(12) United States Patent (10) Patent No.: US 8,129,563 B2 Schmitt Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 8,129,563 B2 Schmitt Et Al USOO8129563B2 (12) United States Patent (10) Patent No.: US 8,129,563 B2 Schmitt et al. (45) Date of Patent: Mar. 6, 2012 (54) METHOD FOR SYNTHESIZING ALLYL (51) Int. Cl. METHACRYLATE C07C 67/02 (2006.01) C07C 69/52 (2006.01) (75) Inventors: Bardo Schmitt, Mainz-Kastel (DE); Guido Protzmann, Bensheim (DE); (52) U.S. Cl. ........................................ 560/217:560/225 Thorben Schuetz, Seeheim-Jugenheim (58) Field of Classification Search ........................ None (DE); Harald Trauthwein, Buerstadt See application file for complete search history. (DE); Reinhold Martin, Bad Koenig (DE); Joachim Knebel, (56) References Cited Alsbach-Haehnlein (DE); Ingo Sander, Min Hang District (CN); Klaus U.S. PATENT DOCUMENTS Gottmann, Heppenheim (DE); Thomas 4,202,990 A * 5/1980 Murakami et al. ............ 560,217 Kehr, Muehltal (DE); Dieter Bathen, 5,856,611 A * 1/1999 Schlaefer et al. ............. 585,520 Duisburg (DE); Christian Maul, 6,639,099 B1 10/2003 Knebel et al. Neustadt a.d.W. (DE) 2002/0123643 A1* 9, 2002 Paul .............................. 560,217 FOREIGN PATENT DOCUMENTS (73) Assignee: Evonik Roehm GmbH, Darmstadt (DE) EP 1 O78913 2, 2001 (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 130 days. U.S. Appl. No. 12/667,822, filed Jan. 5, 2010, Knebel, et al. U.S. Appl. No. 12/667,538, filed Jan. 4, 2010, Knebel, et al. (21) Appl. No.: 12/667,604 U.S. Appl. No. 12/667,599, filed Jan. 4, 2010, Protzmann, et al. (22) PCT Filed: May 8, 2008 * cited by examiner (86). PCT No.: PCT/EP2008/055669 Primary Examiner — Karl J. Puttlitz Spivak, S371 (c)(1), (74) Attorney, Agent, or Firm — Oblon, (2), (4) Date: Jan. 4, 2010 McClelland, Maier & Neustadt, L.L.P. (87) PCT Pub. No.: WO2009/003746 (57) ABSTRACT PCT Pub. Date: Jan. 8, 2009 The present invention relates to a process for preparing allyl methacrylate, comprising the reaction of allyl alcohol with an (65) Prior Publication Data ester of methacrylic acid, wherein the reaction is catalyzed by Zirconium acetylacetonate. The process according to the US 2010/O185OO9A1 Jul. 22, 2010 invention enables particularly favorable preparation of allyl (30) Foreign Application Priority Data methacrylate with a very high purity. Jul. 5, 2007 (DE) ......................... 10 2007 O31 468 26 Claims, No Drawings US 8,129,563 B2 1. 2 METHOD FOR SYNTHESIZING ALLYL Appropriate modifications to the processes according to the METHACRYLATE invention are protected in the dependent claims referring back to claim 1. The present invention relates to processes for preparing The present invention accordingly provides a process for allyl methacrylate. preparing allyl methacrylate, comprising the reaction of allyl Allyl methacrylate serves, interalia, as an intermediate for alcohol with an ester of methacrylic acid, wherein the reac preparing silyl-containing methacrylates. Accordingly, Vari tion is catalysed by Zirconium acetylacetonate. ous methods of obtaining this compound are known. These As a result, it is possible in an unforeseeable manner to include especially processes in which allyl alcohol is reacted provide a process for preparing allyl methacrylate in which with methacrylates, for example methyl methacrylate or ethyl 10 the product is obtained with a very high purity. Surprisingly, the product obtained contains only very Small amounts of methacrylate. To improve the yield and the selectivity of the allyl alcohol and/or water. reaction, different catalysts can be used. Furthermore, the process according to the invention For example, acids or bases can be used to catalyse the enables particularly selective preparation of allyl methacry transesterification. Such reactions are detailed, for example, 15 late. in CN 1410412 or DE 34.23 441. When these catalysts are Moreover, the process according to the invention can be used, however, side reactions have to be expected, for performed simply and inexpensively, while the product can example Michael addition, which reduces both the purity of be obtained in high yields and, viewed overall, with low the allyl methacrylate desired and the yield. energy consumption. Furthermore, the reaction can be per According to the publication.JP 11222461, the transesteri formed especially without nitrogen-containing polymeriza fication of methyl methacrylate with allyl alcohol can be tion inhibitors. catalysed by titanium alkoxides. In this case, nitrogen-con According to the invention, allyl methacrylate is prepared. taining polymerization inhibitors in particular are used, Allyl methacrylate (propenyl 2-methylpropenoate) has been which, though, are undesired in the allyl methacrylate. known for some time and has the CAS number 96-05-9. Moreover, publication JP-01-258642 describes the reac 25 To prepare allyl methacrylate, in accordance with the tion of methyl methacrylate with allyl alcohol in the presence invention, allyl alcohol (2-propen-1-ol) is used, which is of titanium alkoxides. In this case, oxygen-containing poly obtainable commercially, for example, from Lyondell. The merization inhibitors are used. CAS number of allyl alcohol is 107-18-6. Furthermore, publication DE 28 05 702 describes the According to the present invention, allyl alcohol is reacted preparation of esters of unsaturated carboxylic acids. To 30 with an ester of methacrylic acid. Particularly suitable meth catalyse the reactions described, it is possible in particular to acrylates are formed especially from alcohols having 1 to 4 use compounds which contain zirconium and/or calcium. The carbon atoms. These include especially methanol, ethanol, particularly suitable catalysts include especially Zirconium n-propanol, isopropanol, n-butanol and tert-butanol. Particu acetylacetonate. However, the preparation of allyl methacry lar preference is given to using especially ethyl methacrylate late is not described explicitly. The reactions lead to high 35 or methyl methacrylate, very particular preference being yields of approx. 98% based on the alcohol used. However, it given to methyl methacrylate. is evident from this that the product contains considerable The weight ratio of allyl alcohol to the ester of methacrylic amounts of by-products. acid is preferably in the range of 1:1.5 to 1:10, more prefer The preparation of silyl-containing methacrylates from ably 1:2.5 to 1:5 and most preferably in the range of 1:3 to 1:4. allyl alcohol requires a very high purity of the reactants, since 40 Too Small an ester excess can reduce the reaction rate; too impurities, for example allyl alcohol and water, can deacti great an ester excess is economically unviable, since it vate the Pt catalyst used for the synthesis of the silane meth reduces the utilizable tank volume. acrylate. Nitrogen-containing secondary components are dis According to the invention, Zirconium acetylacetonate is ruptive in the same way. Allyl methacrylate, which is sold used to catalyse the present transesterification. The CAS commercially as a reactant for these purposes, must therefore 45 number of zirconium acetylacetonate is 17501-44-9. The not contain more than 200 ppm of allyl alcohol, a minimum preparation of Zirconium acetylacetonate from acetylacetone content of allyl alcohol being desirable. In order to satisfy (pentane-2,4-dione) and Zirconium compounds is described, these requirements, the products obtained according to the for example, in Houben-Weyl, Methoden der organischen prior art must be purified in a complicated manner. Chemie Methods of Organic Chemistry, 4th Edition, Vol. In view of the prior art, it was an object of the present 50 VI/2, 1963, pages 53-55 and 58 to 61, and also in A. E. invention to provide a process for preparing allyl methacry Martell, M. Calvin, “Die Chemie der Metallchelatverbindun late, in which the product is obtained with a very high purity. gen” The chemistry of the metal-chelate compounds In particular, the allyl methacrylate obtained should contain (1958). Advantageously, it is possible to use 0.2 to 5 mmol. only very small amounts of allyl alcohol and/or water. more preferably 0.5 to 2 mmol, of zirconium acetylacetonate It was a further object of the invention to provide a process 55 per mole of allyl alcohol. The catalyst can also be prepared in in which allyl methacrylate can be obtained very selectively. situ, in which case the starting materials can be added before Furthermore, it was an object of the present invention to or during the transesterification of the reaction mixture. provide processes for preparing allyl methacrylate which can The reaction can be effected at elevated or reduced pres be performed simply and inexpensively. At the same time, the Sure. In a particularly appropriate modification of the present product should be obtained in maximum yields and, viewed 60 invention, the transesterification can be performed at a pres overall, with minimum energy consumption. Furthermore, sure in the range of 200 to 2000 mbar, more preferably in the the reaction should be performable especially without nitro range of 500 to 1300 mbar. gen-containing polymerization inhibitors. The reaction temperature may, especially depending on the These objects and further objects which are not stated pressure, likewise be within a wide range. In a preferred explicitly but which are immediately derivable or discernible 65 embodiment of the present invention, the reaction is effected from the connections discussed herein by way of introduction preferably at a temperature in the range of 80°C. to 120°
Recommended publications
  • Alcohols Combined 1405
    ALCOHOLS COMBINED 1405 Formulas: Table 1 MW: Table 1 CAS: Table 2 RTECS: Table 2 METHOD: 1405, Issue 1 EVALUATION: PARTIAL Issue 1: 15 March 2003 OSHA : Table 2 PROPERTIES: Table 1 NIOSH: Table 2 ACGIH: Table 2 COMPOUNDS: (1) n-butyl alcohol (4) n-propyl alcohol (7) cyclohexanol (2) sec-butyl alcohol (5) allyl alcohol (8) isoamyl alcohol (3) isobutyl alcohol (6) diacetone alcohol (9) methyl isobutyl carbinol SYNONYMS: See Table 3. SAMPLING MEASUREMENT SAMPLER: SOLID SORBENT TUBE TECHNIQUE: GAS CHROMATOGRAPHY, FID (Coconut shell charcoal, 100 mg/50 mg) ANALYTE: Compounds above FLOW RATE: 0.01 to 0.2 L/min DESORPTION: 1 mL 5% 2-propanol in CS2 Compounds: (1-3 ) (4-9) VOL-MIN: 2 L 1 L INJECTION -MAX: 10 L 10 L VOLUME: 1 µL SHIPMENT: Routine TEMPERATURE -INJECTION: 220 °C SAMPLE -DETECTOR: 250 - 300 °C STABILITY: See Evaluation of Method. -COLUMN: 35 °C (7 minutes), to 60 °C at 5 °C/minute, hold 5 minutes, up to BLANKS: 2 to 10 field blanks per set 120 °C at 10 °C /minute, hold 3 minutes. CARRIER GAS: He, 4 mL/min ACCURACY COLUMN: Capillary, fused silica, 30 m x 0.32-mm RANGE STUDIED: Not studied [1, 2]. ID; 0.5 µm film polyethylene glycol, DB- wax or equivalent BIAS: Not determined CALIBRATION: Solutions of analyte in eluent (internal OVERALL standard optional) PRECISION (Ö ): Not determined rT RANGE: See EVALUATION OF METHOD. ACCURACY: Not determined ESTIMATED LOD: 1 µg each analyte per sample PRECISION: See EVALUATION OF METHOD. APPLICABILITY: This method may be used to determine two or more of the specified analytes simultaneously.
    [Show full text]
  • Chapter 13.Pptx
    Chapter 13: Alcohols and Phenols 13.1 Structure and Properties of Alcohols C C Alkanes Carbon - Carbon Multiple Bonds Carbon-heteroatom single bonds basic O C C C N C N C X O nitro alkane X= F, Cl, Br, I amines Alkenes Alkyl Halide Chapter 23 OH C C H O C O C C O C C Alkynes phenol alcohols ethers epoxide acidic Chapter 14 H H H C S C C C C S S C C S C C H C C sulfides thiols disulfide H H (thioethers) Arenes 253 Nomenclature of alcohols 1. In general, alcohols are named in the same manner as alkanes; replace the -ane suffix for alkanes with an -ol for alcohols CH3CH2CH2CH3 CH3CH2CH2CH2OH OH butane 1-butanol 2-butanol butan-1-ol butan-2-ol 2. Number the carbon chain so that the hydroxyl group gets the lowest number 3. Number the substituents and write the name listing the substituents in alphabetical order. Many alcohols are named using non-systematic nomenclature H C OH 3 OH OH C OH OH HO OH H3C HO H3C benzyl alcohol allyl alcohol tert-butyl alcohol ethylene glycol glycerol (phenylmethanol) (2-propen-1-ol) (2-methyl-2-propanol) (1,2-ethanediol) (1,2,3-propanetriol) 254 127 Alcohols are classified according to the H R C OH C OH H H degree of substitution of the carbon bearing H H 1° carbon the -OH group methanol primary alcohol primary (1°) : one alkyl substituent R R C OH C OH R R secondary (2°) : two alkyl substituents H R 2° carbon 3° carbon tertiary (3°) : three alkyl substituents secondary alcohol tertiary alcohol Physical properties of alcohols – the C-OH bond of alcohols has a significant dipole moment.
    [Show full text]
  • A New Approach to Prepare Polyethylene Glycol Allyl Glycidyl Ether
    E3S Web of Conferences 267, 02004 (2021) https://doi.org/10.1051/e3sconf/202126702004 ICESCE 2021 A new approach to prepare Polyethylene Glycol Allyl Glycidyl Ether Huizhen Wang1*, Ruiyang Xie1, Mingjun Chen1*, Weihao Deng1, Kaixin Zhang2, Jiaqin Liu1 1School of Science, Xihua University, Chengdu 610039, China; 2Chengdu Jingyiqiang Environmental Protection Technology Co., Ltd. Abstract. The polyethylene glycol allyl glycidyl ether (PGAGE) is an important intermediate for preparing silicone softener that can be synthesized from allyl alcohol polyoxyethylene ether and epichlorohydrin (ECH). The performance parameters including the concentration of ECH, initial boron trifluoride diethyl etherate (BFEE) as well as CaCl2 quality were investigated respectively. The optimum process parameters which can get high capping and low by-product rate are as follows: the ECH concentration is 2.0 M, the initial BFEE concentration is 1.65mM, and the CaCl2 dosage is 1.65g/L. Under these conditions, the maximal yield can be improved to 91.36%, the percent of capping rate is higher than 98.16%, the residual concentration of F- is only 0.63 mg/L. concentrated basic solution, in which the total yield was between 90%~91% by Matsuoka et al. [10] also use the 1 Introduction two-step reaction to synthesize AGE based on the reaction Polyethylene glycol allyl glycidyl ether (PGAGE) and the of allyl alcohol with ECH using BFEE as the catalyst. allyl polyoxyethylene ether (APEG), tethering with both Their results demonstrated that the yield reaches 82% alkene and epoxy groups, are widely used as fabric under the following condition: n (ECH) : n (allyl alcohol): finishing agent [1-2] , reactive diluent [3] , cross-linking (catalysis) = 1: (1~3) : (0.01~0.002).
    [Show full text]
  • Title Selective Reduction of Acrolein to Allyl Alcohol by a Vapor Phase
    Selective Reduction of Acrolein to Allyl Alcohol by a Vapor Title Phase Hydrogen Transfer Reaction Author(s) Kunichika, Sango; Oka, Shinzaburo; Sakai, Mutsuji Bulletin of the Institute for Chemical Research, Kyoto Citation University (1966), 44(3): 215-220 Issue Date 1966-10-31 URL http://hdl.handle.net/2433/76125 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Selective Reduction of Acrolein to Allyl Alcohol by a Vapor Phase Hydrogen Transfer Reaction Sango KUNICHIKA,Shinzaburo OKA and Mutsuji SAKAI* (KunichikaLaboratory) (ReceivedJune 15, 1966) Selectivereduction of acroleinto ally! alcoholhas been achievedby a vapor phase hydrogen transferreaction using isopropyl alcohol as a hydrogendonor. It was foundthat the preferredcatalyst was 50 weight% zinc oxide-magnesiumoxide catalyst prepared by calcininga mixtureof zincnitrate and magnesiumoxide at 500°C. The optimumconditions were found to be as follows;reaction tem- perature,near 200°C,total feed rate, 45 moles/1.of catalyst/hr.,feed ratio of isopropylalcohol per acrolein,10 moles. Under theseconditions, the yieldsof allyl alcoholof 80-65% at 80-90% conversion of acroleinwere obtained. INTRODUCTION Acrolein has two reactive functional groups, one is carbonyl group and the other is carbon-carbon double bond. Selective reduction of acrolein to allyl alcohol has been studied by several investigators. The reaction was generally carried out by the following two methods: (1) the Meerwein-Ponndorf-Verley reduction1-3), (2) vapor phase hydrogen transfer reaction with various metal oxide catalysts using an alcohol as a hydrogen donor4-11> The liquid phase reaction has some technical difficulties owing to the polymeri- zation of acrolein especially at high conversion. Therefore, in the present work, the more promising vapor phase reaction has been studied to find an effective catalyst and favorable reaction conditions.
    [Show full text]
  • Conversion of Glycerol Into Allyl Alcohol Over Potassium-Supported Zirconia-Iron Oxide Catalyst
    Title Conversion of glycerol into allyl alcohol over potassium-supported zirconia-iron oxide catalyst Author(s) Konaka, Aya; Tago, Teruoki; Yoshikawa, Takuya; Nakamura, Ayaka; Masuda, Takao Applied catalysis b-environmental, 146, 267-273 Citation https://doi.org/10.1016/j.apcatb.2013.03.007 Issue Date 2014-03 Doc URL http://hdl.handle.net/2115/54715 Type article (author version) File Information Manuscript_Glycerol to Allyl Alcohol .pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Conversion of Glycerol into Allyl Alcohol over Potassium-Supported Zirconia-Iron Oxide Catalyst Aya Konaka, Teruoki Tago*, Takuya Yoshikawa, Ayaka Nakamura, and Takao Masuda Research Group of Chemical Engineering, Division of Chemical Process Engineering, Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, Hokkaido, Japan 060-8628 * Corresponding author should be addressed E-mail: [email protected] Tel: +81-11-706-6551 Fax: +81-11-706-6552 1 Abstract The catalytic conversion of glycerol was performed with iron oxide-based catalysts for production of allyl alcohol using a fixed-bed flow reactor at 623 K under atmospheric pressure. The glycerol dehydration proceeds on acid sites of catalysts while the allyl alcohol production is assumed to be catalyzed by non-acidic sites of catalysts through a hydrogen transfer mechanism. Different alkali metals, including Na, K, Rb, and Cs were supported on ZrO2-FeOX and all of them gave impressively higher allyl alcohol yield and suppressed glycerol dehydration due to the reduced catalyst acidic property. K-supported ZrO2-FeOX (K/ZrO2-FeOX) was chosen for further studies, and allyl alcohol yield remarkably increased up to 27 mol%-C at the K content of 3-5 mol%.
    [Show full text]
  • United States Patent (19) (11) Patent Number: 4,968,451 Scheibel Et Al
    United States Patent (19) (11) Patent Number: 4,968,451 Scheibel et al. 45) Date of Patent: Nov. 6, 1990 (54) SOIL RELEASE AGENTS HAVING ALLYL-DERVED SULFONATED END CAPS FOREIGN PATENT DOCUMENTS 155710 9/1985 European Pat. Off. (75) Inventors: Jeffrey J. Scheibel; Eugene P. 180356 5/1986 European Pat. Off. Gosselink, both of Cincinnati, Ohio 1475798 6/1977 United Kingdom . (73) Assignee: The Procter & Gamble Company, OTHER PUBLICATIONS Cincinnati, Ohio S. C. Bright, C. E. Stubbs and L. Thompson, J. Appl. (21) Appl. No.: 474,709 Chem. Biotechnol, 1975, vol. 25, pp. 901-912. 22) Filed: Jan. 29, 1990 Norton et al., J. Org. Chem, vol. 33, No. 11, pp. 4158-4165 (1967). Related U.S. Application Data Primary Examiner-A. Lionel Clingman (63) Continuation of Ser. No. 237,598, Aug. 26, 1988, aban Attorney, Agent, or Firm-Leonard W. Lewis; Jerry J. doned. Yetter (51 Int, C. .................... CO7C 309/05; C08G 63/68; 57 ABSTRACT C11D 3/37 (52) U.S. C. ............................... 252/549; 252/174.19; The present invention relates to novel soil release 252/539; 252/558; 252/DIG. 15 agents, which are particular sulfonated linear tere (58) Field of Search ......................................... 252/549 phthalate ester oligomers (S.T.E. oligomers). The S.T.E. oligomers are especially suitable for formulation (56 References Cited into laundry products such as laundry detergents or U.S. PATENT DOCUMENTS fabric conditioners. Thus formulated, they provide ef. 3,821,169 6/1974 Duddey et al. ..................... 528/293 fective soil release treatments for fabrics laundered in 4,156,073 5/1979 Login .............
    [Show full text]
  • Selective Liquid-Phase Oxidation of Allyl Alcohol to Glycidol Over MWW Type Titanosilicalite
    Reac Kinet Mech Cat (2011) 103:451–462 DOI 10.1007/s11144-011-0312-5 Selective liquid-phase oxidation of allyl alcohol to glycidol over MWW type titanosilicalite Anna Fajdek • Agnieszka Wro´blewska • Eugeniusz Milchert Received: 4 February 2011 / Accepted: 23 March 2011 / Published online: 7 April 2011 Ó The Author(s) 2011. This article is published with open access at Springerlink.com Abstract The results of the epoxidation of allyl alcohol with 30% hydrogen peroxide over the Ti-MWW catalyst have been presented. The studies were carried out under atmospheric pressure and in the presence of methanol as a solvent. The influence of the following technological parameters on the course of epoxidation was examined: temperature (20–60 °C), the molar ratio of AA/H2O2 (1:1–5:1), methanol concentration (5–90 wt%), catalyst content (0–5.0 wt%), reaction time (5–300 min) and intensity of stirring (0–500 rpm). Keywords Glycidol Á Ti-MWW catalyst Á Liquid-phase epoxidation Á Hydrogen peroxide Introduction Zeolites are crystalline aluminosilicates with 133 known frameworks. Their pores are highly monodisperse and have a fixed directionality within the crystal. The pores in these systems often have a character of cages and connection tubes. The uniformity of the channels in the zeolitic system means that they are extremely selective adsorbents for small molecules of particular geometries and sizes and so make highly selective catalytic supports and adsorbents. Due to the pore sizes comparable to the molecular dimensions, zeolites are also called molecular sieves [1]. MWW (MCM-22) is a molecular sieve which crystallizes as thin sheets or plates and has a unique and unusual crystal structure.
    [Show full text]
  • Estimation of the Allyl Group in Starch Derivatives
    Estimation of the allyl group in starch derivatives K. TIHLÁRIK, V. KÉRY, and M. PAŠTEKA Institute of Chemistry, Centre for Chemical Research, Slovak Academy of Sciences, CS-84238 Bratislava Received 7 June 1988 For estimation of the allyl groups in allylstarch a method which involves addition of mercury (II) acetate to double bonds and the subsequent acid- imetric titration has been applied. The method was verified by the allyl alcohol estimation and the results obtained in the estimation of two allyl­ starch samples were compared with the values of elemental analyses and with the degree of substitution values calculated from these analyses. There was a good agreement between both approaches. The method is especially suitable for the derivatives with low degree of substitution. The results have been evaluated statistically. Для определения аллильных групп в аллилкрахмале был применен метод присоединения уксуснокислой ртути по двойным связям с по­ следующим ацидиметрическим титрованием. Метод был проверен путем определения количества аллилового спирта, и результаты, полу­ ченные при анализе двух образцов аллилкрахмала, были сопоставлены с результатами элементарного анализа этих образцов и с величинами степени замещения, рассчитанными исходя из результатов элементар­ ного анализа. Было обнаружено хорошее совпадение. Данный метод особенно пригоден для производных с низкой степенью замещения. Полученные результаты были статистически обработаны. Estimation of the double bonds is of importance in the products of petrol and food industries, in pharmacy, and is also important in polysaccharide deriva­ tives, e.g. in allylcellulose and allylstarch. The latter derivatives are applied not only for technical purposes but serve as intermediates, mainly in the controlled polymerization, for the production of mixed polymers for special purposes.
    [Show full text]
  • Allyl Alcohol Product Safety Bulletin
    Allyl Alcohol Product Safety Bulletin lyondellbasell.com Foreword Lyondell Chemical Company and Lyondell Chemie Nederland Telephone numbers for transport emergencies: BV (“Lyondell”), LyondellBasell companies, are dedicated to continuous improvement in product, health, safety and environmental CHEMTREC 1-800-424-9300 performance. Included in this effort is a commitment to support our International (call collect) 202-483-7616 customers by providing guidance and information on the safe use of our products. For Lyondell, environmentally sound operations, like CANUTEC (in Canada) 1-613-996-6666 environmentally sound products, make good business sense. SETIQ (in the Mexican Republic) 01-800-00-214-00 Lyondell Product Safety Bulletins are prepared by our Product (Calls originating in Mexico City or the Metropolitan Area) +5-559-1588 Stewardship Team. The data reflect the best information available (Calls originating elsewhere) +52-555-559-1588 from public and industry sources. This document is provided to support the safe handling, use, storage, transportation and ultimate LyondellBasell TDI disposal of our chemical products. (Transportation Distribution Incident) This Product Safety Bulletin should be evaluated to determine reporting Hotline applicability of your specific requirements. The government regulations, industry standards cited in this bulletin are primarily 1-800-245-4532 (North America) applicable within the United States. Please make sure you review +32-3-575-1235 (Europe) the corresponding government regulations, industry standards and guidelines for your specific country or region as that might have an Contact information for additional product impact on your operations. information: Lyondell’s ready to support our customers’ safe use of our products. LyondellBasell Customer Service For additional information and assistance, please contact your +1-888-777-0232 (North America) Lyondell customer representative.
    [Show full text]
  • Dissociation Constants of Organic Acids and Bases
    DISSOCIATION CONSTANTS OF ORGANIC ACIDS AND BASES This table lists the dissociation (ionization) constants of over pKa + pKb = pKwater = 14.00 (at 25°C) 1070 organic acids, bases, and amphoteric compounds. All data apply to dilute aqueous solutions and are presented as values of Compounds are listed by molecular formula in Hill order. pKa, which is defined as the negative of the logarithm of the equi- librium constant K for the reaction a References HA H+ + A- 1. Perrin, D. D., Dissociation Constants of Organic Bases in Aqueous i.e., Solution, Butterworths, London, 1965; Supplement, 1972. 2. Serjeant, E. P., and Dempsey, B., Ionization Constants of Organic Acids + - Ka = [H ][A ]/[HA] in Aqueous Solution, Pergamon, Oxford, 1979. 3. Albert, A., “Ionization Constants of Heterocyclic Substances”, in where [H+], etc. represent the concentrations of the respective Katritzky, A. R., Ed., Physical Methods in Heterocyclic Chemistry, - species in mol/L. It follows that pKa = pH + log[HA] – log[A ], so Academic Press, New York, 1963. 4. Sober, H.A., Ed., CRC Handbook of Biochemistry, CRC Press, Boca that a solution with 50% dissociation has pH equal to the pKa of the acid. Raton, FL, 1968. 5. Perrin, D. D., Dempsey, B., and Serjeant, E. P., pK Prediction for Data for bases are presented as pK values for the conjugate acid, a a Organic Acids and Bases, Chapman and Hall, London, 1981. i.e., for the reaction 6. Albert, A., and Serjeant, E. P., The Determination of Ionization + + Constants, Third Edition, Chapman and Hall, London, 1984. BH H + B 7. Budavari, S., Ed., The Merck Index, Twelth Edition, Merck & Co., Whitehouse Station, NJ, 1996.
    [Show full text]
  • Chemical Compatibility Chart
    Chemical Compatibility Chart 1 Inorganic Acids 1 2 Organic acids X 2 3 Caustics X X 3 4 Amines & Alkanolamines X X 4 5 Halogenated Compounds X X X 5 6 Alcohols, Glycols & Glycol Ethers X 6 7 Aldehydes X X X X X 7 8 Ketone X X X X 8 9 Saturated Hydrocarbons 9 10 Aromatic Hydrocarbons X 10 11 Olefins X X 11 12 Petrolum Oils 12 13 Esters X X X 13 14 Monomers & Polymerizable Esters X X X X X X 14 15 Phenols X X X X 15 16 Alkylene Oxides X X X X X X X X 16 17 Cyanohydrins X X X X X X X 17 18 Nitriles X X X X X 18 19 Ammonia X X X X X X X X X 19 20 Halogens X X X X X X X X X X X X 20 21 Ethers X X X 21 22 Phosphorus, Elemental X X X X 22 23 Sulfur, Molten X X X X X X 23 24 Acid Anhydrides X X X X X X X X X X 24 X Represents Unsafe Combinations Represents Safe Combinations Group 1: Inorganic Acids Dichloropropane Chlorosulfonic acid Dichloropropene Hydrochloric acid (aqueous) Ethyl chloride Hydrofluoric acid (aqueous) Ethylene dibromide Hydrogen chloride (anhydrous) Ethylene dichloride Hydrogen fluoride (anhydrous) Methyl bromide Nitric acid Methyl chloride Oleum Methylene chloride Phosphoric acid Monochlorodifluoromethane Sulfuric acid Perchloroethylene Propylene dichloride Group 2: Organic Acids 1,2,4-Trichlorobenzene Acetic acid 1,1,1-Trichloroethane Butyric acid (n-) Trichloroethylene Formic acid Trichlorofluoromethane Propionic acid Rosin Oil Group 6: Alcohols, Glycols and Glycol Ethers Tall oil Allyl alcohol Amyl alcohol Group 3: Caustics 1,4-Butanediol Caustic potash solution Butyl alcohol (iso, n, sec, tert) Caustic soda solution Butylene
    [Show full text]
  • United States Patent to (Ii) Patent Number: 4,956,076 Awbrey (45) Date of Patent: Sep
    United States Patent to (ii) Patent Number: 4,956,076 Awbrey (45) Date of Patent: Sep. 11, 1990 (54) METHOD OF SCAVENGING HYDROGEN 2,993,862 7/1961 Monroe et al. ..................... 252/396 2,993,863 7/1961 Monroe et al. ...... ... 252/396 HALIDES FROM LIQUID 3,310,497 3/1964 Hudson et al. .. ... 252/396 HYDROCARBONACEOUSMEDIUMS 3,375,460 5/1965 Barbie ......... 208/262.1 75 Inventor: Spencer S. Awbrey, Spring, Tex. 3,400,171 9/1968 Van Pool ......................... 208/262.1 3,403,198 9/1968 Van Pool ......................... 208/262.1 (73) Assignee: Betz Laboratories, Inc., Trevose, Pa. 3,413,237 11/1968 Foroulis .............................. 252/.393 9/1973 Sun et al. .... 208/262.1 3,761,534 21 Appl. No.: 414,049 3,779,905 12/1973 Stedman ............................... 208/47 (22 Filed: Sep. 28, 1989 4,430,196 2/1984 Niu ........................................ 208/47 (51) Int. Cl................................................. C10G 7/10 Primary Examiner-Helane E. Myers (52) U.S.C. .................................... 208/291; 208/474; Attorney, Agent, or Firm-Alexander D. Ricci; Bruce E. 208/262.1; 208/262.5; 585/950; 585/864; Peacock 252/346; 210/109; 210/705; 210/723; 210/729 ABSTRACT (58 Field of Search ............... 585/950; 208/47, 262.1, 57 208/291,47; 252/396; 210/705, 723, 729 Methods of scavenging hydrogen halide species from hydrocarbon liquids are disclosed. Preferred scavengers (56) References Cited includes allyl alcohol, benzyl alcohol and tertiary alco U.S. PATENT DOCUMENTS hols such as tert-butyl alcohol. 2,415,161 2/1947 Camp .................................... 208/47 2,603,622 7/1952 Berger et al.
    [Show full text]