMe OMe N OMe OH CH O O O 2 O OMe OMe OH OH O COOH OMe CH2 CH O 2 Pseudopederin N Theopederin A H MM 489,61OH O O Onnamid A OH H MM497,59 HO O N 793,96 OH MeO OH O H N NH H OMe OH O 2 O OMe O N H OMe O N NH OMe CH OMe O O O 2 O O O O Dihydropseudopederin OMe CH 2 MM 491,63 O CH2 OH O OH O OH H O N Theopederin C O Onnamid F OH OH 545,63 597,75 O OMe O OMe OH O OMe H H O N CH3 OMe OMe O N OMe OMe Dihydrodesoxypederin OMe O O O O OMe MM 475,61 OMe OH O H OH O O N CH2 CH H H OH 2 OH O N OH OH O OMe Mycalamid A O OMe 503,60 CH2 Pederin MeO OH O CH H 3 O N OMe OH OMe OMe OH Mycalamid D OH Dihydropederin O O O 485,62 MM 505,64 OMe OH O CH2 OH O MeO MeO H H OMe OH O O N O N H OH O N Mycalamid B OMe OH O O O O O O 517,62 O OMe CH2 CH2 CH3 Phylogenetic tree based on 16SrDNA sequence of the Paederus sabaeus endosymbiont in relation to the Pseudomonas lineage and other insects endosymbionts Genombereich aus 8 Genen stellt den ca. 72 kb großen ped - Cluster dar, dessen Sequenz wichtige Hinweise für den Ablauf der Pederin-Synthese gibt (Piel, 2004) Transfer des Toxins Pederin von “+ “ -Weibchen des Käfers Paederus in Eier, Larven und Imagines. “-“ -Larven können experimentell in “+ “-Weibchen umgewandelt werden, indem sie mit Eiern von “+“-Weibchen gefüttert werden. Eier, Larven und Imagines, welche Spuren von Pederin enthalten sind wirksam vor Spinnenfraß geschützt. Imagines Gelege Larven Imagines experimentell Fütterung mit erzeugte “+“-Eiern Fluctuation of pederin amounts transferred by a "-" – female of Paederus riparius into eggs after feeding with synthetic pederin (arrow) Investigated body compartments of a Paederus – female (Paederinae) 1 2 7 gut ovaries 5 4 6 3 1: fat body 2: gut 10 mm 3: flight- and thoracic muscles accessory 4: ovaries genital glands 5: efferent ducts of ovaries chamber 6: exocrine gland 7: hemolymph pederin content (ng/µg dry weight) of female beetles (n = 18) 180 XIX XX 160 XXI XVII XVIII XXIV 140 XXVIII XXII 120 XXIII XXVI XXVII XXX 100 XXV XXIX 80 XXXVII XXXIII XXXV XXXVI 60 40 20 pederin content (ng/µg dry weight) 0 fat body gut muscles ovaries efferent duct gland hemolymph nerval eggs system pederin content (ng/µg dry weight) of males (n = 5) 2,0 XII XVI 1,5 XXXVIII XXXIX 1,0 XL 0,5 pederin content (ng/µg dry weight) 0,0 fatFett bodyDarm gutMuskel musclesHoden testesDrüse gland hemolymphHämoly. nervalNS system compartments Lage und Bau der Komplexdrüse bei Paederus riparius 5 mm Unterseite eines Paederus Schematische Darstellung der Komplexdrüse riparius – Männchens mit der a Antecosta; g Rinne, r Reservoir, Lage der Reservoiröffnung s Sternalnaht, SIII, SIV Sternit III, IV (Pfeil) Drüsenreservoir der Paederus - Ventraldrüse Fotos: M. Kador Nairobi-eye nach Kontamination mit pederinhaltigem Drüsensekret 30 h 30 h 49 h 49 h 73 h 73 h F GH Photos of the iodine- soaked filter papers showing outlines of the five female beetles (F - J) used during experiment (Grebe & Dettner, 2007) IJ 14 12 10 filter paper Amounts of pederin (µg/female) 8 6 Pederinmenge [µg] 4 Amounts2 of pederin (µg/female) 0 F I left: previously. Mean value and Kstandard deviation per femal pederin was isolated from pieces of filter paper on which right: P standard deviation per female (XVII – XXXVII) gland is in Q Total amounts of pederin detected from dissected exocrin S U glands V Mittelwert Mean value XVII XXI XXIII XXIV XXV e (F – V) is indicated. one living female hadXX beenVI pressed dicated. XXIX e glands of females. Mean value andXX X XXXII XXXIII XXXVII MMittelwertean value AB C Photos of the iodine- soaked filter papers showing outlines of the five male beetles (A - E ) used during experiment (Grebe & Dettner, 2007) D E sex ratio of the specimens in the course of a year; (Grebe & Dettner 2007) 70 60 50 40 30 20 females (%) Prozent der Weibchen 10 0 5.
Recommended publications
  • Rope Parasite” the Rope Parasite Parasites: Nearly Every AuSC Child I Ever Treated Proved to Carry a Significant Parasite Burden
    Au#sm: 2015 Dietrich Klinghardt MD, PhD Infec4ons and Infestaons Chronic Infecons, Infesta#ons and ASD Infec4ons affect us in 3 ways: 1. Immune reac,on against the microbes or their metabolic products Treatment: low dose immunotherapy (LDI, LDA, EPD) 2. Effects of their secreted endo- and exotoxins and metabolic waste Treatment: colon hydrotherapy, sauna, intes4nal binders (Enterosgel, MicroSilica, chlorella, zeolite), detoxificaon with herbs and medical drugs, ac4vaon of detox pathways by solving underlying blocKages (methylaon, etc.) 3. Compe,,on for our micronutrients Treatment: decrease microbial load, consider vitamin/mineral protocol Lyme, Toxins and Epigene#cs • In 2000 I examined 10 au4s4c children with no Known history of Lyme disease (age 3-10), with the IgeneX Western Blot test – aer successful treatment. 5 children were IgM posi4ve, 3 children IgG, 2 children were negave. That is 80% of the children had clinical Lyme disease, none the history of a 4cK bite! • Why is it taking so long for au4sm-literate prac44oners to embrace the fact, that many au4s4c children have contracted Lyme or several co-infec4ons in the womb from an oVen asymptomac mother? Why not become Lyme literate also? • Infec4ons can be treated without the use of an4bio4cs, using liposomal ozonated essen4al oils, herbs, ozone, Rife devices, PEMF, colloidal silver, regular s.c injecons of artesunate, the Klinghardt co-infec4on cocKtail and more. • Symptomac infec4ons and infestaons are almost always the result of a high body burden of glyphosate, mercury and aluminum - against the bacKdrop of epigene4c injuries (epimutaons) suffered in the womb or from our ancestors( trauma, vaccine adjuvants, worK place related lead, aluminum, herbicides etc., electromagne4c radiaon exposures etc.) • Most symptoms are caused by a confused upregulated immune system (molecular mimicry) Toxins from a toxic environment enter our system through damaged boundaries and membranes (gut barrier, blood brain barrier, damaged endothelium, etc.).
    [Show full text]
  • A Review of Chemical Defense in Poison Frogs (Dendrobatidae): Ecology, Pharmacokinetics, and Autoresistance
    Chapter 21 A Review of Chemical Defense in Poison Frogs (Dendrobatidae): Ecology, Pharmacokinetics, and Autoresistance Juan C. Santos , Rebecca D. Tarvin , and Lauren A. O’Connell 21.1 Introduction Chemical defense has evolved multiple times in nearly every major group of life, from snakes and insects to bacteria and plants (Mebs 2002 ). However, among land vertebrates, chemical defenses are restricted to a few monophyletic groups (i.e., clades). Most of these are amphibians and snakes, but a few rare origins (e.g., Pitohui birds) have stimulated research on acquired chemical defenses (Dumbacher et al. 1992 ). Selective pressures that lead to defense are usually associated with an organ- ism’s limited ability to escape predation or conspicuous behaviors and phenotypes that increase detectability by predators (e.g., diurnality or mating calls) (Speed and Ruxton 2005 ). Defended organisms frequently evolve warning signals to advertise their defense, a phenomenon known as aposematism (Mappes et al. 2005 ). Warning signals such as conspicuous coloration unambiguously inform predators that there will be a substantial cost if they proceed with attack or consumption of the defended prey (Mappes et al. 2005 ). However, aposematism is likely more complex than the simple pairing of signal and defense, encompassing a series of traits (i.e., the apose- matic syndrome) that alter morphology, physiology, and behavior (Mappes and J. C. Santos (*) Department of Zoology, Biodiversity Research Centre , University of British Columbia , #4200-6270 University Blvd , Vancouver , BC , Canada , V6T 1Z4 e-mail: [email protected] R. D. Tarvin University of Texas at Austin , 2415 Speedway Stop C0990 , Austin , TX 78712 , USA e-mail: [email protected] L.
    [Show full text]
  • Contact Toxicities of Anuran Skin Alkaloids Against the Fire Ant (Solenopsis Invicta)
    Naturwissenschaften (2013) 100:185–192 DOI 10.1007/s00114-013-1010-0 ORIGINAL PAPER Contact toxicities of anuran skin alkaloids against the fire ant (Solenopsis invicta) Paul J. Weldon & Yasmin J. Cardoza & Robert K. Vander Meer & W. Clint Hoffmann & John W. Daly & Thomas F. Spande Received: 19 July 2012 /Revised: 4 January 2013 /Accepted: 7 January 2013 /Published online: 23 January 2013 # Springer-Verlag Berlin Heidelberg (outside the USA) 2013 Abstract Nearly 500 alkaloids, representing over 20 struc- estimated the cutaneous concentrations of several com- tural classes, have been identified from the skin of neotrop- pounds based on their reported recoveries from skin extracts ical poison frogs (Dendrobatidae). These cutaneous of free-ranging frogs and our measurements of the skin compounds, which are derived from arthropod prey of the surface areas of museum specimens. Pumiliotoxin 251D frogs, generally are believed to deter predators. We tested exhibited contact toxicity below its estimated cutaneous the red imported fire ant (Solenopsis invicta) for toxicosis concentration in the Ecuadorian frog, Epipedobates antho- following contact with 20 alkaloids (12 structural classes) nyi, an observation consistent with the hypothesized role identified from dendrobatids or other anurans. Individual of this compound in anuran chemical defense. Our results ants forced to contact the dried residues of 13 compounds and those of a previous study of mosquitoes indicate that exhibited convulsions and/or reduced ambulation. We some anuran skin compounds function defensively as contact toxins against arthropods, permeating their exoskeleton. Communicated by: Sven Thatje . John W. Daly deceased 5 March, 2008 Keywords Alkaloid Allomone Ant Defense Frog Toxicity P.
    [Show full text]
  • An Arthropod Source for the Pumiliotoxin Alkaloids Of
    Formicine ants: An arthropod source for the SEE COMMENTARY pumiliotoxin alkaloids of dendrobatid poison frogs Ralph A. Saporito*, H. Martin Garraffo†, Maureen A. Donnelly*, Adam L. Edwards*, John T. Longino‡, and John W. Daly†§ *Department of Biological Sciences, Florida International University, Miami, FL 33199; †Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892; and ‡Evergreen State College, Olympia, WA 98505 Contributed by John W. Daly, April 5, 2004 A remarkable diversity of bioactive lipophilic alkaloids is present in ins (1) represent alkaloid classes (Fig. 2) that share certain the skin of poison frogs and toads worldwide. Originally discov- structural features with those of known ant alkaloids, and it is ered in neotropical dendrobatid frogs, these alkaloids are now expected that they will prove to be of myrmicine ant origin as known from mantellid frogs of Madagascar, certain myobatrachid well. All of the alkaloids in frog and toad skin that appear to frogs of Australia, and certain bufonid toads of South America. originate by sequestration from myrmicine ants contain un- Presumably serving as a passive chemical defense, these alkaloids branched carbon skeletons. Coccinellid beetles appear to be a appear to be sequestered from a variety of alkaloid-containing dietary source for the coccinellines and some of the structurally arthropods. The pumiliotoxins represent a major, widespread, related tricyclic alkaloids (5). Siphonotid millipedes are the group of alkaloids that are found in virtually all anurans that are putative dietary source for the spiropyrrolizidine oximes and chemically defended by the presence of lipophilic alkaloids.
    [Show full text]
  • Sequestered Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga Pumilio Provide Variable Protection from Microbial Pathogens
    John Carroll University Carroll Collected Masters Theses Theses, Essays, and Senior Honors Projects Summer 2016 SEQUESTERED ALKALOID DEFENSES IN THE DENDROBATID POISON FROG OOPHAGA PUMILIO PROVIDE VARIABLE PROTECTION FROM MICROBIAL PATHOGENS Kyle Hovey John Carroll University, [email protected] Follow this and additional works at: http://collected.jcu.edu/masterstheses Part of the Biology Commons Recommended Citation Hovey, Kyle, "SEQUESTERED ALKALOID DEFENSES IN THE DENDROBATID POISON FROG OOPHAGA PUMILIO PROVIDE VARIABLE PROTECTION FROM MICROBIAL PATHOGENS" (2016). Masters Theses. 19. http://collected.jcu.edu/masterstheses/19 This Thesis is brought to you for free and open access by the Theses, Essays, and Senior Honors Projects at Carroll Collected. It has been accepted for inclusion in Masters Theses by an authorized administrator of Carroll Collected. For more information, please contact [email protected]. SEQUESTERED ALKALOID DEFENSES IN THE DENDROBATID POISON FROG OOPHAGA PUMILIO PROVIDE VARIABLE PROTECTION FROM MICROBIAL PATHOGENS A Thesis Submitted to the Office of Graduate Studies College of Arts & Sciences of John Carroll University in Partial Fulfillment of the Requirements for the Degree of Master of Science By Kyle J. Hovey 2016 Table of Contents Abstract ................................................................................................................................1 Introduction ..........................................................................................................................3 Methods
    [Show full text]
  • Indolizidine Alkaloids Baran Group Meeting
    5/10/06 Richter Indolizidine Alkaloids Baran Group Meeting Me O O Background/Introduction: HO H H H HO Me 1. Isolated from a myriad of sources, including, but not limited to ants, N frogs, fungi, and trees. Me N HO H N N 2. A host of effects including, but not limited to, harvest failures, edemas, Me Me necrosis, and rashes. elaeokanine C 3. A host of activities including, but not limited to, phytotoxic, insecticidal, Me Me N antibacterial, and fungicidal. allopumiliotoxin 267A myrmicarin 215A 4. It is unclear what defines the limits of the family, however scores of rhazinilam H H natural products contain the core structure shown below. A sampling Me HO H is provided at the end of the handout. HO 5. The ring is numbered as shows below. N N OH Me Me N 8 1 Me 7 9 2 Me Me OH 6 N Me Me 4 myrmicarin 215B myrmicarin 217 5 3 allopumiliotoxin 339B Me Me OH OH H H Me OH H Syntheses Discussed (in order): H H OAc Me H OH OH N N HO O N Me N Me N H Me swainsonine N nuphar alkaloids Me H2N N indolizidine 223AB slaframine N indolizidine 209D indolizidine 223A serratinine Me tashiromine O Me Me HO H H HO H HO H OH H OH OH Me H Me N N N Me N N OH N H OH OH Me Me OH Me Me lentiginosine O pumiliotoxin 323A lepadiformine pumiliotoxin 307A pumiliotoxin 251D gephyrotoxin O OH OH O H H OH H Me H HO H H N H Me N H N N Me OH N HO H N Me H castanospermine H N H Me securinine gephyrotoxin indolizomycin O alkaloid 205B indolizidine 167B HO ipaldibine Me Me Me 5/10/06 Richter Indolizidine Alkaloids Baran Group Meeting Gallagher, Tetrahedron Lett.
    [Show full text]
  • Jahresbericht 2007
    Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main JAHRESBERICHT 2007 Fachbereich Medizin Fachbereich Medizin und Klinikum der Johann Wolfgang Goethe- Universität Frankfurt am Main Jahresbericht 2007 - 1- Herausgeber: Vorstand des Klinikums der Johann Wolfgang Goethe-Universität Redaktion: Dr. Barbara Pardon Theodor-Stern-Kai 7 60590 Frankfurt am Main November 2008 - 2- Inhaltsverzeichnis Organisationsstruktur des Klinikums .................................................................................. 5 Dekanat, Akademische Angelegenheiten und Selbstverwaltung ........................................ 12 Vorstand des Klinikums ...................................................................................................... 24 Verwaltung und Logistik ..................................................................................................... 42 Pflegedienstleitung .............................................................................................................. 61 Klinische, klinisch-theoretische und medizinisch-theoretische Einrichtungen Zentrum der Inneren Medizin .............................................................................................. 77 Zentrum der Chirurgie ......................................................................................................... 113 Zentrum der Frauenheilkunde und Geburtshilfe .................................................................. 135 Zentrum für Kinder- und Jugendmedizin ............................................................
    [Show full text]
  • Evidence for an Enantioselective Pumiliotoxin 7-Hydroxylase in Dendrobatid Poison Frogs of the Genus Dendrobates
    Evidence for an enantioselective pumiliotoxin 7-hydroxylase in dendrobatid poison frogs of the genus Dendrobates John W. Daly*†, H. Martin Garraffo*, Thomas F. Spande*, Valerie C. Clark*‡, Jingyuan Ma*§, Herman Ziffer*¶, and John F. Cover, Jr.ʈ *Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-0820; and ʈNational Aquarium in Baltimore, 501 East Pratt Steet, Baltimore, MD 21202 Contributed by John W. Daly, July 15, 2003 Dendrobatid poison frogs readily accumulate alkaloids from diet dophryne frogs seemed dependent on diet for their PTXs͞aPTXs into skin, where such compounds serve as a chemical defense (15). However, raised in captivity, the Pseudophryne frogs still against predators. Arthropods seem to be the source of decahyd- contained pseudophrynamines in skin and, thus, the frogs seem roquinolines (DHQs), several izidines, coccinellines, spiropyrroliz- able to synthesize these unusual indolic alkaloids (15). The idines, pumiliotoxins (PTXs), and allopumiliotoxins (aPTXs). A DHQ dietary source of the many classes of alkaloids found in skin of .iso-223F, and PTX (؉)-251D were fed to poison frogs of the frog taxa has become a major challenge dendrobatid genera Dendrobates, Epipedobates, and Phyllobates. In the present alkaloid-feeding experiments, a synthetic DHQ The two alkaloids were accumulated in skin unchanged except for iso-223F, an isomer of a natural DHQ, code name 223F (3), was the three species of Dendrobates, where Ϸ80% of accumulated fed along with a simple PTX (ϩ)-251D. DHQs were known to PTX (؉)-251D was stereoselectively hydroxylated to aPTX (؉)- be readily accumulated unchanged into skin of dendrobatid frogs 267A.
    [Show full text]
  • Geographic and Seasonal Variation in Alkaloid-Based Chemical Defenses of Dendrobates Pumilio from Bocas Del Toro, Panama
    J Chem Ecol (2006) 32: 795–814 DOI 10.1007/s10886-006-9034-y Geographic and Seasonal Variation in Alkaloid-Based Chemical Defenses of Dendrobates pumilio from Bocas del Toro, Panama Ralph A. Saporito & Maureen A. Donnelly & H. Martin Garraffo & Thomas F. Spande & John W. Daly Received: 11 November 2005 /Revised: 15 December 2005 / Accepted: 3 January 2006 / Published online: 5 May 2006 # Springer Science + Business Media, Inc. 2006 Abstract Poison frogs contain an alkaloid-based chemical defense that is derived from a diet of certain alkaloid-containing arthropods, which include mites, ants, beetles, and millipedes. Variation in population-level alkaloid profiles among species has been documented, and more than 800 different alkaloids have been identified. In the present study, we examine individual alkaloid variation in the dendrobatid poison frog Dendrobates pumilio among seven populations and between two seasons on Isla Bastimentos, located in the Bocas del Toro archipelago of Panama. Alkaloid profiles vary among populations and between seasons, illustrating that chemical defense in this species can vary on a small spatial and temporal scale. Alkaloid variation among populations is marginally correlated with geographic distance, and close populations have profiles more similar to each other than to distant populations. Individuals within populations also vary in alkaloid profiles. Differences are attributed to both spatial and temporal variations in the availability of alkaloid-containing arthropods. Many of the alkaloids present in the skin of D. pumilio appear likely to be of ant origin, supporting the importance of myrmecophagy in chemical defense among poison frogs. However, a variety of frog skin alkaloids was recently detected in mites, suggesting that mites may also play an important role in chemical defense.
    [Show full text]
  • Transcriptomic Signatures of Experimental Alkaloid Consumption in a Poison Frog
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Digitale Bibliothek Braunschweig G C A T T A C G G C A T genes Article Transcriptomic Signatures of Experimental Alkaloid Consumption in a Poison Frog Eugenia Sanchez 1,2,* , Ariel Rodríguez 3 , Jose H. Grau 4, Stefan Lötters 5, Sven Künzel 6, 7 8,9 10 11, Ralph A. Saporito , Eva Ringler , Stefan Schulz , Katharina C. Wollenberg Valero y 1, and Miguel Vences y 1 Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany; [email protected] 2 Department of Biology, Stanford University, Stanford, CA 94305, USA 3 Institut fur Zoologie, Tierärztliche Hochschule Hannover, 30559 Hannover, Germany; [email protected] 4 Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115 Berlin, Germany; [email protected] 5 Biogeography Department, Trier University, 54296 Trier, Germany; [email protected] 6 Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany; [email protected] 7 Department of Biology, John Carroll University, University Heights, OH 44118, USA; [email protected] 8 Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, and University of Vienna, A-1210 Vienna, Austria; [email protected] 9 Department of Integrative Zoology, University of Vienna, A-1090 Vienna, Austria 10 Institute of Organic Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany; [email protected] 11 Department of Biological and Marine Sciences, University of Hull, Kingston-Upon Hull 01482, UK; [email protected] * Correspondence: [email protected] These authors contributed equally to the manuscript.
    [Show full text]
  • 1 Introduction
    1.1 Indolizidines as Natural Products 1 1 Introduction 1.1 Indolizidines as Natural Products Indolizidines are widely distributed in nature – in plants as well as in many animals. Their structures can be described either as derivatives of the aromatic bicyclic indolizine or as azabicyclo[4.3.0]- nonanes.1 1 8 5 9 7 6 7 4 2 8 N N 6 3 9 1 3 4 2 5 Indolizine Azabicyclo[4.3.0]nonane Fig. 1 The bicyclic core of indolizidine alkaloids The indolizidine alkaloids display a wide range of biological activities2 and have been the subject of numerous synthetic studies.3 The development of general methods for the synthesis of racemic and enantiopure indolizidines remains an area of active investigation. Most of the naturally occurring indolizidines have been isolated from species of the genus Dendrobates (poison-arrow frogs); Monomorium (ants), Dendrobium (orchids), Tylophora and the Leguminosae family (plants). The classification of the indolizidines according to their natural sources is difficult due to the structural diversity within these species. Nevertheless some characteristic structural motives are unique for the species and often linked to the high biological activities of the compounds. Among them the lipophilic pumiliotoxins and hydrophilic polyhydroxy indolizidines are the two most important classes of compounds. 1 In this work the azabicyclo[4.3.0]nonane nomenclature was used in order to maintain clarity and consistency when comparing different heterocyclic systems 2 For leading references to the biological activity of indolizidine Alkaloids, see: (a) Michael, J. P. Nat. Prod. Rep. 1997, 14, 21-41. (b) Takahata, H.; Momose, T.
    [Show full text]
  • Synthetic Studies on Molecules Related to the Azinothricin Family and Allopumiliotoxin 339A
    Synthetic Studies on Molecules Related to the Azinothricin Family and Allopumiliotoxin 339A A Thesis Presented to the University of London in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy Amandine Andree Huguette LEFRANC Christopher Ingold Laboratories Department of Chemistry University College London London WC1H OAJ May 2008 UMI Number: U591613 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U591613 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT The Azinothricin family of compounds are based on a cyclodepsipeptide core and were first encountered in the late 1980s. Most of the members exhibit potent antitumour and antibiotic activities. In 1997, the Hale group synthesised A83586C through a chemoselective coupling strategy between an unprotected cyclohexadepsipeptide and a fully elaborated pyran activated ester. In this thesis, the asymmetric synthesis of two cyclodepsipeptides analogues are investigated, the L-proline analogue of GE3 cyclodepsipeptide and the (3S,5S)- 5-hydroxypiperazic acid analogue of A83586C cyclodepsipeptide. The synthesis of analogues may be of value for elucidating the mode of action of these natural products.
    [Show full text]