Special Considerations for Keeping Cephalopods in Laboratory Facilities

Total Page:16

File Type:pdf, Size:1020Kb

Special Considerations for Keeping Cephalopods in Laboratory Facilities NOTES Special Considerations for Keeping Cephalopods in Laboratory Facilities DANIELJ. OESTMANN, DVM, PHD, JOSEPH M. SCIMECA, DVM, PHD, JOHN FORSYTHE, MS, ROGER HANLON, MS, PHD, AND PHILLIP LEE, MS, PHD Abstract I Cephalopods have been used for a wide variety of biomedical and basic science research projects and their use has been growing. Advances in culture techniques pioneered at the National Resource Center for Cephalopods (NRCC) have enabled the NRCC to culture cephalopods year-round, rather than relying seasonally on wild-caught cephalopods. These cultured cephalo- pods are then provided to visiting investigators or shipped to investigators in remote areas. This article describes how an investigator in a remote area can contravene shipping stress and, in turn, maintain small colonies of healthy cephalopods for long periods of time. The NRCC has established protocols for health monitoring involving behavior and water chemistry analyses. Disease preven- tion is accomplished through rigorous environmental control, water treatment and adequate feeding. Treatment is usually a less-effective option, involving dips and injections of antibiotics. The list of effective antibiotics is short (i.e., chloramphenicol, gentamicin, and nitrofurazone). The NRCC also air-freights cephalopods routinely via overnight delivery service to remote or inland institutions for inunediate use on arrival. As a result, these cephalopods often become stressed during shipment. The NRCC's goals are for investigators in remote areas to avoid potential problems in their research results due to stress and to extend the time frame during which cephalopods can be maintained at these remote institutions. The use of aquatic animal models continues to be an important tory, which means that they grow rapidly to sexual maturity, spawn component of laboratory research world-wide. In Canada, for in- once, and die. Life span and growth rate in laboratories are tem- stance, fishes represent the largest group of laboratory animals perature dependent, but rarely exceed a year, and often are only used in government laboratories (1). The use of cephalopods as 5 to 6 months for tropical species. Animals brought into the labo- laboratory animals is also well established, as they have long been ratory as juveniles or sub-adults may only have a few months to models used in neurophysiology and basic physiology studies (2, live. Hatchlings display true exponential growth for the first third 3). Aquatic species, especially invertebrates (e.g., crayfish, sea ur- of the life cycle, growing at rates of6 to 12% of wet body weight chins, horseshoe crabs, and squid) can provide researchers with a per day. Asjuveniles reach maturity, these rates decrease to 4 to viable alternative to traditional terrestrial vertebrates. 5% per day (7). To fuel such growth, squids and cuttlefishes Ten percent of the known living cephalopod species have been consume a virtually pure protein diet from their prey of fishes, maintained, reared, or cultured in laboratories (4). Culturing shrimps, and crabs, converting 30 to 50% of the diet into growth. of cephalopods through multiple generations has been achieved. This high-protein diet results in production oflarge amounts of Seven generations of European cuttlefish (Sepia officinalis) and nitrogenous waste in the form of ammonia. Cephalopods ex- 6 generations of Pacific long-finned squid (Sepioteuthis lessoniana) crete 2 to 3 times the amount of ammonia per kg of body weight, have been cultured at the National Resource Center for Cepha- compared with fishes (8). lopods (NRCC) of the Marine Biomedical Institute (MBI) in Squids and cuttlefishes are active, mobile predators in nature. Galveston Texas (5, 6). Advances in laboratory care and hus- Since they compete with fishes in the sea, they have evolved a bandry have allowed the development of a year-round source of sophisticated sensory neurophysiologic mechanism (3) .They have these research animals from the NRCC. The most important superb vision, although apparently they detect only black and white, advances have been through improvements in tank design, feed- relying on vision for orientation and prey selection. They have ing methods, handling and transport methods, and water complex behavior, particularly in the areas of reproduction and filtration techniques. predator avoidance (camouflage). Both of these are reflected in Advances in design of sea water filtration equipment elimi- the complex neurally controlled chromatophore system in the skin nated the requirements for a coastal location; thus, numerous that allows them to change their coloration and body patterns in a inland laboratories are now keeping cephalopods routinely. fraction of a sec. As a defensive ploy, they can excrete copious Long-term success in maintaining laboratory populations of amounts of ink to confuse potential predators. The ink is an im- cephalopods requires rigorous water-quality management com- portant issue to be dealt with in their captive maintenance, because bined with an aggressive health monitoring program. It is our it increases water turbidity and can foul gills. purpose to provide investigators and animal care professionals Basic Tank and Sea Water System Requirements: We have with the basic information needed to ensure colony health for described elsewhere, in detail, designs of closed sea water sys- small cephalopod populations « 20 cephalopods/ colony). tems suitable for culturing of cephalopods (5,6,9-15). Readers are urged to consult these publications for details on system Cephalopod Biology and Life History design. Although some of these articles deal with culturing of To appreciate the health maintenance requirements of cepha- octopuses, the criteria for water quality and filtration design apply lopods, it is necessary to understand their biology and life history. equally well to squids and cuttlefishes. The actual tanks used Foremost, squids and cuttlefishes have a semelparous life his- and precise layout of filtration apparatus is highly adaptable to constraints of space and number of animals to be housed. It is NationalResource Centerfor Cephalopods, University of Texas Medical Branch, essential that water filtration is processed in the following order: Marine Biomedical Institute, 301 University Boulevard, Galveston, Texas first, water leaves the animal holding tanks and then passes 77555-1163 through a foam fractionator (protein skimmer), which strips Volume 36, No. 21 March 1997 CONTEMPORARY TOPICS © 1997 by the American Association for Laboratory Animal Science 89 dissolved organic compounds including ink. The water then Receiving and Post-Shipment Handling: A bacterial filter bed passes through a mechanical filter, removing particles down to (nitrifying biofilter) must be conditioned prior to the arrival of 100 /lm. It then passes through high-grade activated carbon, animals if it has not been supporting any animals during the through a biologic filter where ammonia is broken down to less- preceding 2 weeks. This can be done by maintaining fishes or toxic forms by nitrifying bacteria (we generally use down-flow other invertebrates in the tanks or by adding increasing amounts sub-gravel filters that have crushed oyster shell as a media), and of ammonium chloride (18). One or 2 days prior to arrival of lastly through an ultraviolet (UV) sterilizer before returning to new animals, steps should be taken to match temperature, salin- the animal holding tank. System design should produce flow ity, and pH of the water as closely as possible to those of the rates that allow the entire water volume of the culture system to provider institution (i.e., NRCC) or the natural environment of pass through the filtration loop a minimum of 2 times per h. field-collected animals. Natural and artificial sea water have been used successfully to On arrival, shipping containers should be opened in dim light- maintain and culture cephalopods. When natural sea water is used, ing so that the animals, which have acclimated to darkness during particulate and carbon filtration prior to use in closed, recirculat- transport, will not be startled. The high metabolic rate of cepha- ing sea water systems is recommended, especially when the water lopods results in high ammonia concentration during transport is to be stored prior to use. When an artificial sea water is used, that should be corrected as soon as possible during acclimation. the fresh water must be filtered through activated carbon or must This is accomplished by slowly removing transport water from be dechlorinated with sodium thiosulfate to remove chemical ad- the shipping container and replacing it with tank water. The ditives commonly used by municipal water authorities (e.g., time required for acclimation will depend on the difference chlorine and chloramines). De-ionized water also is safe to use. between water conditions in the shipping container and the We have successfully used Instant Ocean™, HW Marine MixTM, housing tank. As a rule, you should not acclimate most cephalo- and Fritz Super Salt™ artificial sea salts. Artificial sea water should pod species faster than 10 C/h or 2-3 ppt salinity Ih. be mixed and aged at least 48 h before it is added to a tank con- When animals are removed from transport containers or taining cephalopods. When converting existing fish tank systems, moved from one tank to another, they should be slowly maneu- it is essential to determine whether copper treatments have ever vered into a submerged bucket, beaker, or bowl that
Recommended publications
  • CEPHALOPODS 688 Cephalopods
    click for previous page CEPHALOPODS 688 Cephalopods Introduction and GeneralINTRODUCTION Remarks AND GENERAL REMARKS by M.C. Dunning, M.D. Norman, and A.L. Reid iving cephalopods include nautiluses, bobtail and bottle squids, pygmy cuttlefishes, cuttlefishes, Lsquids, and octopuses. While they may not be as diverse a group as other molluscs or as the bony fishes in terms of number of species (about 600 cephalopod species described worldwide), they are very abundant and some reach large sizes. Hence they are of considerable ecological and commercial fisheries importance globally and in the Western Central Pacific. Remarks on MajorREMARKS Groups of CommercialON MAJOR Importance GROUPS OF COMMERCIAL IMPORTANCE Nautiluses (Family Nautilidae) Nautiluses are the only living cephalopods with an external shell throughout their life cycle. This shell is divided into chambers by a large number of septae and provides buoyancy to the animal. The animal is housed in the newest chamber. A muscular hood on the dorsal side helps close the aperture when the animal is withdrawn into the shell. Nautiluses have primitive eyes filled with seawater and without lenses. They have arms that are whip-like tentacles arranged in a double crown surrounding the mouth. Although they have no suckers on these arms, mucus associated with them is adherent. Nautiluses are restricted to deeper continental shelf and slope waters of the Indo-West Pacific and are caught by artisanal fishers using baited traps set on the bottom. The flesh is used for food and the shell for the souvenir trade. Specimens are also caught for live export for use in home aquaria and for research purposes.
    [Show full text]
  • Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda)
    GFF ISSN: 1103-5897 (Print) 2000-0863 (Online) Journal homepage: http://www.tandfonline.com/loi/sgff20 Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda) Harry Mutvei To cite this article: Harry Mutvei (2016): Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda), GFF, DOI: 10.1080/11035897.2016.1227364 To link to this article: http://dx.doi.org/10.1080/11035897.2016.1227364 Published online: 21 Sep 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=sgff20 Download by: [Dr Harry Mutvei] Date: 21 September 2016, At: 11:07 GFF, 2016 http://dx.doi.org/10.1080/11035897.2016.1227364 Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda) Harry Mutvei Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden ABSTRACT ARTICLE HISTORY The shell wall in Spirula is composed of prismatic layers, whereas the septa consist of lamello-fibrillar nacre. Received 13 May 2016 The septal neck is holochoanitic and consists of two calcareous layers: the outer lamello-fibrillar nacreous Accepted 23 June 2016 layer that continues from the septum, and the inner pillar layer that covers the inner surface of the septal KEYWORDS neck. The pillar layer probably is a structurally modified simple prisma layer that covers the inner surface of Siphuncular structures; the septal neck in Nautilus. The pillars have a complicated crystalline structure and contain high amount of connecting rings; Spirula; chitinous substance.
    [Show full text]
  • Cuttlebone: Characterization and Applications
    Cuttlebone: Characterization and Applications By: Safieh Momeni Cuttlebone Cuttlebone signifies a special class of ultra-lightweight, high stiffness and high permeability cellular biomaterials, providing the cuttlefish with an efficient means of maintaining neutral buoyancy at considerable habitation depths. In addition, this rigid cellular material provides the structural backbone of the body and plays a key role in the protection of vital organs. Cuttlebone The cuttlebone has two main components: Dorsal shield Lamellar matrix The dorsal shield is very tough and dense, providing a rigid substrate for protection, structure and the development of the lamellar matrix of cuttlebone. The lamellar matrix of cuttlebone has an extreme porosity (up to 90%), but also manages to withstand very high hydrostatic pressure. Lamellar matrix The lamellar matrix consists primarily of aragonite (a crystallised form of calcium carbonate, CaCO3), enveloped in a layer of organic material composed primary of β-chitin. The organic layer entirely envelopes the inorganic ceramic, and is thought to initiate, organise and inhibit the mineralisation of the inorganic material. From a mechanical perspective, the organic layer is also thought to provide a certain toughening effect to the material Applications Due to the unique physical, chemical and mechanical characteristics of this natural cellular material, a range of novel applications for the material have recently been investigated. Preparation of highly porous hydroxyapatite from cuttlefish bone Hydroxyapatite structures for tissue engineering applications have been produced by hydrothermal (HT) treatment of aragonite in the form of cuttlefish bone at 200 ̊C. Aragonite (CaCO3) monoliths were completely transformed into hydroxyapatite after 48 h of HT treatment.
    [Show full text]
  • Revisión Del Género Lolliguncula Steenstrup, 1881 (Cephalopoda: Loliginidae) Frente a La Costa Del Pacífico De América Del Sur
    Rev. peru. biol. 20(2): 129 - 136 (Diciembre 2013) the genus LOLLIGUNCULA off the Pacific Coast of South America FACULTAD DE CIENCIAS BIOLÓGICAS UNMSM ISSN-L 1561-0837 TRABAJOS ORIGINALES Revision of the genus Lolliguncula Steenstrup, 1881 (Cephalopoda: Loliginidae) off the Pacific Coast of South America Revisión del género Lolliguncula Steenstrup, 1881 (Cephalopoda: Loliginidae) frente a la costa del Pacífico de América del Sur Franz Cardoso1 and Frederick G. Hochberg2 1 Laboratorio de Biología y Sistemática de Invertebrados Marinos, Facultad de Ciencias Biológicas, Universidad Na- Abstract cional Mayor de San Marcos, Apdo. 11-0058, Lima 11, Perú. In the present paper the species from the genus Lolliguncula Steentrup, 1881 (Cephalopo- 2 Department of Invertebrate Zoology, Santa Barbara Museum of Natural History, 2559 Puesta del Sol, Santa da: Loliginidae) in Southeastern Pacific Ocean are reviewed. The presence of Lolliguncula Barbara, California 93105-2936, USA. (Lolliguncula) panamensis Berry, 1911, Lolliguncula (Loliolopsis) diomedeae Hoyle, 1911 and Email Franz Cardoso: [email protected] Lolliguncula (Lolliguncula) argus Brakoniecki and Roper, 1985 are confirmed from Mexican waters to Perú and the species Lolliguncula (Lolliguncula) argus collected during a cruise of the R/V Anton Bruun from 1966 off the coast of South America is recorded for the first time in Peruvian waters. A key to identification of Pacific species is given. We report a diagnostic feature with taxonomic remarks of these species. Updated information on the distribution, biology, and fisheries of each species also is discussed. Keywords: Lolliguncula; taxonomy; distribution; biology; Southeastern Pacific. Resumen En el presente trabajo las especies del género Lolliguncula Steentrup, 1881 (Cephalopoda: Loliginidae) en el Océano Pacífico Sudeste son revisados.
    [Show full text]
  • Cuttlefish (Sepia Sp.) Ink Extract As Antibacterial Activity Against Aeromonas Hydrophila
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 11, NOVEMBER 2019 ISSN 2277-8616 Cuttlefish (Sepia Sp.) Ink Extract As Antibacterial Activity Against Aeromonas Hydrophila Faizal Zakaria, Mohamad Fadjar, Uun Yanuhar Abstract: Aeromonas hydrophila is a gram negative opportunist bacterium associated with aquatic animal disease. Cephalopod ink has shown potential antiretroviral activity. The ink extracts of cuttlefish showed antibacterial effect. This study aims to investigate the antibacterial activity of the methanolic extract of the ink of cuttlefish (Sepia sp.) against Aeromonas hydrophilla. The shadedried ink sample from approximately 30g ink sacs obtained from 15 animals were immersed separately in methanol (1:3 w/v) solvents for overnight. Dried extract was used for the experiments. Isolate of Aeromonas hydrophila was originated from Jepara Brackishwater Aquaculture Center. The average yield percentage of cuttlefish tintan extract obtained was 4.86%. The results of the MIC test in table 5. show that the highest average absorbance value was obtained at a concentration of 50 ppm which was equal to 1,716 nm and the lowest absorbance was obtained at a treatment dose of 300 ppm at 0.841 nm while the Mc Farland tube was 0.933 nm. The results of antibacterial test on table 2 showed antibacterial activity of cuttlefish ink extract at concentration negative control showed diameter zone of 5 ± 1.2 mm, at positive control showed diameter zone of 31 ± 1.2 mm, at 250 ppm result 19 ± 0.9 mm, at 300 ppm result 22 ± 1.4 mm, at 350 ppm result 31 ± 1.2 mm. Index Terms: Antibacterial; Cuttlefish Ink; Extract;Sepia sp.;Aeromonas hydrophila —————————— —————————— 1.
    [Show full text]
  • Taxonomical and Morphometric Studies on Sepia Pharaonis Ehrenberg, 1831(Cephalopoda: Sepioidea) from the Suez Gulf (Red Sea), Egypt
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND ENGINEERING (IJESE) Vol. 7: 11- 22 (2016) http://www.pvamu.edu/research/activeresearch/researchcenters/texged/ international-journal Prairie View A&M University, Texas, USA Taxonomical and morphometric studies on Sepia pharaonis Ehrenberg, 1831(Cephalopoda: Sepioidea) from the Suez Gulf (Red Sea), Egypt. Rafik Riad1; Manal Atta2; Youssef Halim2 and Noha Elebiary1 1- National Institute of Oceanography and Fisheries, Alexandria branch, Egypt. 2- Faculty of Science, Alexandria University, Egypt. ARTICLE INFO ABSTRACT Article History Morphometric characters of male and female Sepia pharaonis Received: Feb.2016 were investigated for samples obtained from commercial trawling Accepted: April, 2016 vessels of Suez Gulf, Egypt. Samples were collected (850 Available online: Jan. 2017 individuals) between winter 2014 to autumn 2014.Measurements for _________________ the smallest and largest male and female specimens, mean and Keywords: Taxonomy number of parts showed negative allometric growth (slope less than Morphology 1). Generally, the coefficient of determination R for MW, HL, HW, Sepia pharaonis FL, FW, FU.L, FU.W, AL and TL (0.9766, 0.9551, 0.9767, 0.9965, Suez Gulf 0.9453, 0.9779, 0.9712, 0.9580, 0.9685), respectively, were high for Red Sea most measurements. Egypt The present study reported some additional characters for this species that were not recorded before from other previous descriptions 1. INTRODUCTION Cephalopods are characterized by their activity, intelligent carnivorous creatures with highly advanced visual and nervous system (Boyle and Rodhouse, 2005) .They are soft- bodied bilaterally symmetrical animals with a well-developed head and body that consists of the muscular undivided mantle, mantle cavity houses the internal organs and also houses the external fins when present.
    [Show full text]
  • <I>Lolliguncula Brevis</I>
    OCCURRENCE OF THE SQUID, LOLLIGUNCULA BREVIS, IN SOME COASTAL WATERS OF WESTERN FLORIDN ALEXANDER DRAGOVICH Tropical Atlantic Biological Laboratory, Bureau of Commercial Fisheries, lVfiami AND JOHN A. KELLY, JR. Biological Laboratory, Bureau of Commercial Fisheries, St. Petersburg Beach, Florida ABSTRACT Lolliguncula brevis (Blainville) is the dominant cephalopod in the Tampa Bay and Charlotte Harbor-Pine Island Sound areas of west Florida. Distribution and seasonal occurrence of the species are discussed. The temperature and salinity ranges at which squid occurred were 12.6 to 31.6°C and 18.19 to 36.15%c. The majority of the squid collected were immature. This note presents information on the occurrence and distribution of squid in bays of the central west coast of Florida and adjacent neritic waters of the Gulf of Mexico. Published material pertaining to the systemat- ics and geographical distribution of cephalopods in the Gulf of Mexico is limited to the work of Voss (1950, 1954, 1955, 1956a, 1956b). Little is known about the distribution of squid in Florida estuaries and adjoining marine waters (Tabb & Manning, 1961; Dragovich & Kelly, 1963). In Florida, squid is used extensively as bait by commercial and sport fisher- men (Dragovich & Kelly, 1963), and small amounts are consumed by humans. Samples were collected from September, 1962, through December, 1962, with a ten-foot, shrimp try-net, and from January, 1963, through Decem- ber, 1964, with a 16-foot, semi-balloon trawl. Both nets had one-inch, stretch mesh. Most of the stations in Tampa Bay and the adjacent oceanic waters were sampled semimonthly during 1962, monthly during 1963, and in alternate months during 1964.
    [Show full text]
  • Husbandry Manual for BLUE-RINGED OCTOPUS Hapalochlaena Lunulata (Mollusca: Octopodidae)
    Husbandry Manual for BLUE-RINGED OCTOPUS Hapalochlaena lunulata (Mollusca: Octopodidae) Date By From Version 2005 Leanne Hayter Ultimo TAFE v 1 T A B L E O F C O N T E N T S 1 PREFACE ................................................................................................................................ 5 2 INTRODUCTION ...................................................................................................................... 6 2.1 CLASSIFICATION .............................................................................................................................. 8 2.2 GENERAL FEATURES ....................................................................................................................... 8 2.3 HISTORY IN CAPTIVITY ..................................................................................................................... 9 2.4 EDUCATION ..................................................................................................................................... 9 2.5 CONSERVATION & RESEARCH ........................................................................................................ 10 3 TAXONOMY ............................................................................................................................12 3.1 NOMENCLATURE ........................................................................................................................... 12 3.2 OTHER SPECIES ...........................................................................................................................
    [Show full text]
  • Vertical Distribution of Pelagic Cephalopods *
    * Vertical Distribution of Pelagic Cephalopods CLYDE F. E. ROPER and RICHARD E. YOUNG SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 209 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These pub- lications are distributed by mailing lists to libraries, laboratories, and other interested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available. S. DILLON RIPLEY Secretary Smithsonian Institution SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 209 Vertical Distribution of Pelagic Cephalopds Clyde F.
    [Show full text]
  • Is Sepiella Inermis ‘Spineless’?
    IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN:2278-3008, p-ISSN:2319-7676. Volume 12, Issue 5 Ver. IV (Sep. – Oct. 2017), PP 51-60 www.iosrjournals.org Is Sepiella inermis ‘Spineless’? 1 Visweswaran B * 1Department of Zoology, K.M. Centre for PG Studies (Autonomous), Lawspet Campus, Pondicherry University, Puducherry-605 008, India. *Corresponding Author: Visweswaran B Abstract: Many a report seemed to project at a noble notion of having identified some novel and bioactive compounds claimed to have been found from Sepiella inermis; but lagged to log their novelty scarcely defined due to certain technical blunders they seem to have coldly committed in such valuable pieces of aboriginal research works, reported to have sophistically been accomplished but unnoticed with considerable lack of significant finesse. They have dealt with finer biochemicals already been reported to have been available from S.inermis; yet, to one’s dismay, have failed to maintain certain conventional means meant for original research. This quality review discusses about the illogical math rooting toward and logical aftermath branching from especially certain spectral reports. Keywords: Sepiella inermis, ink, melanin, DOPA ----------------------------------------------------------------------------------------------------------------------------- ---------- Date of Submission: 16-09-2017 Date of acceptance: 28-09-2017 ----------------------------------------------------------------------------------------------------------------------------- ---------- I. Introduction Sepiella inermis is a demersally 1 bentho-nektonic 2, Molluscan, cephalopod ‗spineless‘ cuttlefish species, with invaluable juveniles 3, from the megametrical Indian coast 4-6, as incidental catches in shore seine 7 & 8, as egg clusters 9 from shallow waters 1 after monsoon at Vizhinjam coast 10 and Goa coast 11 of India and sundried, abundantly but rarely 8. II.
    [Show full text]
  • Three-Dimensional Structural Evolution of the Cuttlefish Sepia Officinalis Shell from Embryo to Adult
    Three-dimensional structural evolution of the cuttlefish Sepia officinalis shell from embryo to adult 6 stages Charles Le Pabic, Julien Derr, Gilles Luquet, Pascal-Jean Lopez, Laure Bonnaud-Ponticelli To cite this version: Charles Le Pabic, Julien Derr, Gilles Luquet, Pascal-Jean Lopez, Laure Bonnaud-Ponticelli. Three- dimensional structural evolution of the cuttlefish Sepia officinalis shell from embryo to adult6 stages. Journal of the Royal Society Interface, the Royal Society, 2019, 16 (158), pp.20190175. 10.1098/rsif.2019.0175. hal-02318453 HAL Id: hal-02318453 https://hal.archives-ouvertes.fr/hal-02318453 Submitted on 17 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 2 Article type: Full length article 3 4 5 Three-dimensional structural evolution of the cuttlefish Sepia officinalis shell from embryo to adult 6 stages. 7 8 9 Charles Le Pabica, Julien Derrb, Gilles Luqueta, Pascal-Jean Lopeza, Laure Bonnaud-Ponticellia* 10 11 a Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Muséum national d’Histoire 12 naturelle, UMR CNRS 7208, Université de Caen Normandie, Sorbonne Université, IRD 207, 13 Université des Antilles, 75005 Paris, France 14 b Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Diderot, UMR CNRS 7057, 15 75205 Paris Cedex 13, France 16 17 *Corresponding author.
    [Show full text]
  • The Biology and Ecology of the Common Cuttlefish (Sepia Officinalis)
    Supporting Sustainable Sepia Stocks Report 1: The biology and ecology of the common cuttlefish (Sepia officinalis) Daniel Davies Kathryn Nelson Sussex IFCA 2018 Contents Summary ................................................................................................................................................. 2 Acknowledgements ................................................................................................................................. 2 Introduction ............................................................................................................................................ 3 Biology ..................................................................................................................................................... 3 Physical description ............................................................................................................................ 3 Locomotion and respiration ................................................................................................................ 4 Vision ................................................................................................................................................... 4 Chromatophores ................................................................................................................................. 5 Colour patterns ................................................................................................................................... 5 Ink sac and funnel organ
    [Show full text]