Book Reviews

Total Page:16

File Type:pdf, Size:1020Kb

Book Reviews Psriodica Mathemat~ca Hungarica V ol. 20 (2), (1989), pp. 173--175 BOOK REVIEWS Ismael Herrera, Boundary methods: An algebraic theory, 136 pages, Pitman, Bos- ton, 1984. Abstract formulations of boundary value problems have been so far known only for ordinary differential equations (see e.g. in the monograph of Dunford and Schwartz). I. Herrera develope~t in the last twenty five years an abstract method applicable for linear partial differential equations too. This book is an integrated presentation of this method. Herrera's theory is based upon an algebraic structure which occurs in linear boundary value problems. In Part 1 of the book the abstract theory is developed. The algebraic theory uses functional valued operators on vector spaces without inner product. The crucial point in the algebraic development is the introduction of abstract Green formulas. The author gives a characterization of Green formulas by means of some pairs of subspaces and shows a method to obtain abstract Green formulas for the union Of two domains using that of the parts. This material is accompanied by several examples. In Part 2 the author investigates the Trefftz method and shows that every Green formula corresponds to an immersion in some Hilbert space. Finally some algorithms of the solution of boundary value and initial-boundary value problems are discussed. I. Jo6 (Budapest) H. Attouch, Variational convergence for functions and operators, 423 pages, Pitman, Boston, 1984. In the last twenty years new types of convergence appeared in the mathematical literature for sequences of functions and operators. The aim of these notions is to approach the limit of sequences of va~tional problems, hence they are called variational con- vergences. The book is an integrated presentation of the results of this type appeared in. a large number of papers. The book contains the case of a special variation~fl problem, the so called minimization problems. The corresponding convergence of functions is called in this case epi-eonvergenee. The book is divided into three chapters. In Chapter 1 the definition of epi-convergence is given in a general topological setting and there are given interesting physical applications. Chapter 2 contains a complete description of the topological properties of epi-convergence and, at last, the third and final chapter is devoted to the study of epi-convergence of convex functions. The author indicates many new extensions and new fields of application of variation convergence appeared in the literature in the last few years. I. Jo5 (Budapest) Wilbur Knott, The ancient tradition of geometric problems, ix~-411 pages, Birk- h~user, Boston, 1986. Looking through the history of famous geometric problems such as the cube duplication, angle trisection, and circle quadrature, it is possible to follow the main course of the geometry from the pre-Euclidean period through the Hellenistic and Middle Akad~iat Kiadd, ~udapest Kluwcr Ac~,mic Publishers, Dordred~ 174 BOOK RE¥II~WS Age period into the nineteen century, The ancient efforts for solving these "classical" problems are of a special interest of the present book. However, what was understood under the "problem" in the Greek geometry Of ancient time ? "Within the ancient geometry, a geometric ~problem~ seeks the construc- tion of a figure corresponding to a specific description. The solution to any problem requires for its completion an appeal to the constructions in other problems already solved, and in turn will be applied to the solutions of yet others. In effect, then, the corpus of solved problems forn~s an ordered sequence in which each problem can be reduced to those preceding." This book is conceived "as an exploratory essay, intended to reveal the opportuni- ties which the evidence available to us provides for an interpretation of the ancient field". To begin with the table of contents, we note that the book is divided into eight chapters, with the short Chapter 1 where three major recommendations bearing on the present study of the ancient problem-solving efforts are given. First, "to establish the simple chronological sequence of the various solutions". Second, "to devote separate treatment to several important metamathematieal issues: how the ancient divided the geometric field according to the types of problems and solving methods; what they viewed the special role of problems to be, especially in relation to that of theorems, and how they associated these with the important methods of analysis and synthesis; what conditions they imposed on the techniques admissible for the solution of problems, and wheather they judged that satisfactory solutions for the three special problems had actually been found". Third, "to take up the textual issues bearing on our use of authors from the later antiquity". Chapters 2--7 are dedicated to investigations "on special problems as a cross section, suitable for filling out one's portrait of the wider field". The pre-Euelldean history of Delian problem of the cube duplication, and the problem of the quadrature of the circle is given in the Chapters 2 and 3. The special attention is paid to the geometers (Archytas, Eudoxus, lYienaechmus, ... ) in Plato's Academy in Athens when it became the center for geometric studies. Chapter 4 treats the work of Euclid of Alexandria, and of geometers from his generation that witnessed important advances in the field of geometric problem solving. Archimedean problem-solving methods via conic sections and neu~e8 (~sva~, equivalent to a eublc equation) are described in the Chapter 5. Moreover, one section of this chapter is dedicated to the solution of the problem of circle quadrature by number ~, and to the Arehimedean spirals. Chapter 6 discusses the "golden age" of interest in the three classical problems; that is the later part of the 3rd century B. C. From that time survived fragments from the work of a series of Archimedes' successors: Eratosthenes, Nicomedes, Hippias, ]:)iocles, Dionysodorus, Perseus, and Zenodorus. In the Chapter 7 we are treated to the work of Appollonius of Perga. His "Gon/cs, Solid Loci and other works reported by Pappus represented the high point of the ancient classical tradition. Their later editions, even in fragmentary form, continued to challenge geometers until well into modern times". The goal of the Chapter 8 is to discover what the ancient views were by means of a consideration of the relevant historical evidence. This Chapter is concerned with the second problem mentioned in the Chapter 1. In the list of references at the end of the book author endeavored to include only those contributions which seemed to him "historically and technically stimulating". The immense secondary literature on the history of ancient problems and solving methods could not be attempted here. Book is to be recommended to the readers interested in the early history of geo- metric constructions. Z. ~ (Beograd) ProbabiHty theory and harmonie analysis, edited by J.-A. CHAO and W. A. WOYCZYI~TSKI (Pure and Applied Mathematics, 98), vlii~-291 pages, M. Dekker, New York, 1986. This volume of the series "Monographs and Textbooks in Pure and Applied Mathematics" is a collection of fifteen papers in probability theory and harmonic ana- lysis. The papers are concerned with the interaction between these areas which is one of the most successful field of mathematics over the past two decades. Among the authors .
Recommended publications
  • Citations in Classics and Ancient History
    Citations in Classics and Ancient History The most common style in use in the field of Classical Studies is the author-date style, also known as Chicago 2, but MLA is also quite common and perfectly acceptable. Quick guides for each of MLA and Chicago 2 are readily available as PDF downloads. The Chicago Manual of Style Online offers a guide on their web-page: http://www.chicagomanualofstyle.org/tools_citationguide.html The Modern Language Association (MLA) does not, but many educational institutions post an MLA guide for free access. While a specific citation style should be followed carefully, none take into account the specific practices of Classical Studies. They are all (Chicago, MLA and others) perfectly suitable for citing most resources, but should not be followed for citing ancient Greek and Latin primary source material, including primary sources in translation. Citing Primary Sources: Every ancient text has its own unique system for locating content by numbers. For example, Homer's Iliad is divided into 24 Books (what we might now call chapters) and the lines of each Book are numbered from line 1. Herodotus' Histories is divided into nine Books and each of these Books is divided into Chapters and each chapter into line numbers. The purpose of such a system is that the Iliad, or any primary source, can be cited in any language and from any publication and always refer to the same passage. That is why we do not cite Herodotus page 66. Page 66 in what publication, in what edition? Very early in your textbook, Apodexis Historia, a passage from Herodotus is reproduced.
    [Show full text]
  • Ancient Rhetoric and Greek Mathematics: a Response to a Modern Historiographical Dilemma
    Science in Context 16(3), 391–412 (2003). Copyright © Cambridge University Press DOI: 10.1017/S0269889703000863 Printed in the United Kingdom Ancient Rhetoric and Greek Mathematics: A Response to a Modern Historiographical Dilemma Alain Bernard Dibner Institute, Boston To the memory of three days in the Negev Argument In this article, I compare Sabetai Unguru’s and Wilbur Knorr’s views on the historiography of ancient Greek mathematics. Although they share the same concern for avoiding anach- ronisms, they take very different stands on the role mathematical readings should have in the interpretation of ancient mathematics. While Unguru refuses any intrusion of mathematical practice into history, Knorr believes this practice to be a key tool for understanding the ancient tradition of geometry. Thus modern historians have to find their way between these opposing views while avoiding an unsatisfactory compromise. One approach to this, I propose, is to take ancient rhetoric into account. I illustrate this proposal by showing how rhetorical categories can help us to analyze mathematical texts. I finally show that such an approach accommodates Knorr’s concern about ancient mathematical practice as well as the standards for modern historical research set by Unguru 25 years ago. Introduction The title of the present paper indicates that this work concerns the relationship between ancient rhetoric and ancient Greek mathematics. Such a title obviously raises a simple question: Is there such a relationship? The usual appreciation of ancient science and philosophy is at odds with such an idea. This appreciation is rooted in the pregnant categorization that ranks rhetoric and science at very different levels.
    [Show full text]
  • Bibliography
    Bibliography Afshar, Iraj: Bibliographie des Catalogues des Manuscrits Persans. Tehran: 1958. Almagest: see Ptolemy. Apollonius: Apollonii Pergaei quae Graece exstant cum commentariis Eutocii (ed. J. L. Heiberg), 2 vols. Leipzig: 1891, 1893. Arberry, A. J. : The Chester Beatty Library, A Handlist of the Arabic Manuscripts, Vol. VII. Dublin: 1964. Archimedes: Archimedis Opera Omnia cum commentariis Eutocii, (iterum ed. J. L. Heiberg), 3 vols. Leipzig: 1910-1915. Archimedes: see also Heath. Aristarchus of Samos: On the Sizes and Distances of the Sun and Moon (ed. T. Heath). Oxford: 1913. Aristotle, Nicomachean Ethics: Aristotelis Ethica Nicomachea (ed. I. Bywater). Oxford: 1894. Aristotle, Prior Analytics: Aristotelis Analytica Priora et Posteriora (ed. W. D. Ross and L. Minio-Paluello). Oxford: 1964. Autolycus: J. Mogenet, Autolycus de Pitane. Louvain, 1950 (Universite de Louvain, Recueil de Travaux d'Histoire et de Philologie, 3e. Serie Fasc. 37). Awad, Gurgis: "Arabic Manuscripts in American Libraries". Sumer 1, 237-277 (1951). (Arabic). Bachmann, Peter: Galens Abhandlung dariiber, dal3 der vorziigliche Arzt Philosoph sein mul3. Gottingen: 1965 (Ak. Wiss. Gottingen, Nachrichten Phil. -hist. Kl. 1965.1). Belger, C.: "Ein neues Fragmentum Mathematicum Bobiense". Hermes 16, 261-84 (1881). Boilot, D. J.: "L'oeuvre d'al-Beruni, essai bibliographique". Melanges de l'Institut Dominicain d'Etudes Orientales du Caire ~, 161-256 (1955). Bretschneider, C. A.: Die Geometrie und die Geometer vor Eukleides. Leipzig: 1870. 217 Bib Ziography Brockelmann, Carl: Geschichte der Arabischen Litteratur, zweite den Supplementbanden angepasste Aunage, 2 vols. Leiden: 1943, 1949 [GAL] [and] Supplementbande I-III. Leiden: 1937, 1938, 1942 [S]. Bulmer-Thomas, I.: "Conon of Samos". Dictionary of Scientific Biography III, (New York), 391 (1971).
    [Show full text]
  • A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scholarship@Claremont Journal of Humanistic Mathematics Volume 7 | Issue 2 July 2017 A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time John B. Little College of the Holy Cross Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Ancient History, Greek and Roman through Late Antiquity Commons, and the Mathematics Commons Recommended Citation Little, J. B. "A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time," Journal of Humanistic Mathematics, Volume 7 Issue 2 (July 2017), pages 269-293. DOI: 10.5642/ jhummath.201702.13 . Available at: https://scholarship.claremont.edu/jhm/vol7/iss2/13 ©2017 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time Cover Page Footnote This essay originated as an assignment for Professor Thomas Martin's Plutarch seminar at Holy Cross in Fall 2016.
    [Show full text]
  • A Short History of Greek Mathematics
    Cambridge Library Co ll e C t i o n Books of enduring scholarly value Classics From the Renaissance to the nineteenth century, Latin and Greek were compulsory subjects in almost all European universities, and most early modern scholars published their research and conducted international correspondence in Latin. Latin had continued in use in Western Europe long after the fall of the Roman empire as the lingua franca of the educated classes and of law, diplomacy, religion and university teaching. The flight of Greek scholars to the West after the fall of Constantinople in 1453 gave impetus to the study of ancient Greek literature and the Greek New Testament. Eventually, just as nineteenth-century reforms of university curricula were beginning to erode this ascendancy, developments in textual criticism and linguistic analysis, and new ways of studying ancient societies, especially archaeology, led to renewed enthusiasm for the Classics. This collection offers works of criticism, interpretation and synthesis by the outstanding scholars of the nineteenth century. A Short History of Greek Mathematics James Gow’s Short History of Greek Mathematics (1884) provided the first full account of the subject available in English, and it today remains a clear and thorough guide to early arithmetic and geometry. Beginning with the origins of the numerical system and proceeding through the theorems of Pythagoras, Euclid, Archimedes and many others, the Short History offers in-depth analysis and useful translations of individual texts as well as a broad historical overview of the development of mathematics. Parts I and II concern Greek arithmetic, including the origin of alphabetic numerals and the nomenclature for operations; Part III constitutes a complete history of Greek geometry, from its earliest precursors in Egypt and Babylon through to the innovations of the Ionic, Sophistic, and Academic schools and their followers.
    [Show full text]
  • Boethius the Demiurge
    BOETHIUS THE DEMIURGE: TIMAEAN DOUBLE-CIRCLE SPIRAL STRUCTURE IN THE CONSOLATIO by Cristalle N. Watson Submitted in partial fulfilment of the requirements for the degree of Master of Arts at Dalhousie University Halifax, Nova Scotia April 2020 © Copyright by Cristalle N. Watson, 2020 For my Opa, Karl Heinz Hiob 1926-1999 Vir doctissimus & lover of words, who first introduced me to Latin Ars longa, vita brevis ii TABLE OF CONTENTS LIST OF TABLES..............................................................................................................vi LIST OF FIGURES...........................................................................................................vii ABSTRACT.....................................................................................................................viii ACKNOWLEDGEMENTS................................................................................................ix CHAPTER 1: INTRODUCTION........................................................................................1 CHAPTER 2: POETRY AND THE CIRCLE IN THE CONSOLATIO: AN OVERVIEW….............................................................................................................3 2.1 A "MULTIFACETED" CONSOLATIO AND AUTHOR.............................................3 2.2 THE METERS OF THE CONSOLATIO: A NEGLECTED STUDY............................11 2.3 IIIM9: CENTRAL PIVOT, TIMAEAN PARAPHRASE, PRAYER...........................17 2.4 THE CIRCLE IN THE CONSOLATIO AND IN IIIM9.............................................22
    [Show full text]
  • 5. Hipparchus 6. Ptolemy
    introduction | 15 catalogue included into his oeuvre? Our answer is in Hipparchus. The catalogue itself has not survived. the positive. We have developed a method to serve However, it is believed that the ecliptic longitude and this end, tested it on several veraciously dated cata- latitude of each star was indicated there, as well as the logues, and then applied it to the Almagest. The reader magnitude. It is believed that Hipparchus localised the shall find out about our results in the present book. stars using the same terms as the Almagest: “the star Let us now cite some brief biographical data con- on the right shoulder of Perseus”,“the star over the cerning the astronomers whose activities are imme- head of Aquarius” etc ([395], page 52). diately associated with the problem as described above. One invariably ponders the extreme vagueness of These data are published in Scaligerian textbooks. One this star localization method. Not only does it imply must treat them critically, seeing as how the Scaligerian a canonical system of drawing the constellations and version of history is based on an erroneous chronol- indicating the stars they include – another stipulation ogy (see Chron1 and Chron2). We shall consider is that there are enough identical copies of a single star other facts that confirm it in the present book. chart in existence. This is the only way to make the verbal descriptions of stars such as the above work 5. and help a researcher with the actual identification of HIPPARCHUS stars. However, in this case the epoch of the cata- logue’s propagation must postdate the invention of Scaligerian history is of the opinion that astron- the printing press and the engraving technique, since omy became a natural science owing to the works of no multiple identical copies of a single work could be Hipparchus, an astronomer from the “ancient” Greece manufactured earlier.
    [Show full text]
  • The Project Gutenberg Ebook #31061: a History of Mathematics
    The Project Gutenberg EBook of A History of Mathematics, by Florian Cajori This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org Title: A History of Mathematics Author: Florian Cajori Release Date: January 24, 2010 [EBook #31061] Language: English Character set encoding: ISO-8859-1 *** START OF THIS PROJECT GUTENBERG EBOOK A HISTORY OF MATHEMATICS *** Produced by Andrew D. Hwang, Peter Vachuska, Carl Hudkins and the Online Distributed Proofreading Team at http://www.pgdp.net transcriber's note Figures may have been moved with respect to the surrounding text. Minor typographical corrections and presentational changes have been made without comment. This PDF file is formatted for screen viewing, but may be easily formatted for printing. Please consult the preamble of the LATEX source file for instructions. A HISTORY OF MATHEMATICS A HISTORY OF MATHEMATICS BY FLORIAN CAJORI, Ph.D. Formerly Professor of Applied Mathematics in the Tulane University of Louisiana; now Professor of Physics in Colorado College \I am sure that no subject loses more than mathematics by any attempt to dissociate it from its history."|J. W. L. Glaisher New York THE MACMILLAN COMPANY LONDON: MACMILLAN & CO., Ltd. 1909 All rights reserved Copyright, 1893, By MACMILLAN AND CO. Set up and electrotyped January, 1894. Reprinted March, 1895; October, 1897; November, 1901; January, 1906; July, 1909. Norwood Pre&: J. S. Cushing & Co.|Berwick & Smith.
    [Show full text]
  • The Ears of Hermes
    The Ears of Hermes The Ears of Hermes Communication, Images, and Identity in the Classical World Maurizio Bettini Translated by William Michael Short THE OHIO STATE UNIVERSITY PRess • COLUMBUS Copyright © 2000 Giulio Einaudi editore S.p.A. All rights reserved. English translation published 2011 by The Ohio State University Press. Library of Congress Cataloging-in-Publication Data Bettini, Maurizio. [Le orecchie di Hermes. English.] The ears of Hermes : communication, images, and identity in the classical world / Maurizio Bettini ; translated by William Michael Short. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-8142-1170-0 (cloth : alk. paper) ISBN-10: 0-8142-1170-4 (cloth : alk. paper) ISBN-13: 978-0-8142-9271-6 (cd-rom) 1. Classical literature—History and criticism. 2. Literature and anthropology—Greece. 3. Literature and anthropology—Rome. 4. Hermes (Greek deity) in literature. I. Short, William Michael, 1977– II. Title. PA3009.B4813 2011 937—dc23 2011015908 This book is available in the following editions: Cloth (ISBN 978-0-8142-1170-0) CD-ROM (ISBN 978-0-8142-9271-6) Cover design by AuthorSupport.com Text design by Juliet Williams Type set in Adobe Garamond Pro Printed by Thomson-Shore, Inc. The paper used in this publication meets the minimum requirements of the American Na- tional Standard for Information Sciences—Permanence of Paper for Printed Library Materials. ANSI Z39.48–1992. 9 8 7 6 5 4 3 2 1 CONTENTS Translator’s Preface vii Author’s Preface and Acknowledgments xi Part 1. Mythology Chapter 1 Hermes’ Ears: Places and Symbols of Communication in Ancient Culture 3 Chapter 2 Brutus the Fool 40 Part 2.
    [Show full text]
  • Cellini's Perseus and Medusa: Configurations of the Body
    CELLINI’S PERSEUS AND MEDUSA: CONFIGURATIONS OF THE BODY OF STATE by CHRISTINE CORRETTI Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation Advisor: Professor Edward J. Olszewski Department of Art History CASE WESTERN RESERVE UNIVERSITY January, 2011 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Christine Corretti candidate for the Doctor of Philosophy degree.* (signed) Professor Edward J. Olszewski (chair of the committee) Professor Anne Helmreich Professor Holly Witchey Dr. Jon S. Seydl (date) November, 2010 *We also certify that written approval has been obtained for any proprietary material contained therein. 1 Copyright © 2011 by Christine Corretti All rights reserved 2 Table of Contents List of Illustrations 4 Abstract 9 Introduction 11 Chapter 1 The Story of Perseus and Medusa, an Interpretation 28 of its Meaning, and the Topos of Decapitation Chapter 2 Cellini’s Perseus and Medusa: the Paradigm of Control 56 Chapter 3 Renaissance Political Theory and Paradoxes of 100 Power Chapter 4 The Goddess as Other and Same 149 Chapter 5 The Sexual Symbolism of the Perseus and Medusa 164 Chapter 6 The Public Face of Justice 173 Chapter 7 Classical and Grotesque Polities 201 Chapter 8 Eleonora di Toledo and the Image of the Mother 217 Goddess Conclusion 239 Illustrations 243 Bibliography 304 3 List of Illustrations Fig. 1 Benvenuto Cellini, Perseus and Medusa, 1545-1555, 243 Loggia dei Lanzi, Florence, Italy. Fig. 2 Donatello, Judith and Holofernes, c. 1446-1460s, Palazzo 244 Vecchio, Florence, Italy. Fig. 3 Heracles killing an Amazon, red figure vase.
    [Show full text]
  • Alexander Raymond Jones Publications. Books and Monographs
    Alexander Raymond Jones Publications. Books and Monographs (sole or joint author or editor). (co-editor with J. Steele and C. Proust) A Mathematician's Journeys: Otto Neugebauer and the History and Practice of the Exact Sciences (provisional title), forthcoming. (revising editor) O. Pedersen, A Survey of the Almagest, with Annotation and New Commentary by Alexander Jones. Sources and Studies in the History of Mathematics and Physical Sciences. Springer. (2011) (editor) Ptolemy in Perspective: Use and Criticism of his Work from Antiquity to the Nineteenth Century. Archimedes, vol. 23. Springer. 232 pp. (2010) (with J. L. Berggren) Ptolemy's Geography: The Theoretical Chapters. Princeton University Press (2000). 232 pp. Astronomical Papyri from Oxyrhynchus. Philadelphia (1999). Memoirs of the American Philosophical Society, vol. 233. 2 vols. in 1, xii + 368 pp., 471 pp. (with M. W. Haslam, F. Maltomini, M. L. West, and others) The Oxyrhynchus Papyri Volume LXV. London, 1998. Egypt Exploration Society, Graeco-Roman Memoirs 85. 212 pp. Ptolemy’s first commentator. Philadelphia, 1990. Transactions of the American Philosophical Society, 80.7. 62 pp. An Eleventh-century manual of Arabo-Byzantine astronomy. Amsterdam (Gieben), 1987. Corpus des astronomes byzantins, 3. 199 pp. Pappus of Alexandria. Book 7 of the Collection. Edited with translation and commentary by Alexander Jones. 2 vols. Berlin, etc. (Springer Verlag), 1986. Sources in the History of Mathematics and the Physical Sciences, 8. viii + 748 pp. Journal Articles. Claudius Ptolemäus — einflussreicher Astronom und Astrologe aus Alexandria. Akademie Aktuell. Zeitschrift der Bayerischen Akademie der Wissenschaften 03/2013, 14-17. The Antikythera Mechanism and the Public Face of Greek Science.
    [Show full text]
  • Mathematics and Its History, Third Edition
    Undergraduate Texts in Mathematics Editorial Board S. Axler K.A. Ribet For other titles published in this series, go to http://www.springer.com/series/666 John Stillwell Mathematics and Its History Third Edition 123 John Stillwell Department of Mathematics University of San Francisco San Francisco, CA 94117-1080 USA [email protected] Editorial Board S. Axler K.A. Ribet Mathematics Department Mathematics Department San Francisco State University University of California at Berkeley San Francisco, CA 94132 Berkeley, CA 94720-3840 USA USA [email protected] [email protected] ISSN 0172-6056 ISBN 978-1-4419-6052-8 e-ISBN 978-1-4419-6053-5 DOI 10.1007/978-1-4419-6053-5 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010931243 Mathematics Subject Classification (2010): 01-xx, 01Axx c Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer soft- ware, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) To Elaine, Michael, and Robert Preface to the Third Edition The aim of this book, announced in the first edition, is to give a bird’s- eye view of undergraduate mathematics and a glimpse of wider horizons.
    [Show full text]