Funchalia Woodwardi Johnson, 1868

Total Page:16

File Type:pdf, Size:1020Kb

Funchalia Woodwardi Johnson, 1868 1 La funchalie de Woodward Funchalia woodwardi Johnson, 1868 Citation de cette fiche : Noël P., 2015. La funchalie de Woodward Funchalia woodwardi Johnson, 1868. in Muséum national d'Histoire naturelle [Ed.], 1er décembre 2015. Inventaire national du Patrimoine naturel, pp. 1-6, site web http://inpn.mnhn.fr Contact de l'auteur : Pierre Noël, SPN et DMPA, Muséum national d'Histoire naturelle, 43 rue Buffon (CP 48), 75005 Paris ; e-mail [email protected] Résumé Le tégument de cette espèce est revêtu d'une pilosité courte. Le rostre est légèrement relevé à son extrémité et diminue régulièrement de taille de sa base vers son apex. Il atteint la moitié proximale du 2e article du pédoncule antennulaire et porte dorsalement 11 à 13 dents dont 2 sont post-orbitales ; sa marge inférieure est inerme. La carapace présente de fortes carènes. Le branchiostégite porte une épine antennaire forte, une épine hépatique et une épine ptérigostomienne. Les segments abdominaux 4, 5 et 6 ont une paire de carènes latérales fortes et une autre carène dorsale médiane ; le 6e segment porte une épine à la fin de la carène dorsale et une autre plus petite sur les angles infralatéraux. Les pinces des trois premières paires de péréiopodes sont allongées, sub- cylindriques, creusées à l'intérieur. Des épipodites sont présents sur les 3 premières paires de pattes. La longueur totale atteint 173 mm. L'espèce est jaune-orangé avec des zones écarlate sur le céphalothorax ; elle se rencontre soit de façon isolée dans la colonne d'eau soit en essaim près de la surface. Les poissons bathypélagiques sont ses principaux prédateurs. Elle est présente au large au-dessus du talus continental entre -300 m et -2.000 m le jour et elle se rapproche de la surface la nuit. Elle est distribuée dans tout l'Atlantique et en Méditerranée. Figure 1. Aspect général en vue latérale gauche ; adapté Figure 2. Carte de distribution en France en partie d'après Bouvier 1908 ; dessin © Emilie Biens. métropolitaine. © P. Noël INPN-MNHN 2015. Classification : Phylum Arthropoda Latreille, 1829 > Sub-phylum Crustacea Brünnich, 1772 > Super-classe Multicrustacea Regier, Shultz, Zwick, Hussey, Ball, Wetzer, Martin & Cunningham, 2010 > Classe Malacostraca Latreille, 1802 > Sous-classe Eumalacostraca Grobben, 1892 > Super- ordre Eucarida Calman, 1904 > Ordre Decapoda Latreille, 1802 > Sous-ordre Dendrobranchiata Burkenroad, 1963 > Super-famille Penaeoidea Rafinesque, 1815 > Famille Penaeidae Rafinesque, 1815 > Sous-famille Funchaliinae Bouvier, 1908 > Genre Funchalia Johnson, 1867. Synonymes (De Grave & Fransen 2011 ; GBIF 2015 ; Noms vernaculaires: INPN 2015 ; WoRMS 2015): La funchalie de Woodward. ; la crevette pélagique de Grimaldiella richardi Bouvier, 1905. Woodward. Peneus genianus Risso, 1841. Peneus genyanus Monod, 1931. Principaux noms étrangers. Sicyonia genyana Hope, 1851. Anglais : Pelagic penaeid prawn (Gordon & Ingle 1956) ; Sycionia geny Risso, 1844. Woodward's pelagic shrimp (SeaLifebase 2015). N° des bases de données : EOL : 1041010; GBIF ID : 2223806 ; INPN Cd_Nom : 350650 ; ITIS : 551586 ; WoRMS AphiaID : 107101. Description. L'ensemble du tégument est revêtu d'une pilosité courte, avec des poils relativement épais. la carapace est comprimée latéralement. Le rostre est pointu et diminue régulièrement de taille de sa base vers son apex ; il est légèrement relevé vers son extrémité qui atteint la moitié proximale du second article du pédoncule antennulaire ; il est muni dorsalement de 11 à 13 dents dont 2 sont post-orbitales ; son extrémité est inerme ; sa marge inférieure qui est sans dents est munie de longues soies plumeuses. La carapace ne présente pas de sillons mais présente de fortes carènes ; une carène dorsale impaire prolonge le rostre vers l'arrière jusqu'au bord postérieur 2 de la carapace. Quatre paires de carènes sont visibles : les rostrales-latérales, les antennaires, les hépatiques et les branchio-cardiaques. Le branchiostégite porte une épine antennaire forte, une épine hépatique et une épine ptérygostomienne légèrement en arrière de l'angle inféro-antérieur. Les segments abdominaux 4, 5 et 6 ont une paire de carènes latérales fortes et une autre carène dorsale médiane ; le 6e segment porte une épine à la fin de la carène dorsale et une autre plus petite sur les angles infralatéraux. Le telson est aussi long que le dernier pléonite ; il se termine en pointe avec une gouttière médiane dorsale longitudinale, et 3 paires d'épines très petites près de l'extrémité ; les uropodes sont 1,3 fois plus longs que le telson. Les yeux sont courts avec une cornée très dilatée et un anneau ophthalmique orné de soies épaisses ; le prosartema (= "brosse oculaire") de l'adulte dépasse un peu la cornée. Les pédoncules antennulaires sont gros et forts ; le 1er article dépasse les globes oculaires et se termine par un angle spiniforme externe et par un lobe obtus pilifère interne ; le second article est long comme les deux tiers du 1er et le 3e est long comme les deux tiers du second. Les flagelles antennulaires sont à peu près égaux et aussi longs que la portion post-orbitaire de la carapace. Les antennules du mâle ont l'article distal du pédoncule aussi long que les 2/3 du précédent, qui est lui- même des 2/3 de la longueur du premier. Le flagelle inférieur est long comme les 4/5e du flagelle supérieur. Le scaphocérite dépasse légèrement le pédoncule antennulaire. La mandibule a un processus incisif long et pointu très caractéristique ; ce dernier est croisé avec la lèvre opposée. Le processus molaire est peu visible. Le palpe est composé de deux articles, le distal ayant une forme de feuille asymétrique, tronquée avec un apex arrondi. Un dimorphisme sexuel est présent au niveau du troisième maxillipède ; ce dernier est élancé et le dernier article plutôt pointu chez la femelle, alors qu'il est plus massif avec le dernier article sub-globuleux chez le mâle. Les pinces des trois premières paires de péréiopodes sont allongées, sub-cylindriques, creusées à l'intérieur. Chez le mâle, le propode du quatrième péréiopode est deux fois plus long que le dactyle correspondant et à la base du cinquième péréiopode il y a une forte apophyse ornée de soies distales où s'ouvre le gonopore (orifice du canal déférent). Des épipodites sont présents sur les 3 premières paires de pattes ; ils sont rudimentaires à la base de la 5e paire de pattes. Les pinces des 3 premières paires de pattes sont plus courtes que les carpes respectifs, et le doigt mobile est un peu plus court que la paume. Chez le mâle, le pétasma peut être asymétrique à gauche ou à droite, avec une partie dorsale de la branche principale élargie à son apex. Chez la femelle, le thélycum est formé par une dépression ovale entourée par une plaque lobée antérieurement et étalée postérieurement. Les pléopodes sont courts (Calman 1925 ; Roger 1938 ; Zariquiey Álvarez 1968 ; Grippa 1987). La longueur irait de 56 à 100 mm chez les mâles (Gordon & Ingle 1956) et jusqu'à 173 mm (sexe = ?) (Zariquiey Álvarez 1968). Sur le vivant, l'espèce est jaune-orangé avec des zones écarlate sur le céphalothorax (Fraser in Gordon & Ingle 1956). Les œufs sont d'un rosé tendre blanchâtre (Risso in Holthuis 1977). Risques de confusion, espèces voisines. Dans le genre Funchalia, il existe 5 espèces au niveau mondial (De Grave & Fransen 2011) ; les espèces sont très proches et il y a eu [et il y a toujours probablement] des confusions dans les identifications (Gordon & Ingle 1956). En Europe (d'Udekem d'Acoz 1999) en plus de F. woodwardi, on rencontre Funchalia villosa (Bouvier, 1905) et Funchalia danae Burkenroad, 1940. Dans l'indopacifique, il y a Funchalia taaningi Burkenroad, 1940 et au Japon Funchalia sagamiensis Fujino, 1975 (Gordon & Ingle 1956 ; Crosnier & Forest 1973 ; Grippa 1976, 1987 ; GBIF 2015 ; WoRMS 2015). La clé suivante permet de distinguer les espèces européennes du genre Funchalia (Noël 1992). 1'. Bord supérieur du rostre avec moins de 10 dents. Carapace sans épine hépatique chez l'adulte..... F. villosa Bouvier, 1908. 1. Bord supérieur du rostre avec 10+1 à 12+1 dents. Carapace avec épine hépatique chez l'adulte..... 2' 2'(1). Sixième pléonite avec une carène médiolatérale et une carène inférieure courte ; réceptacle séminal ouvert..... F. woodwardi Johnson, 1867. 2. Sixième pléonite avec une seule carène, la médiolatérale ; réceptacle séminal fermé par une paire de languettes.... F. danae Burkenroad, 1940. Biologie. Les stades jeunes pourraient être associés à des pyrosomes comme Pyrosoma atlanticum Péron, 1804 (Lindley & al. 2001). L'espèce se rencontre généralement de façon isolée dans la colonne d'eau mais des prises en grand nombre ont été rapportées près de la surface (Gordon & Ingle 1956) ; elle semble donc parfois grégaire et peut former au-moins occasionnellement des "essaims" ou des "bancs". Elle peut se rencontrer avec le merlan bleu Micromesistius poutassou (Risso, 1827) (Fraser in Gordon & Ingle 1956). L'espèce est souvent trouvée dans l'estomac de poissons comme les merlus (Merluccius sp.), les thons (Thunnus sp.) (Barnard 1950 ; Gordon & Ingle 1956 ; Kensley 1977 ; Miller & al.1983), les grenadiers (Macrouridae spp.) (Anderson 2005), les espadons Xiphias gladius Linnaeus, 1758 (Moreira 1990), les raies Leucoraja wallacei (Hulley, 1970) (Ebert & al. 1991), les requins aiguillat Squalus megalops (MacLeay, 1881) (Ebert & al. 1992) ou les chinchards Trachurus trachurus (Linnaeus, 1758) (Garrido & Murta 2011). Il ne semble pas y avoir de parasites signalés chez cette espèce. 3 Ecologie. Cette espèce bathypélagique (Bouvier 1907 ; Koukouras 2000) se rencontre habituellement dans la colonne d'eau de l'étage bathyal au-dessus de fonds sédimentaires, sur le talus continental entre -300 m et -2.000 m (Gordon & Ingle 1956 ; Zariquiey Álvarez 1968 ; Cartes & al. 2014) avec comme valeurs extrèmes -23 m (GBIF 2015) et - 3.000 m (Zariquiey Álvarez 1968 ; Koukouras 2000). L'espèce se rapproche de la surface la nuit et se tiendrait plus profondément le jour (Sund 1920).
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Downloaded from Brill.Com10/11/2021 08:33:28AM Via Free Access 224 E
    Contributions to Zoology, 67 (4) 223-235 (1998) SPB Academic Publishing bv, Amsterdam Optics and phylogeny: is there an insight? The evolution of superposition eyes in the Decapoda (Crustacea) Edward Gaten Department of Biology, University’ ofLeicester, Leicester LEI 7RH, U.K. E-mail: [email protected] Keywords: Compound eyes, superposition optics, adaptation, evolution, decapod crustaceans, phylogeny Abstract cannot normally be predicted by external exami- nation alone, and usually microscopic investiga- This addresses the of structure and in paper use eye optics the tion of properly fixed optical elements is required construction of and crustacean phylogenies presents an hypoth- for a complete diagnosis. This largely rules out esis for the evolution of in the superposition eyes Decapoda, the use of fossil material in the based the of in comparatively on distribution eye types extant decapod fami- few lies. It that arthropodan specimens where the are is suggested reflecting superposition optics are eyes symplesiomorphic for the Decapoda, having evolved only preserved (Glaessner, 1969), although the optics once, probably in the Devonian. loss of Subsequent reflecting of some species of trilobite have been described has superposition optics occurred following the adoption of a (Clarkson & Levi-Setti, 1975). Also the require- new habitat (e.g. Aristeidae,Aeglidae) or by progenetic paedo- ment for good fixation and the fact that complete morphosis (Paguroidea, Eubrachyura). examination invariably involves the destruction of the specimen means that museum collections Introduction rarely reveal enough information to define the optics unequivocally. Where the optics of the The is one of the compound eye most complex component parts of the eye are under investiga- and remarkable not on of its fixation organs, only account tion, specialised to preserve the refrac- but also for the optical precision, diversity of tive properties must be used (Oaten, 1994).
    [Show full text]
  • Grazing by Pyrosoma Atlanticum (Tunicata, Thaliacea) in the South Indian Ocean
    MARINE ECOLOGY PROGRESS SERIES Vol. 330: 1–11, 2007 Published January 25 Mar Ecol Prog Ser OPENPEN ACCESSCCESS FEATURE ARTICLE Grazing by Pyrosoma atlanticum (Tunicata, Thaliacea) in the south Indian Ocean R. Perissinotto1,*, P. Mayzaud2, P. D. Nichols3, J. P. Labat2 1School of Biological & Conservation Sciences, G. Campbell Building, University of KwaZulu-Natal, Howard College Campus, Durban 4041, South Africa 2Océanographie Biochimique, Observatoire Océanologique, LOV-UMR CNRS 7093, BP 28, 06230 Villefranche-sur-Mer, France 3Commonwealth Scientific and Industrial Research Organisation (CSIRO), Marine and Atmospheric Research, Castray Esplanade, Hobart, Tasmania 7001, Australia ABSTRACT: Pyrosomas are colonial tunicates capable of forming dense aggregations. Their trophic function in the ocean, as well as their ecology and physiology in general, are extremely poorly known. During the ANTARES-4 survey (January and February 1999) their feeding dynamics were investigated in the south Indian Ocean. Results show that their in situ clearance rates may be among the highest recorded in any pelagic grazer, with up to 35 l h–1 per colony (length: 17.9 ± 4.3 [SD] cm). Gut pigment destruction rates, estimated for the first time in this tunicate group, are higher than those previously measured in salps and appendiculari- ans, ranging from 54 to virtually 100% (mean: 79.7 ± 19.8%) of total pigment ingested. Although individual colony ingestion rates were high (39.6 ± 17.3 [SD] µg –1 The pelagic tunicate Pyrosoma atlanticum conducts diel pigment d ), the total impact on the phytoplankton vertical migrations. Employing continuous jet propulsion, its biomass and production in the Agulhas Front was rela- colonies attain clearance rates that are among the highest in tively low, 0.01 to 4.91% and 0.02 to 5.74% respec- any zooplankton grazer.
    [Show full text]
  • Annotated Checklist of New Zealand Decapoda (Arthropoda: Crustacea)
    Tuhinga 22: 171–272 Copyright © Museum of New Zealand Te Papa Tongarewa (2011) Annotated checklist of New Zealand Decapoda (Arthropoda: Crustacea) John C. Yaldwyn† and W. Richard Webber* † Research Associate, Museum of New Zealand Te Papa Tongarewa. Deceased October 2005 * Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, New Zealand ([email protected]) (Manuscript completed for publication by second author) ABSTRACT: A checklist of the Recent Decapoda (shrimps, prawns, lobsters, crayfish and crabs) of the New Zealand region is given. It includes 488 named species in 90 families, with 153 (31%) of the species considered endemic. References to New Zealand records and other significant references are given for all species previously recorded from New Zealand. The location of New Zealand material is given for a number of species first recorded in the New Zealand Inventory of Biodiversity but with no further data. Information on geographical distribution, habitat range and, in some cases, depth range and colour are given for each species. KEYWORDS: Decapoda, New Zealand, checklist, annotated checklist, shrimp, prawn, lobster, crab. Contents Introduction Methods Checklist of New Zealand Decapoda Suborder DENDROBRANCHIATA Bate, 1888 ..................................... 178 Superfamily PENAEOIDEA Rafinesque, 1815.............................. 178 Family ARISTEIDAE Wood-Mason & Alcock, 1891..................... 178 Family BENTHESICYMIDAE Wood-Mason & Alcock, 1891 .......... 180 Family PENAEIDAE Rafinesque, 1815 ..................................
    [Show full text]
  • Further Records of Penaeoidea from the East Coast of South Africa
    Further records of Penaeoidea from the East coast of South Africa w. Emmerson Department of Zoology, University of Port Elizabeth, Port Elizabeth Fifty-four specimens of ten penaeoid species were Identified. Apart from commercial operations, Penaeoidea have Of particular interest was the finding of pelagic juveniles of been described and collected from South African waters two species, Funchalia (Funchalia) vil/osa and Penaeus since the beginning of this century (Stebbing 1914; marginatus. CaIman 1925; Barnard 1947, 1950; Joubert & Davies S. Afr. J. Zool. 1981,16: 132 -136 1966; Kensley 1968, 1969, 1977; Champion 1973; Ivanov Vier-en-vyftig eksemplare van tien Penaeoldea-spesies is & Hassan 1976b)_ The aim of the present work is to ge"identifiseer. Die voorkoms van onvolwasse individue van die record new localities for a clearer knowledge of distribu­ twee spesies Funchalia (Funchalia) vil/osa en Penaeus tion, especially for recently recorded species such as marginatus was van besondere belang. Aristeus virilis and Funchalia (Funchalia) vi/losa (Kensley S.-Afr. Tydskr. Dlerk. 1981, 16: 132 -136 1977), and to contribute to juvenile pelagic penaeoid ecology, of which very little is known_ The specimens are lodged in the South African Museum, Cape Town. ) 0 1 0 Methods 2 d A number of penaeoids were collected between 1967 and e t a 1973, mainly by trawlers operating off Durban, at depths d ( between 92 and 700 m with mesh diameters of 2,5 (ex­ r e ploratory) to 12,5 (commercial) cm_ Fifty-four specimens h s i of 10 penaeoid species were identified. The classification l b system used was that established by Perez Farfante u P (1977a) where previous subfamilies are elevated to e families of the superfamily Penaeoidea.
    [Show full text]
  • Penaeidae 889
    click for previous page Penaeidae 889 Penaeidae PENAEIDAE Penaeid shrimps cervical groove short iagnostic characters: Rostrum well de- Dveloped and generally extending beyond eyes, always bearing more than 3 upper teeth. No styliform projection at base of eye- stalk and no tubercle on its inner border. Both upper and lower antennular flagella of similar length, attached to tip of antennular peduncle. Carapace lacking both postorbital or postantennal spines. Cervical groove generally short, always with a distance from dorsal carapace. All 5 pairs of legs well devel- oped, fourth leg bearing a single well-devel- oped arthrobranch (hidden beneath carapace, occasionally accompanied by a second, rudimentary arthrobranch).In males, endopod of second pair of pleopods (abdominal appendages) with appendix mas- culina only. Third and fourth pleopods divided into 2 branches. Telson sharply pointed, with or without fixed and/or movable lateral spines. Colour: body colour varies from semi-translucent to dark greyish green or reddish, often with distinct spots, cross bands and/or other markings on the abdomen and uropods; live or fresh specimens, particularly those of the genus Penaeus, can often be easily distinguished by their coloration. Habitat, biology, and fisheries: Members of this family are usually marine, although juveniles and young are often found in brackish water or estuaries, sometimes with very low salinities (a few unconfirmed fresh-water records exist). Some penaeids, mainly those of the genera Parapenaeus and Penaeopsis, occur in deep water at depths of more than 750 m. Penaeids are mostly benthic and mainly found on soft bottom of sand and/or mud, but a few species (e.g.
    [Show full text]
  • The Family Penaeidae(Excluding Genus Penaeus)
    SOUTH AFRICAN ASSOCIATION FOR MARINE BIOLOGICAL RESEARCH OCEANOGRAPHIC RESEARCH INSTITUTE Investigational Report No. 58 Th£ Penaeoidea of southeast Africa — The Family Penaeidae (excluding Genus Penaeus) by A.J. de Freitas The Investigational Report series of the Oceanographic Research Institute presents the detailed results of marine biological research. Reports have appeared at irregular intervals since 1961. All manuscripts are submitted for peer review, to national or overseas referees. The Bulletin series of the South African Association for. Marine Biological Research is of general interest and reviews the research and curatorial activities of the Oceanographic Research Institute, Aquarium and Dolphinarium. It is published annually. Both series are available in exchange for relevant publications of other scientific institutions anywhere in the world. All correspondence in this regard should be directed to: The Librarian, Oceanographic Research Institute. P.O. Box 10712. Marine Parade. 4056. Durban. South Africa. SOUTH AFRICAN ASSOCIATION FOR MARINE BIOLOGICAL RESEARCH OCEANOGRAPHIC RESEARCH INSTITUTE Investigational Report No.58 The Penaeoidea of southeast Africa. The Family Penaeidae (excluding Genus Penaeus) by A.J. de Freitas Published by THE OCEANOGRAPHIC RESEARCH INSTITUTE P.O. BOX 10712, MARINE PARADE DURBAN, 4056 SOUTH AFRICA November 1987 Copyright ISBN 0 86989 034 4 ISSN 0078-320X THE PENAEOIDEA OF SOUTHEAST AFRICA: III. The Family Penaeidae (excluding Genus Penaeus) by A.J. DE FREITAS ABSTRACT This is the third monograph of a series of five on the Penaeoidea of southeast Africa and, together with monograph four, deals with the family Penaeidae. The family is represented by nine genera of which eight, with a total of 15 species, are dealt with in this article.
    [Show full text]
  • Distribution, Associations and Role in the Biological Carbon Pump of Pyrosoma Atlanticum (Tunicata, Thaliacea) of Cabo Verde, NE Atlantic Vanessa I
    www.nature.com/scientificreports OPEN Distribution, associations and role in the biological carbon pump of Pyrosoma atlanticum (Tunicata, Thaliacea) of Cabo Verde, NE Atlantic Vanessa I. Stenvers1,2,3*, Helena Hauss1, Karen J. Osborn2,4, Philipp Neitzel1, Véronique Merten1, Stella Scheer1, Bruce H. Robison4, Rui Freitas5 & Henk Jan T. Hoving1* Gelatinous zooplankton are increasingly acknowledged to contribute signifcantly to the carbon cycle worldwide, yet many taxa within this diverse group remain poorly studied. Here, we investigate the pelagic tunicate Pyrosoma atlanticum in the waters surrounding the Cabo Verde Archipelago. By using a combination of pelagic and benthic in situ observations, sampling, and molecular genetic analyses (barcoding, eDNA), we reveal that: P. atlanticum abundance is most likely driven by local island- induced productivity, that it substantially contributes to the organic carbon export fux and is part of a diverse range of biological interactions. Downward migrating pyrosomes actively transported an estimated 13% of their fecal pellets below the mixed layer, equaling a carbon fux of 1.96–64.55 mg C ­m−2 ­day−1. We show that analysis of eDNA can detect pyrosome material beyond their migration range, suggesting that pyrosomes have ecological impacts below the upper water column. Moribund P. atlanticum colonies contributed an average of 15.09 ± 17.89 (s.d.) mg C ­m−2 to the carbon fux reaching the island benthic slopes. Our pelagic in situ observations further show that P. atlanticum formed an abundant substrate in the water column (reaching up to 0.28 m2 substrate area per m2), with animals using pyrosomes for settlement, as a shelter and/or a food source.
    [Show full text]
  • The Origin of Large-Bodied Shrimp That Dominate Modern Global Aquaculture Javier Robalino Stony Brook University
    Florida International University FIU Digital Commons Center for Coastal Oceans Research Faculty Institute of Water and Enviornment Publications 7-14-2016 The Origin of Large-Bodied Shrimp that Dominate Modern Global Aquaculture Javier Robalino Stony Brook University Blake Wilkins Department of Biology, Florida International University, [email protected] Heather D. Bracken-Grissom Department of Biology, Florida International University, [email protected] Tin-Yam Chan National Taiwan Ocean University Maureen A. O'Leary Stony Brook University Follow this and additional works at: https://digitalcommons.fiu.edu/merc_fac Part of the Life Sciences Commons Recommended Citation Robalino J, Wilkins B, Bracken-Grissom HD, Chan T-Y, O’Leary MA (2016) The Origin of Large-Bodied Shrimp that Dominate Modern Global Aquaculture. PLoS ONE 11(7): e0158840. https://doi.org/10.1371/journal.pone.0158840 This work is brought to you for free and open access by the Institute of Water and Enviornment at FIU Digital Commons. It has been accepted for inclusion in Center for Coastal Oceans Research Faculty Publications by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. RESEARCH ARTICLE The Origin of Large-Bodied Shrimp that Dominate Modern Global Aquaculture Javier Robalino1¤*, Blake Wilkins2, Heather D. Bracken-Grissom2, Tin-Yam Chan3, Maureen A. O’Leary1 1 Department of Anatomical Sciences, HSC T-8 (040), Stony Brook University, Stony Brook, New York, United States of America, 2 Department of Biology, Florida International
    [Show full text]
  • A Chack List of Penaeid Prawn Found in Indian Water with Their Distribution
    Research Article Oceanogr Fish Open Access J Volume 3 Issue 4 - July 2017 DOI: 10.19080/OFOAJ.2017.03.555616 Copyright © All rights are reserved by Vanessa Estrade A study on Penaeid Prawn of Indian Water Angsuman Chanda* Department of Zoology, Raja NL Khan Women’s College, India Submission: March 03, 2017; Published: July 06, 2017 *Corresponding author: Angsuman Chanda, Assistant Professor of Zoology, Department of Zoology, Raja NL Khan Women’s College, Midnapore, Paschim Medinipore-721102, West Bengal, India, Email: Abstract Present study is an attempt to up to date the taxonomic information of prawns found in Indian water under family Penaeidae. Species composition and their distribution in Indian water is the main part of the work. Family Penaeidae is represented by 25 genera of which 17 genera and 78 species has been recorded from Indian water. Keywords: Taxonomy; Penaeidae; Genera; Species; Distribution Introduction systematic work on penaeid prawn of Indian region been Shrimps and Prawns of various kinds have certainly been a source of protein for human consumptions from very early times. carcinologist on Indian Penaeidae made an attempt to up to Within historical times reference is made to prawn in ancient found till first half of twentieth century. George MJ [7] is the date the group from Indian region after second half of twentieth Chinese and Japanese literature [1]. Usage of the term ‘Prawn’ century. Beside the above comprehensive work, there are so and ‘Shrimp’ is somewhat confusing. In some western literature many literatures on the group from Indian region but all of these the term ‘Shrimp’ is applied for Penaeoidea and Sergestoidea, are scattered one.
    [Show full text]
  • The Decapod Crustaceans of Madeira Island – an Annotated Checklist
    ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; download www.pfeil-verlag.de SPIXIANA 38 2 205-218 München, Dezember 2015 ISSN 0341-8391 The decapod crustaceans of Madeira Island – an annotated checklist (Crustacea, Decapoda) Ricardo Araújo & Peter Wirtz Araújo, R. & Wirtz, P. 2015. The decapod crustaceans of Madeira Island – an annotated checklist (Crustacea, Decapoda). Spixiana 38 (2): 205-218. We list 215 species of decapod crustaceans from the Madeira archipelago, 14 of them being new records, namely Hymenopenaeus chacei Crosnier & Forest, 1969, Stylodactylus serratus A. Milne-Edwards, 1881, Acanthephyra stylorostratis (Bate, 1888), Alpheus holthuisi Ribeiro, 1964, Alpheus talismani Coutière, 1898, Galathea squamifera Leach, 1814, Trachycaris restrictus (A. Milne Edwards, 1878), Processa parva Holthuis, 1951, Processa robusta Nouvel & Holthuis, 1957, Anapagurus chiroa- canthus (Lilljeborg, 1856), Anapagurus laevis (Bell 1845), Pagurus cuanensis Bell,1845, and Heterocrypta sp. Previous records of Atyaephyra desmaresti (Millet, 1831) and Pontonia domestica Gibbes, 1850 from Madeira are most likely mistaken. Ricardo Araújo, Museu de História Natural do Funchal, Rua da Mouraria 31, 9004-546 Funchal, Madeira, Portugal; e-mail: [email protected] Peter Wirtz, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; e-mail: [email protected] Introduction et al. (2012) analysed the depth distribution of 175 decapod species at Madeira and the Selvagens, from The first record of a decapod crustacean from Ma- the intertidal to abyssal depth. In the following, we deira Island was probably made by the English natu- summarize the state of knowledge in a checklist and ralist E. T. Bowdich (1825), who noted the presence note the presence of yet more species, previously not of the hermit crab Pagurus maculatus (a synonym of recorded from Madeira Island.
    [Show full text]
  • Potential Biological and Ecological Effects of Flickering Artificial Light
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Research Exeter Potential Biological and Ecological Effects of Flickering Artificial Light Richard Inger*, Jonathan Bennie, Thomas W. Davies, Kevin J. Gaston Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom Abstract Organisms have evolved under stable natural lighting regimes, employing cues from these to govern key ecological processes. However, the extent and density of artificial lighting within the environment has increased recently, causing widespread alteration of these regimes. Indeed, night-time electric lighting is known significantly to disrupt phenology, behaviour, and reproductive success, and thence community composition and ecosystem functioning. Until now, most attention has focussed on effects of the occurrence, timing, and spectral composition of artificial lighting. Little considered is that many types of lamp do not produce a constant stream of light but a series of pulses. This flickering light has been shown to have detrimental effects in humans and other species. Whether a species is likely to be affected will largely be determined by its visual temporal resolution, measured as the critical fusion frequency. That is the frequency at which a series of light pulses are perceived as a constant stream. Here we use the largest collation to date of critical fusion frequencies, across a broad range of taxa, to demonstrate that a significant proportion of species can detect such flicker in widely used lamps. Flickering artificial light thus has marked potential to produce ecological effects that have not previously been considered. Citation: Inger R, Bennie J, Davies TW, Gaston KJ (2014) Potential Biological and Ecological Effects of Flickering Artificial Light.
    [Show full text]