Cuttlebone: Characterization and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Cuttlebone: Characterization and Applications Cuttlebone: Characterization and Applications By: Safieh Momeni Cuttlebone Cuttlebone signifies a special class of ultra-lightweight, high stiffness and high permeability cellular biomaterials, providing the cuttlefish with an efficient means of maintaining neutral buoyancy at considerable habitation depths. In addition, this rigid cellular material provides the structural backbone of the body and plays a key role in the protection of vital organs. Cuttlebone The cuttlebone has two main components: Dorsal shield Lamellar matrix The dorsal shield is very tough and dense, providing a rigid substrate for protection, structure and the development of the lamellar matrix of cuttlebone. The lamellar matrix of cuttlebone has an extreme porosity (up to 90%), but also manages to withstand very high hydrostatic pressure. Lamellar matrix The lamellar matrix consists primarily of aragonite (a crystallised form of calcium carbonate, CaCO3), enveloped in a layer of organic material composed primary of β-chitin. The organic layer entirely envelopes the inorganic ceramic, and is thought to initiate, organise and inhibit the mineralisation of the inorganic material. From a mechanical perspective, the organic layer is also thought to provide a certain toughening effect to the material Applications Due to the unique physical, chemical and mechanical characteristics of this natural cellular material, a range of novel applications for the material have recently been investigated. Preparation of highly porous hydroxyapatite from cuttlefish bone Hydroxyapatite structures for tissue engineering applications have been produced by hydrothermal (HT) treatment of aragonite in the form of cuttlefish bone at 200 ̊C. Aragonite (CaCO3) monoliths were completely transformed into hydroxyapatite after 48 h of HT treatment. 2- 3- The substitution of CO3 groups predominantly into the PO4 sites of the Ca10(PO4)6(OH)2 structure was suggested by FT-IR spectroscopy and Rietveld structure refinement. The SEM micrographs have shown that the interconnected hollow structure with pillars connecting parallel lamellae in cuttlefish bone is maintained after conversion. Specific surface area (SBET) increased and mean pore size decreased by HT treatment. J Mater Sci: Mater Med (2009) 20:1039–1046 Hydroxyapatite Hydroxyapatite (HAP; Ca10(PO4)6(OH)2) due to its similarity with the mineral phase of bone has been studied for many years as an implant material . In recent years, particular attention has been paid to the synthesis of HAP ceramics with the porous morphology required for vascularization, bone cell invasion, and angiogenesis, which further improve its biomedical properties. The HAP structure can incorporate a wide variety of ions implying a variable defect structure of HAP. In biological apatites, or apatites originating from biogenetic materials, the presence of other mineral ions, such as Na+,K+,Mg2+, F- as well as substitution of carbonate ions into the HAP structure is very common. The carbonate ion substitutes either at the phosphate tetrahedron (B-type substitution) or at the hydroxyl site (A-type substitution) . The biological apatite that constitutes bone mineral is considered to be of mixed AB-type substitution . Hydroxyapatite While synthetic materials have been widely used in the biomedical field with great success, natural structural materials are now providing an abundant source of novel biomedical applications. During the last decade, an increased understanding of biomineralization has initiated improvements in biomimetic synthesis methods and production of new generation of biomaterials. The use of natural biogenic structures and materials such as corals, seashells, animal bones, etc., for medical purposes has been motivated by limitations in generating synthetic materials with the requisite structure and mechanical integrity. Hydroxyapatite Dry cuttlefish bone was cut into small pieces about 2 cm3 large and was first heated to 350 ºC for 3 h to remove the organic component, and then sealed with the 15 ml aqueous solution of 0.6 M NH4H2PO4 in Teflon lined stainless steel pressure vessel at 200ºC for various times (1–48 h). The stoichiometrically required aqueous solution of NH4H2PO4 to set the ratio Ca/P = 1.67 was determined using the data of DSC and TG analysis of raw cuttlefish bones. The formed HAP was washed with boiling water and dried at 110ºC. SEM micrographs of: a cuttlefish bone heated at 350C for 3 h. The corrugated appearance of the pillars is shown in the inset, b the cuttlefish bone after hydrothermal conversion at 200 C/24 h showing plate- and needle-like HAP crystals (inset) Biotemplated Syntheses of Macroporous Materials for Bone Tissue Engineering Scaffolds and Experiments in Vitro and Vivo ACS Appl. Mater. Interfaces The macroporous materials were prepared from the transformation of cuttlebone as biotemplates under hydrothermal reactions. Cell experimental results showed that the prepared materials as bone tissue engineering scaffolds or fillers had fine biocompatibility suitable for adhesion and proliferation of the hMSCs (human marrow mesenchymal stem cells). Histological analyses were carried out by implanting the scaffolds into a rabbit femur, where the bioresorption, degradation, and biological activity of the scaffolds were observed in the animal body. The prepared scaffolds kept the original three-dimensional frameworks with the ordered porous structures, which made for blood circulation, nutrition supply, and the cells implantation. The biotemplated syntheses could provide a new effective approach to prepare the bone tissue engineering scaffold materials. Design and synthesis of new porous scaffold materials for bone rehabilitation are of great significance since large quantities of skeletal reconstructive surgical cases need to be performed with the scaffold materials each year worldwide. In bone healing occurrence, the graft materials play the crucial roles.The autologous bones, as the gold-standard of the graft materials, can provide the scaffolds and active factors for bone ingrowth. However, aside from the source of the autologous bone being greatly limited, the autologous bone grafts are associated with an 8−39% risk of complications, e.g., hematoma, additional injury, superinfection, surgical complication, postoperative pain, and chronic pain at the donor sites. Therefore, autologous bone grafts are normally not recommended for elderly or pediatric patients or for patients with malignant or infectious disease. Alternative strategies, like allo- or xeno-transplantations, have major biocompatibility disadvantages compared with autografts. To overcome these limitations, the bone graft substitutes have been used to reconstruct bone defects. The perfect bone substitutes are osteoinductive, osteoconductive, biocompatible, and bioresorbable, which should induce minimal or no grafts rejection and can undergo remodeling and support new bone formation. On the other hand, it should be cost-effective and available in the amount required. The bone substitutes as scaffolds are in favor of the bone cells migration, proliferation, and new bone formation. Calcium phosphate-based ceramics are currently available and widely used in trauma and orthopedic surgery for bone substitutes due to their chemical similarity to bone mineral with minimal immunologic reactions, no foreign body reactions, or no systemic toxicity. Hydroxyapatite (HA, Ca5(PO4)3(OH)) and beta tricalciumphosphate (β-TCP, Ca3(PO4)2) are well-known bioceramics that possess high tissue compatibility and osteoconductivity. However, HA seems to be too stable in vivo because it shows a similar crystalline phase as bone mineral, which would be hard to tend toward chemical and biological equilibrium with bone tissue. Preparation of the Sca old Materials Cuttlebones (CB, 100 g, 30 × 10 × 3.5 cm) fromffthe sampan-like spine of cuttlefishes were cut into di erent dimensional cylinders. The mixture of pieces of dry cuttlebone and (NH4)2HPOff4 (mol/mol, 1:1.1) in aqueous solution were sealed in a 100 mL stainless steel autoclave with Teflon liner and placed in a temperature-controlled electric furnace at 180 °C (heating and cooling rates were 10 K·min−1). Di erent times of hydrothermal reaction were tested between 3 and 48 h in independentffexperiments. The pH of the solution was 7.8−8.2 before being placed in autoclaves and slightly lower after the hydrothermal reaction. FTIR spectra of treated cuttlebone (a) and the scaffold transformed from hydrothermal reaction at 180 °C for 3 h (b), 6 h (c), 12 h (d), 24 h (e), and 48 h (f). XRD patterns. Aragonite (ICDD card 01-071-2396) (a), cuttlebone (b), hydroxyapatite (ICDD card 00- 009-0432) (c), and hydrothermal reaction for 3 h (d), 6 h (e), 12 h (f), and 24 h (g). TG-DTA curves. (a) Cuttlebones; (b) scaffold materials transformed from cuttlebones by hydrothermal reactions. (a) Scanning microscope view of the sintered scaffold transformed from the cuttlebone by hydrothermal reaction, and all the trabeculares were broken in the holes; (b) original magnification of 400× clearly reveals the ordered macroporous framework supported by the S-shaped pillars; (c) the floor supported by the “S” oriented walls; (d) transverse section view of the magnification of 10 000× of the floor with 2−5 μm openings; (e) image of exterior surface of the floor wall; (f) view of the magnification of 30 000× for the ceramic floor. (a) Top view of the scaffold; (b) the top view of the “S” oriented wall; (c) the nanocrystallite composites at the
Recommended publications
  • CEPHALOPODS 688 Cephalopods
    click for previous page CEPHALOPODS 688 Cephalopods Introduction and GeneralINTRODUCTION Remarks AND GENERAL REMARKS by M.C. Dunning, M.D. Norman, and A.L. Reid iving cephalopods include nautiluses, bobtail and bottle squids, pygmy cuttlefishes, cuttlefishes, Lsquids, and octopuses. While they may not be as diverse a group as other molluscs or as the bony fishes in terms of number of species (about 600 cephalopod species described worldwide), they are very abundant and some reach large sizes. Hence they are of considerable ecological and commercial fisheries importance globally and in the Western Central Pacific. Remarks on MajorREMARKS Groups of CommercialON MAJOR Importance GROUPS OF COMMERCIAL IMPORTANCE Nautiluses (Family Nautilidae) Nautiluses are the only living cephalopods with an external shell throughout their life cycle. This shell is divided into chambers by a large number of septae and provides buoyancy to the animal. The animal is housed in the newest chamber. A muscular hood on the dorsal side helps close the aperture when the animal is withdrawn into the shell. Nautiluses have primitive eyes filled with seawater and without lenses. They have arms that are whip-like tentacles arranged in a double crown surrounding the mouth. Although they have no suckers on these arms, mucus associated with them is adherent. Nautiluses are restricted to deeper continental shelf and slope waters of the Indo-West Pacific and are caught by artisanal fishers using baited traps set on the bottom. The flesh is used for food and the shell for the souvenir trade. Specimens are also caught for live export for use in home aquaria and for research purposes.
    [Show full text]
  • Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda)
    GFF ISSN: 1103-5897 (Print) 2000-0863 (Online) Journal homepage: http://www.tandfonline.com/loi/sgff20 Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda) Harry Mutvei To cite this article: Harry Mutvei (2016): Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda), GFF, DOI: 10.1080/11035897.2016.1227364 To link to this article: http://dx.doi.org/10.1080/11035897.2016.1227364 Published online: 21 Sep 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=sgff20 Download by: [Dr Harry Mutvei] Date: 21 September 2016, At: 11:07 GFF, 2016 http://dx.doi.org/10.1080/11035897.2016.1227364 Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda) Harry Mutvei Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden ABSTRACT ARTICLE HISTORY The shell wall in Spirula is composed of prismatic layers, whereas the septa consist of lamello-fibrillar nacre. Received 13 May 2016 The septal neck is holochoanitic and consists of two calcareous layers: the outer lamello-fibrillar nacreous Accepted 23 June 2016 layer that continues from the septum, and the inner pillar layer that covers the inner surface of the septal KEYWORDS neck. The pillar layer probably is a structurally modified simple prisma layer that covers the inner surface of Siphuncular structures; the septal neck in Nautilus. The pillars have a complicated crystalline structure and contain high amount of connecting rings; Spirula; chitinous substance.
    [Show full text]
  • Cuttlefish (Sepia Sp.) Ink Extract As Antibacterial Activity Against Aeromonas Hydrophila
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 11, NOVEMBER 2019 ISSN 2277-8616 Cuttlefish (Sepia Sp.) Ink Extract As Antibacterial Activity Against Aeromonas Hydrophila Faizal Zakaria, Mohamad Fadjar, Uun Yanuhar Abstract: Aeromonas hydrophila is a gram negative opportunist bacterium associated with aquatic animal disease. Cephalopod ink has shown potential antiretroviral activity. The ink extracts of cuttlefish showed antibacterial effect. This study aims to investigate the antibacterial activity of the methanolic extract of the ink of cuttlefish (Sepia sp.) against Aeromonas hydrophilla. The shadedried ink sample from approximately 30g ink sacs obtained from 15 animals were immersed separately in methanol (1:3 w/v) solvents for overnight. Dried extract was used for the experiments. Isolate of Aeromonas hydrophila was originated from Jepara Brackishwater Aquaculture Center. The average yield percentage of cuttlefish tintan extract obtained was 4.86%. The results of the MIC test in table 5. show that the highest average absorbance value was obtained at a concentration of 50 ppm which was equal to 1,716 nm and the lowest absorbance was obtained at a treatment dose of 300 ppm at 0.841 nm while the Mc Farland tube was 0.933 nm. The results of antibacterial test on table 2 showed antibacterial activity of cuttlefish ink extract at concentration negative control showed diameter zone of 5 ± 1.2 mm, at positive control showed diameter zone of 31 ± 1.2 mm, at 250 ppm result 19 ± 0.9 mm, at 300 ppm result 22 ± 1.4 mm, at 350 ppm result 31 ± 1.2 mm. Index Terms: Antibacterial; Cuttlefish Ink; Extract;Sepia sp.;Aeromonas hydrophila —————————— —————————— 1.
    [Show full text]
  • Taxonomical and Morphometric Studies on Sepia Pharaonis Ehrenberg, 1831(Cephalopoda: Sepioidea) from the Suez Gulf (Red Sea), Egypt
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND ENGINEERING (IJESE) Vol. 7: 11- 22 (2016) http://www.pvamu.edu/research/activeresearch/researchcenters/texged/ international-journal Prairie View A&M University, Texas, USA Taxonomical and morphometric studies on Sepia pharaonis Ehrenberg, 1831(Cephalopoda: Sepioidea) from the Suez Gulf (Red Sea), Egypt. Rafik Riad1; Manal Atta2; Youssef Halim2 and Noha Elebiary1 1- National Institute of Oceanography and Fisheries, Alexandria branch, Egypt. 2- Faculty of Science, Alexandria University, Egypt. ARTICLE INFO ABSTRACT Article History Morphometric characters of male and female Sepia pharaonis Received: Feb.2016 were investigated for samples obtained from commercial trawling Accepted: April, 2016 vessels of Suez Gulf, Egypt. Samples were collected (850 Available online: Jan. 2017 individuals) between winter 2014 to autumn 2014.Measurements for _________________ the smallest and largest male and female specimens, mean and Keywords: Taxonomy number of parts showed negative allometric growth (slope less than Morphology 1). Generally, the coefficient of determination R for MW, HL, HW, Sepia pharaonis FL, FW, FU.L, FU.W, AL and TL (0.9766, 0.9551, 0.9767, 0.9965, Suez Gulf 0.9453, 0.9779, 0.9712, 0.9580, 0.9685), respectively, were high for Red Sea most measurements. Egypt The present study reported some additional characters for this species that were not recorded before from other previous descriptions 1. INTRODUCTION Cephalopods are characterized by their activity, intelligent carnivorous creatures with highly advanced visual and nervous system (Boyle and Rodhouse, 2005) .They are soft- bodied bilaterally symmetrical animals with a well-developed head and body that consists of the muscular undivided mantle, mantle cavity houses the internal organs and also houses the external fins when present.
    [Show full text]
  • Is Sepiella Inermis ‘Spineless’?
    IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN:2278-3008, p-ISSN:2319-7676. Volume 12, Issue 5 Ver. IV (Sep. – Oct. 2017), PP 51-60 www.iosrjournals.org Is Sepiella inermis ‘Spineless’? 1 Visweswaran B * 1Department of Zoology, K.M. Centre for PG Studies (Autonomous), Lawspet Campus, Pondicherry University, Puducherry-605 008, India. *Corresponding Author: Visweswaran B Abstract: Many a report seemed to project at a noble notion of having identified some novel and bioactive compounds claimed to have been found from Sepiella inermis; but lagged to log their novelty scarcely defined due to certain technical blunders they seem to have coldly committed in such valuable pieces of aboriginal research works, reported to have sophistically been accomplished but unnoticed with considerable lack of significant finesse. They have dealt with finer biochemicals already been reported to have been available from S.inermis; yet, to one’s dismay, have failed to maintain certain conventional means meant for original research. This quality review discusses about the illogical math rooting toward and logical aftermath branching from especially certain spectral reports. Keywords: Sepiella inermis, ink, melanin, DOPA ----------------------------------------------------------------------------------------------------------------------------- ---------- Date of Submission: 16-09-2017 Date of acceptance: 28-09-2017 ----------------------------------------------------------------------------------------------------------------------------- ---------- I. Introduction Sepiella inermis is a demersally 1 bentho-nektonic 2, Molluscan, cephalopod ‗spineless‘ cuttlefish species, with invaluable juveniles 3, from the megametrical Indian coast 4-6, as incidental catches in shore seine 7 & 8, as egg clusters 9 from shallow waters 1 after monsoon at Vizhinjam coast 10 and Goa coast 11 of India and sundried, abundantly but rarely 8. II.
    [Show full text]
  • Three-Dimensional Structural Evolution of the Cuttlefish Sepia Officinalis Shell from Embryo to Adult
    Three-dimensional structural evolution of the cuttlefish Sepia officinalis shell from embryo to adult 6 stages Charles Le Pabic, Julien Derr, Gilles Luquet, Pascal-Jean Lopez, Laure Bonnaud-Ponticelli To cite this version: Charles Le Pabic, Julien Derr, Gilles Luquet, Pascal-Jean Lopez, Laure Bonnaud-Ponticelli. Three- dimensional structural evolution of the cuttlefish Sepia officinalis shell from embryo to adult6 stages. Journal of the Royal Society Interface, the Royal Society, 2019, 16 (158), pp.20190175. 10.1098/rsif.2019.0175. hal-02318453 HAL Id: hal-02318453 https://hal.archives-ouvertes.fr/hal-02318453 Submitted on 17 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 2 Article type: Full length article 3 4 5 Three-dimensional structural evolution of the cuttlefish Sepia officinalis shell from embryo to adult 6 stages. 7 8 9 Charles Le Pabica, Julien Derrb, Gilles Luqueta, Pascal-Jean Lopeza, Laure Bonnaud-Ponticellia* 10 11 a Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Muséum national d’Histoire 12 naturelle, UMR CNRS 7208, Université de Caen Normandie, Sorbonne Université, IRD 207, 13 Université des Antilles, 75005 Paris, France 14 b Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Diderot, UMR CNRS 7057, 15 75205 Paris Cedex 13, France 16 17 *Corresponding author.
    [Show full text]
  • The Biology and Ecology of the Common Cuttlefish (Sepia Officinalis)
    Supporting Sustainable Sepia Stocks Report 1: The biology and ecology of the common cuttlefish (Sepia officinalis) Daniel Davies Kathryn Nelson Sussex IFCA 2018 Contents Summary ................................................................................................................................................. 2 Acknowledgements ................................................................................................................................. 2 Introduction ............................................................................................................................................ 3 Biology ..................................................................................................................................................... 3 Physical description ............................................................................................................................ 3 Locomotion and respiration ................................................................................................................ 4 Vision ................................................................................................................................................... 4 Chromatophores ................................................................................................................................. 5 Colour patterns ................................................................................................................................... 5 Ink sac and funnel organ
    [Show full text]
  • Endoprotease and Exopeptidase Activities in the Hepatopancreas Of
    Original Article Fish Aquat Sci 15(3), 197-202, 2012 Endoprotease and Exopeptidase Activities in the Hepatopancreas of the Cuttlefish Sepia officinalis, the Squid Todarodes pacificus, and the Octopus Octopus vulgaris Cuvier Min Ji Kim1, Hyeon Jeong Kim1, Ki Hyun Kim1, Min Soo Heu2 and Jin-Soo Kim1* 1Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University, Tongyeong 650-160, Korea 2Department of Food Science and Nutrition/Institute of Marine Industry, Gyeongsang National University, Jinju 660-701, Korea Abstract This study examined and compared the exopeptidase and endoprotease activities of the hepatopancreas (HP) of cuttlefish, squid, and octopus species. The protein concentration in crude extract (CE) from octopus HP was 3,940 mg/100 g, lower than those in CEs from squid HP (4,157 mg/100 g) and cuttlefish HP (5,940 mg/100 g). With azocasein of pH 6 as a substrate, the total activity in HP CE of octopus was 31,000 U, lower than the values for cuttlefish (57,000 U) and squid (69,000 U). Regardless of sample type, the total activities of the CEs with azocasein as the substrate were higher at pH 6 (31,000–69,000 U) than at pH 9 (19,000–34,000 U). With L-leucine-p-nitroanilide (LeuPNA) of pH 6 as the substrate, the total activity of the HP CE from octopus was 138,000 U, higher than values from both cuttlefish HP (72,000 U) and squid HP (63,000 U). Regardless of sample type, the total activities of the CEs with LeuPNA as the substrate were higher at pH 6 (63,000–138,000 U) than at pH 9 (41,000–122,000 U).
    [Show full text]
  • Synopsis of Phylum Mollusca (Molluscs)
    Synopsis of Phylum Mollusca (Molluscs) Identifying Characteristics of Phylum: -second largest phylum of animals in terms of number of known species -most versatile body plan of all animals -triploblastic with true coelom (eucoelomate); protostome -bilateral symmetry; some with secondary assymetry -soft, usually unsegmented body consisting of head, foot and visceral mass -body usually enclosed by thin fleshy mantle -mantle usually secretes hard external shell -complete digestive tract, many with a radula, a rasping or scraping feeding organ, stomach, digestive glands, crystalline style, intestine -respiratory system of gills in aquatic forms or "lung"-like chamber in terrestrial forms -most with open circulatory system; body cavity (coelom) a haemocoel while cephalopods have a closed circulatory system -CNS is a ring of ganglia in head area with paired nerves and ganglia extending to other parts of the body -usually 1 pair of nephridia (=metanephridia) often called kidneys (not really true kidneys) -marine forms with characteristic trochophore larva; freshwater bivalves with glochidia larva Class: Polyplacophora (Chitons) -fairly sedentary; may move short distances to feed -head and cephalic sensory organs reduced -shell contains 8 overlapping plates on dorsal surface; can roll up like pill bugs/armadillo -most feed using radula to scrape algae from surface -mantle forms a girdle around margins of plates -broad ventral foot attaches firmly to substrate -gills suspended in mantle cavity along sides of thick -flat muscular foot Class: Scaphopoda
    [Show full text]
  • Cephalopod Genomics: a Plan of Strategies and Organization
    Cephalopod genomics: A plan of strategies and organization The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Albertin, Caroline B., Laure Bonnaud, C. Titus Brown, Wendy J. Crookes-Goodson, Rute R. da Fonseca, Carlo Di Cristo, Brian P. Dilkes, et al. 2012. Cephalopod genomics: a plan of strategies and organization. Standards in Genomic Sciences 7(1): 175-188. Published Version doi:10.4056/sigs.3136559 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11235511 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Standards in Genomic Sciences (2012) 7:175-188 DOI:10.4056/sigs.3136559 Cephalopod genomics: A plan of strategies and organization Caroline B. Albertin1, Laure Bonnaud2, C. Titus Brown3, Wendy J. Crookes-Goodson4, Rute R. da Fonseca5, Carlo Di Cristo6, Brian P. Dilkes7, Eric Edsinger-Gonzales8, Robert M. Freeman, Jr.9, Roger T. Hanlon10, Kristen M. Koenig11, Annie R. Lindgren12, Mark Q. Martindale13, Patrick Minx14, Leonid L. Moroz15, Marie-Therese Nödl16, Spencer V. Nyholm17, Atsushi Ogura18, Judit R. Pungor19, Joshua J. C. Rosenthal20, Erich M. Schwarz21, Shuichi Shigeno22, Jan M. Strugnell23, Tim Wollesen24, Guojie Zhang25, Clifton W. Ragsdale,1,26* 1Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL,
    [Show full text]
  • Western Central Pacific
    FAOSPECIESIDENTIFICATIONGUIDEFOR FISHERYPURPOSES ISSN1020-6868 THELIVINGMARINERESOURCES OF THE WESTERNCENTRAL PACIFIC Volume2.Cephalopods,crustaceans,holothuriansandsharks FAO SPECIES IDENTIFICATION GUIDE FOR FISHERY PURPOSES THE LIVING MARINE RESOURCES OF THE WESTERN CENTRAL PACIFIC VOLUME 2 Cephalopods, crustaceans, holothurians and sharks edited by Kent E. Carpenter Department of Biological Sciences Old Dominion University Norfolk, Virginia, USA and Volker H. Niem Marine Resources Service Species Identification and Data Programme FAO Fisheries Department with the support of the South Pacific Forum Fisheries Agency (FFA) and the Norwegian Agency for International Development (NORAD) FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1998 ii The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers and boundaries. M-40 ISBN 92-5-104051-6 All rights reserved. No part of this publication may be reproduced by any means without the prior written permission of the copyright owner. Applications for such permissions, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, via delle Terme di Caracalla, 00100 Rome, Italy. © FAO 1998 iii Carpenter, K.E.; Niem, V.H. (eds) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Volume 2. Cephalopods, crustaceans, holothuri- ans and sharks. Rome, FAO. 1998. 687-1396 p.
    [Show full text]
  • Special Considerations for Keeping Cephalopods in Laboratory Facilities
    NOTES Special Considerations for Keeping Cephalopods in Laboratory Facilities DANIELJ. OESTMANN, DVM, PHD, JOSEPH M. SCIMECA, DVM, PHD, JOHN FORSYTHE, MS, ROGER HANLON, MS, PHD, AND PHILLIP LEE, MS, PHD Abstract I Cephalopods have been used for a wide variety of biomedical and basic science research projects and their use has been growing. Advances in culture techniques pioneered at the National Resource Center for Cephalopods (NRCC) have enabled the NRCC to culture cephalopods year-round, rather than relying seasonally on wild-caught cephalopods. These cultured cephalo- pods are then provided to visiting investigators or shipped to investigators in remote areas. This article describes how an investigator in a remote area can contravene shipping stress and, in turn, maintain small colonies of healthy cephalopods for long periods of time. The NRCC has established protocols for health monitoring involving behavior and water chemistry analyses. Disease preven- tion is accomplished through rigorous environmental control, water treatment and adequate feeding. Treatment is usually a less-effective option, involving dips and injections of antibiotics. The list of effective antibiotics is short (i.e., chloramphenicol, gentamicin, and nitrofurazone). The NRCC also air-freights cephalopods routinely via overnight delivery service to remote or inland institutions for inunediate use on arrival. As a result, these cephalopods often become stressed during shipment. The NRCC's goals are for investigators in remote areas to avoid potential problems in their research results due to stress and to extend the time frame during which cephalopods can be maintained at these remote institutions. The use of aquatic animal models continues to be an important tory, which means that they grow rapidly to sexual maturity, spawn component of laboratory research world-wide.
    [Show full text]