Host-Specific Symbioses and the Microbial Prey of a Pelagic Tunicate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
Prokaryotic Community Successions and Interactions in Marine Biofilms
Prokaryotic community successions and interactions in marine biofilms: the key role of Flavobacteriia Thomas Pollet, Lyria Berdjeb, Cédric Garnier, Gaël Durrieu, Christophe Le Poupon, Benjamin Misson, Jean-François Briand To cite this version: Thomas Pollet, Lyria Berdjeb, Cédric Garnier, Gaël Durrieu, Christophe Le Poupon, et al.. Prokary- otic community successions and interactions in marine biofilms: the key role of Flavobacteriia. FEMS Microbiology Ecology, Wiley-Blackwell, 2018, 94 (6), 10.1093/femsec/fiy083. hal-02024255 HAL Id: hal-02024255 https://hal-amu.archives-ouvertes.fr/hal-02024255 Submitted on 2 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Prokaryotic community successions and interactions in marine biofilms: the key role of Flavobacteriia Thomas Pollet, Lyria Berdjeb, Cédric Garnier, Gaël Durrieu, Christophe Le Poupon, Benjamin Misson, Jean-François Briand To cite this version: Thomas Pollet, Lyria Berdjeb, Cédric Garnier, Gaël Durrieu, Christophe -
Biologically Active Compounds from Pacific Tunicates;
BIOLOGICALLY ACTIVE COMPOUNDS FROM PACIFIC TUNICATES by David Francis Sesin A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Medicinal Chemistry The University of Utah December 1986 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Utah: J. Willard Marriott Digital Library THE UNIVERSITY OF UTAH GRADUATE SCHOOL SUPERVISORY COMMITTEE APPROVAL of a dissertation submitted by DAVID FRANCIS SESIN This dissertation has been read by each member of the following supervisory committee and by majority vote has been found to be satisfactory .. September 16. 1986 Chainnan:chris M. Ire'iand. Ph.D. September 16. 1986 Arthur D. Broom. Ph.D. September 16. 1986 ark E. Sanders. Ph.D. September 16, 1986 Martin P. Schweizer.�.D. September 16. 1986 David M. Grant. Ph.D. THE VI'IiIVERSITY OF UTAH GRADUATE SCHOOL FINAL READING APPRC)VAL To the Graduate Council of The University of Utah: I have read the dissertation of David Francis Sesin 10 Its final form and have found that (I) its format. citations. and bibliographic style are consistent and acceptable; (2) its illustrative materials including figures. tables. and charts are in place: and (3) the final manuscript is satisfactory to the Supervis ory Committee and is ready for submission to the Graduate School. Date Chris M. Ireland. Ph.D. Chairp(,rson. Supt'rvisory Commill('t, Approved for the Major Departmenl Arthur D. Broom. Ph.D. Chairman / Dean Approved ror lhe GradU,Ill' Coullcil Dean of The (;raduate Sdl()ol Copyright@ David Francis Sesin 1986 All Rights Reserved ABSTRACT Tunicates have proven to be a rich source of structurally-diverse metabolites covering a broad spectrum of biological activities. -
How to Build a Biofilm
RESEARCH HIGHLIGHTS MICROBIOME IN brIEF Let the gut do the guiding SYMBIOSIS Growing evidence suggests that the the Gram-negative bacterium Finding the difference microbiome of animals not only Providencia, particularly Providencia The microbial gut communities of social bees comprise only affects host health but also their alcalifaciens strain JUb39, a few bacterial groups and are an emerging model system to study host-associated microbial communities. In this study, behaviour. However, the mechan- decreased avoidance of the volatile Engel and colleagues used comparative metagenomics to isms involved in the gut–brain repellent odorant octanol, an analyse the gut microbiota of two closely related honey bee axis are not well understood. effect that they refer to as octanol species, Apis mellifera and Apis cerana. Although they are In a recent study, O’Donnell, modulation. Moreover, JUb39 is colonized mostly by the same 16S rRNA phylotypes, the authors Sengupta and colleagues report that ingested by C. elegans, colonizes found that at genomic resolution, each host species harbours a gut-coloniz ing commensal bacteria the posterior intestine of the highly distinct bacterial community. Compared with A. cerana, A. mellifera displayed a much higher diversity of strains and produce a neuro trans mitter that worms and, interestingly, the extent functional gene content in the microbiota, encoding more modulates the sensory behaviour of colonization diverse enzymes for polysaccharide degradation, which may of their host. correlated with provide more metabolic flexibility. Studies are now needed The authors used chemotaxis the level to understand the mechanisms and functional consequences assays to test the influence of various of strain-level diversity among related host-associated non-pathogenic communities. -
Downloaded from Brill.Com10/11/2021 08:33:28AM Via Free Access 224 E
Contributions to Zoology, 67 (4) 223-235 (1998) SPB Academic Publishing bv, Amsterdam Optics and phylogeny: is there an insight? The evolution of superposition eyes in the Decapoda (Crustacea) Edward Gaten Department of Biology, University’ ofLeicester, Leicester LEI 7RH, U.K. E-mail: [email protected] Keywords: Compound eyes, superposition optics, adaptation, evolution, decapod crustaceans, phylogeny Abstract cannot normally be predicted by external exami- nation alone, and usually microscopic investiga- This addresses the of structure and in paper use eye optics the tion of properly fixed optical elements is required construction of and crustacean phylogenies presents an hypoth- for a complete diagnosis. This largely rules out esis for the evolution of in the superposition eyes Decapoda, the use of fossil material in the based the of in comparatively on distribution eye types extant decapod fami- few lies. It that arthropodan specimens where the are is suggested reflecting superposition optics are eyes symplesiomorphic for the Decapoda, having evolved only preserved (Glaessner, 1969), although the optics once, probably in the Devonian. loss of Subsequent reflecting of some species of trilobite have been described has superposition optics occurred following the adoption of a (Clarkson & Levi-Setti, 1975). Also the require- new habitat (e.g. Aristeidae,Aeglidae) or by progenetic paedo- ment for good fixation and the fact that complete morphosis (Paguroidea, Eubrachyura). examination invariably involves the destruction of the specimen means that museum collections Introduction rarely reveal enough information to define the optics unequivocally. Where the optics of the The is one of the compound eye most complex component parts of the eye are under investiga- and remarkable not on of its fixation organs, only account tion, specialised to preserve the refrac- but also for the optical precision, diversity of tive properties must be used (Oaten, 1994). -
Grazing by Pyrosoma Atlanticum (Tunicata, Thaliacea) in the South Indian Ocean
MARINE ECOLOGY PROGRESS SERIES Vol. 330: 1–11, 2007 Published January 25 Mar Ecol Prog Ser OPENPEN ACCESSCCESS FEATURE ARTICLE Grazing by Pyrosoma atlanticum (Tunicata, Thaliacea) in the south Indian Ocean R. Perissinotto1,*, P. Mayzaud2, P. D. Nichols3, J. P. Labat2 1School of Biological & Conservation Sciences, G. Campbell Building, University of KwaZulu-Natal, Howard College Campus, Durban 4041, South Africa 2Océanographie Biochimique, Observatoire Océanologique, LOV-UMR CNRS 7093, BP 28, 06230 Villefranche-sur-Mer, France 3Commonwealth Scientific and Industrial Research Organisation (CSIRO), Marine and Atmospheric Research, Castray Esplanade, Hobart, Tasmania 7001, Australia ABSTRACT: Pyrosomas are colonial tunicates capable of forming dense aggregations. Their trophic function in the ocean, as well as their ecology and physiology in general, are extremely poorly known. During the ANTARES-4 survey (January and February 1999) their feeding dynamics were investigated in the south Indian Ocean. Results show that their in situ clearance rates may be among the highest recorded in any pelagic grazer, with up to 35 l h–1 per colony (length: 17.9 ± 4.3 [SD] cm). Gut pigment destruction rates, estimated for the first time in this tunicate group, are higher than those previously measured in salps and appendiculari- ans, ranging from 54 to virtually 100% (mean: 79.7 ± 19.8%) of total pigment ingested. Although individual colony ingestion rates were high (39.6 ± 17.3 [SD] µg –1 The pelagic tunicate Pyrosoma atlanticum conducts diel pigment d ), the total impact on the phytoplankton vertical migrations. Employing continuous jet propulsion, its biomass and production in the Agulhas Front was rela- colonies attain clearance rates that are among the highest in tively low, 0.01 to 4.91% and 0.02 to 5.74% respec- any zooplankton grazer. -
The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae. -
Pyrosomes: Enigmatic Marine Inhabitants with an Important Role in the Cabo Verde Ecosystem 4 May 2021
Pyrosomes: Enigmatic marine inhabitants with an important role in the Cabo Verde ecosystem 4 May 2021 submersibles looked at moribund colonies on the seabed or used net catches that generally disrupt species interactions. Furthermore, the aim was to estimate the contribution of these organisms to the local marine carbon cycle. For the eastern Atlantic such information was still largely unknown. "Because we combined underwater observations, sampling and genetic analyses, we were able to gain several new insights into pyrosome ecology," says lead author Vanessa Stenvers, from GEOMAR. During the expedition, the organisms were observed directly with the research Deep-sea shrimp with a pyrosome on the sea floor. submersible JAGO, and also studied via a pelagic Credit: JAGO Team, GEOMAR. towed camera system, PELAGIOS, as well as by net and water sampling. "Our study shows that pyrosomes form an Pyrosomes, named after the Greek words for 'fire important biological substrate in the water column bodies' due their bright bioluminescence, are that other animals use for settlement, shelter and/or pelagic tunicates that spend their entire lives as a food source," explains Vanessa Stenvers. "We swimming in the open ocean. They are made up of have estimated that Pyrosoma atlanticum provides many smaller animals, known as zooids, that sit up to 0.28 m2 of substrate area per square meter of together in a tubular matrix, known as tunic (hence total area during a bloom period. This is a huge the name pelagic tunicates). Because they live in number if you consider that there are little physical the open ocean, they generally go unnoticed. -
Bistratamides M and N, Oxazole-Thiazole Containing Cyclic Hexapeptides Isolated from Lissoclinum Bistratum Interaction of Zinc (II) with Bistratamide K
marine drugs Article Bistratamides M and N, Oxazole-Thiazole Containing Cyclic Hexapeptides Isolated from Lissoclinum bistratum Interaction of Zinc (II) with Bistratamide K Carlos Urda 1, Rogelio Fernández 1, Jaime Rodríguez 2, Marta Pérez 1,*, Carlos Jiménez 2,* and Carmen Cuevas 1 1 Medicinal Chemistry Department, PharmaMar S. A., Polígono Industrial La Mina Norte, Avenida de los Reyes 1, 28770 Madrid, Spain; [email protected] (C.U.); [email protected] (R.F.); [email protected] (C.C.) 2 Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), University of A Coruña, 15071 A Coruña, Spain; [email protected] * Correspondence: [email protected] (M.P.); [email protected] (C.J.); Tel.: +34-981-167000 (C.J.); Fax: +34-981-167065 (C.J.) Received: 24 May 2017; Accepted: 26 June 2017; Published: 1 July 2017 Abstract: Two novel oxazole-thiazole containing cyclic hexapeptides, bistratamides M (1) and N (2) have been isolated from the marine ascidian Lissoclinum bistratum (L. bistratum) collected in Raja Ampat (Papua Bar, Indonesia). The planar structure of 1 and 2 was assigned on the basis of extensive 1D and 2D NMR spectroscopy and mass spectrometry. The absolute configuration of the amino acid residues in 1 and 2 was determined by the application of the Marfey’s and advanced Marfey’s methods after ozonolysis followed by acid-catalyzed hydrolysis. The interaction between zinc (II) and the naturally known bistratamide K (3), a cyclic hexapeptide isolated from a different specimen of Lissoclinum bistratum, was monitored by 1H and 13C NMR. The results obtained are consistent with the proposal that these peptides are biosynthesized for binding to metal ions. -
SCREENING of BACTERIAL SYMBIONTS of SEAGRASS Enhalus Sp
Journal of Coastal Development ISSN : 1410-5217 Volume 13, Number 2, February 2010 : 126-132 Accredited : 83/Dikti/Kep/2009 Original Paper SCREENING OF BACTERIAL SYMBIONTS OF SEAGRASS Enhalus sp. AGAINST BIOFILM-FORMING BACTERIA Bintang Marhaeni1*, Ocky Karna Radjasa 2, Dietriech G. Bengen1 dan Richardus.F.Kaswadji1 1 Graduate School of Marine Science, Bogor Agricultural University, Bogor, Indonesia 2 Department of Marine Science, Diponegoro University, Semarang 50275, Central Java, Indonesia Received : January, 3 th 2010 Accepted : January, 29th 2010 ABSTRACT Seagrasses have been known to produce secondary metabolites that have important ecological roles, including preventing from pathogen infections and fouling organisms. A research aimed at screening the potential of bacterial symbionts of seagrass Enhalus sp. was performed. Bacterial symbionts including endophytes and epiphytes were isolated from the seagrass, and marine biofilm-forming bacteria were isolated from the fiber and wooden panels from the surrounding colonies. A total of 17 epiphyte and 6 endophyte isolates were obtained, however more biological activity was found among endophytes (100%) compared to epiphytes (47%) against biofilm-forming bacteria. In addition, bacterial endophytes inhibited more biofilm-forming bacteria than epiphytes. Interestingly more isolates were obtained from rough surfaces both from fiber and wooden panels than smoothe surfaces. Bacterial symbionts of seagrass Enhalus sp., in particular its endophytes show potential source as natural marine antifoulants. Key words: bacterial symbionts, epiphytes, endophytes, Enhalus sp. Correspondence: Phone: +62-251-622961-; Fax: +231-251-622986 ; E-mail: [email protected] INTRODUCTION Biofouling is defined as the attachment and attachement and metamorphosis of some metabolism of microorganisms (microbial marine invertebrate larvae (Maki and Mitchell, fouling) and macroorganims (macrofouling) to 1988). -
Ascidiacea (Chordata: Tunicata) of Greece: an Updated Checklist
Biodiversity Data Journal 4: e9273 doi: 10.3897/BDJ.4.e9273 Taxonomic Paper Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist Chryssanthi Antoniadou‡, Vasilis Gerovasileiou§§, Nicolas Bailly ‡ Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece § Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece Corresponding author: Chryssanthi Antoniadou ([email protected]) Academic editor: Christos Arvanitidis Received: 18 May 2016 | Accepted: 17 Jul 2016 | Published: 01 Nov 2016 Citation: Antoniadou C, Gerovasileiou V, Bailly N (2016) Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist. Biodiversity Data Journal 4: e9273. https://doi.org/10.3897/BDJ.4.e9273 Abstract Background The checklist of the ascidian fauna (Tunicata: Ascidiacea) of Greece was compiled within the framework of the Greek Taxon Information System (GTIS), an application of the LifeWatchGreece Research Infrastructure (ESFRI) aiming to produce a complete checklist of species recorded from Greece. This checklist was constructed by updating an existing one with the inclusion of recently published records. All the reported species from Greek waters were taxonomically revised and cross-checked with the Ascidiacea World Database. New information The updated checklist of the class Ascidiacea of Greece comprises 75 species, classified in 33 genera, 12 families, and 3 orders. In total, 8 species have been added to the previous species list (4 Aplousobranchia, 2 Phlebobranchia, and 2 Stolidobranchia). Aplousobranchia was the most speciose order, followed by Stolidobranchia. Most species belonged to the families Didemnidae, Polyclinidae, Pyuridae, Ascidiidae, and Styelidae; these 4 families comprise 76% of the Greek ascidian species richness. The present effort revealed the limited taxonomic research effort devoted to the ascidian fauna of Greece, © Antoniadou C et al. -
Diversity and Evolution of Bacterial Bioluminescence Genes in the Global Ocean Thomas Vannier, Pascal Hingamp, Floriane Turrel, Lisa Tanet, Magali Lescot, Y
Diversity and evolution of bacterial bioluminescence genes in the global ocean Thomas Vannier, Pascal Hingamp, Floriane Turrel, Lisa Tanet, Magali Lescot, Y. Timsit To cite this version: Thomas Vannier, Pascal Hingamp, Floriane Turrel, Lisa Tanet, Magali Lescot, et al.. Diversity and evolution of bacterial bioluminescence genes in the global ocean. NAR Genomics and Bioinformatics, Oxford University Press, 2020, 2 (2), 10.1093/nargab/lqaa018. hal-02514159 HAL Id: hal-02514159 https://hal.archives-ouvertes.fr/hal-02514159 Submitted on 21 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Published online 14 March 2020 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2 1 doi: 10.1093/nargab/lqaa018 Diversity and evolution of bacterial bioluminescence genes in the global ocean Thomas Vannier 1,2,*, Pascal Hingamp1,2, Floriane Turrel1, Lisa Tanet1, Magali Lescot 1,2,* and Youri Timsit 1,2,* 1Aix Marseille Univ, Universite´ de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France and 2Research / Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022 Tara GOSEE, 3 rue Michel-Ange, Downloaded from https://academic.oup.com/nargab/article-abstract/2/2/lqaa018/5805306 by guest on 21 March 2020 75016 Paris, France Received October 21, 2019; Revised February 14, 2020; Editorial Decision March 02, 2020; Accepted March 06, 2020 ABSTRACT ganisms and is particularly widespread in marine species (7–9).