On Proof Interpretations and

On Proof Interpretations and Linear Logic

Paulo Oliva

Queen Mary, University of London, UK ([email protected])

Heyting Day Utrecht, 27 February 2015

To Anne Troelstra and Dick de Jongh 6

??

- !A ... - !A

- ω ILLp ILLp

ILLp = Intuit. predicate linear logic (!-free)

On Proof Interpretations and Linear Logic

Overview

- ω IL ... - IL interpretations

IL = Intuitionistic predicate logic 6

??

- !A ... - !A

On Proof Interpretations and Linear Logic

Overview

- ω IL ... - IL interpretations

- ω ILLp ILLp

IL = Intuitionistic predicate logic

ILLp = Intuit. predicate linear logic (!-free) ??

- !A ... - !A

On Proof Interpretations and Linear Logic

Overview

- ω IL ... - IL interpretations 6

- ω ILLp ILLp

IL = Intuitionistic predicate logic

ILLp = Intuit. predicate linear logic (!-free) - !A ... - !A

On Proof Interpretations and Linear Logic

Overview

- ω IL ... - IL interpretations 6

?? - ω ILLp ILLp

IL = Intuitionistic predicate logic

ILLp = Intuit. predicate linear logic (!-free) On Proof Interpretations and Linear Logic

Overview

- ω IL ... - IL interpretations 6

?? - ω ILLp ILLp - !A ... - !A

IL = Intuitionistic predicate logic

ILLp = Intuit. predicate linear logic (!-free) On Proof Interpretations and Linear Logic

Outline

1 Proof Interpretations

2 Linear Logic

3 Unified Interpretation of Linear Logic On Proof Interpretations and Linear Logic Proof Interpretations

Outline

1 Proof Interpretations

2 Linear Logic

3 Unified Interpretation of Linear Logic E.g. the set of prime numbers is infinite The book “Proofs from THE BOOK” contains six beautiful proofs of this Non-theorems map to the empty set E.g. the set of even numbers is finite Need to fix the formal system

On Proof Interpretations and Linear Logic Proof Interpretations

Formulas as Sets of Proofs

Formulas as set of proofs A 7→ {π : π ` A} The book “Proofs from THE BOOK” contains six beautiful proofs of this Non-theorems map to the empty set E.g. the set of even numbers is finite Need to fix the formal system

On Proof Interpretations and Linear Logic Proof Interpretations

Formulas as Sets of Proofs

Formulas as set of proofs A 7→ {π : π ` A} E.g. the set of prime numbers is infinite Non-theorems map to the empty set E.g. the set of even numbers is finite Need to fix the formal system

On Proof Interpretations and Linear Logic Proof Interpretations

Formulas as Sets of Proofs

Formulas as set of proofs A 7→ {π : π ` A} E.g. the set of prime numbers is infinite The book “Proofs from THE BOOK” contains six beautiful proofs of this Need to fix the formal system

On Proof Interpretations and Linear Logic Proof Interpretations

Formulas as Sets of Proofs

Formulas as set of proofs A 7→ {π : π ` A} E.g. the set of prime numbers is infinite The book “Proofs from THE BOOK” contains six beautiful proofs of this Non-theorems map to the empty set E.g. the set of even numbers is finite On Proof Interpretations and Linear Logic Proof Interpretations

Formulas as Sets of Proofs

Formulas as set of proofs A 7→ {π : π ` A} E.g. the set of prime numbers is infinite The book “Proofs from THE BOOK” contains six beautiful proofs of this Non-theorems map to the empty set E.g. the set of even numbers is finite Need to fix the formal system E.g. the set of prime numbers is infinite Specifies a program that on input n: N outputs a prime number p ≥ n and a certificate that p is prime

If A is provable then the set should be non-empty Non-theorems map to un-implementable specifications Need to fix formal system and programming language

On Proof Interpretations and Linear Logic Proof Interpretations

Formulas as Sets of Programs

Brouwer-Heyting-Kolmogorov Interpretation Formulas as specifications (set of programs) A 7→ {p : p satisfies A} If A is provable then the set should be non-empty Non-theorems map to un-implementable specifications Need to fix formal system and programming language

On Proof Interpretations and Linear Logic Proof Interpretations

Formulas as Sets of Programs

Brouwer-Heyting-Kolmogorov Interpretation Formulas as specifications (set of programs) A 7→ {p : p satisfies A} E.g. the set of prime numbers is infinite Specifies a program that on input n: N outputs a prime number p ≥ n and a certificate that p is prime Non-theorems map to un-implementable specifications Need to fix formal system and programming language

On Proof Interpretations and Linear Logic Proof Interpretations

Formulas as Sets of Programs

Brouwer-Heyting-Kolmogorov Interpretation Formulas as specifications (set of programs) A 7→ {p : p satisfies A} E.g. the set of prime numbers is infinite Specifies a program that on input n: N outputs a prime number p ≥ n and a certificate that p is prime

If A is provable then the set should be non-empty Need to fix formal system and programming language

On Proof Interpretations and Linear Logic Proof Interpretations

Formulas as Sets of Programs

Brouwer-Heyting-Kolmogorov Interpretation Formulas as specifications (set of programs) A 7→ {p : p satisfies A} E.g. the set of prime numbers is infinite Specifies a program that on input n: N outputs a prime number p ≥ n and a certificate that p is prime

If A is provable then the set should be non-empty Non-theorems map to un-implementable specifications On Proof Interpretations and Linear Logic Proof Interpretations

Formulas as Sets of Programs

Brouwer-Heyting-Kolmogorov Interpretation Formulas as specifications (set of programs) A 7→ {p : p satisfies A} E.g. the set of prime numbers is infinite Specifies a program that on input n: N outputs a prime number p ≥ n and a certificate that p is prime

If A is provable then the set should be non-empty Non-theorems map to un-implementable specifications Need to fix formal system and programming language Extension 1: Heyting arith. + G¨odelprimitive rec. Extension 2: Classical logic + Continuation operator ¬A A ¬A · · · · · · · · · ⊥ B B A B

On Proof Interpretations and Linear Logic Proof Interpretations

Formulas as Types

Curry-Howard Correspondence Minimal Logic + Simply-typed λ-calculus

π `ML A ⇔ tπ : A Extension 2: Classical logic + Continuation operator ¬A A ¬A · · · · · · · · · ⊥ B B A B

On Proof Interpretations and Linear Logic Proof Interpretations

Formulas as Types

Curry-Howard Correspondence Minimal Logic + Simply-typed λ-calculus

π `ML A ⇔ tπ : A Extension 1: Heyting arith. + G¨odelprimitive rec. On Proof Interpretations and Linear Logic Proof Interpretations

Formulas as Types

Curry-Howard Correspondence Minimal Logic + Simply-typed λ-calculus

π `ML A ⇔ tπ : A Extension 1: Heyting arith. + G¨odelprimitive rec. Extension 2: Classical logic + Continuation operator ¬A A ¬A · · · · · · · · · ⊥ B B A B ∀x∃y(y > x) {f : fx > x}

Proof π ⇒ Functional fπ ∈ |A|

... λx.x + 1

S1 `π A ⇒ S2 ` fπ ∈ |A|

On Proof Interpretations and Linear Logic Proof Interpretations

Functional Interpretations

Formula A ⇒ Set of functionals |A| ∀x∃y(y > x) {f : fx > x}

... λx.x + 1

S1 `π A ⇒ S2 ` fπ ∈ |A|

On Proof Interpretations and Linear Logic Proof Interpretations

Functional Interpretations

Formula A ⇒ Set of functionals |A|

Proof π ⇒ Functional fπ ∈ |A| ∀x∃y(y > x) {f : fx > x}

... λx.x + 1

On Proof Interpretations and Linear Logic Proof Interpretations

Functional Interpretations

Formula A ⇒ Set of functionals |A|

Proof π ⇒ Functional fπ ∈ |A|

S1 `π A ⇒ S2 ` fπ ∈ |A| ... λx.x + 1

On Proof Interpretations and Linear Logic Proof Interpretations

Functional Interpretations

Formula A ⇒ Set of functionals |A|

∀x∃y(y > x) {f : fx > x}

Proof π ⇒ Functional fπ ∈ |A|

S1 `π A ⇒ S2 ` fπ ∈ |A| On Proof Interpretations and Linear Logic Proof Interpretations

Functional Interpretations

Formula A ⇒ Set of functionals |A|

∀x∃y(y > x) {f : fx > x}

Proof π ⇒ Functional fπ ∈ |A|

... λx.x + 1

S1 `π A ⇒ S2 ` fπ ∈ |A| ( |P | set of non-computable functionals HA ` P ⇒ HAω ` ∃f(f ∈ |P |)

( Falsity interpreted as empty set (| ⊥ | ≡ ∅) PA `⊥ ⇒ T ` ∃f(f ∈ ∅)

Modified realizability (Kreisel 1959) Independence results for Heyting arithmetic HA

On Proof Interpretations and Linear Logic Proof Interpretations

Functional Interpretations

Dialectica (G¨odel1958) Relative consistency of Peano arithmetic PA ( |P | set of non-computable functionals HA ` P ⇒ HAω ` ∃f(f ∈ |P |)

Modified realizability (Kreisel 1959) Independence results for Heyting arithmetic HA

On Proof Interpretations and Linear Logic Proof Interpretations

Functional Interpretations

Dialectica (G¨odel1958) Relative consistency of Peano arithmetic PA ( Falsity interpreted as empty set (| ⊥ | ≡ ∅) PA `⊥ ⇒ T ` ∃f(f ∈ ∅) ( |P | set of non-computable functionals HA ` P ⇒ HAω ` ∃f(f ∈ |P |)

On Proof Interpretations and Linear Logic Proof Interpretations

Functional Interpretations

Dialectica (G¨odel1958) Relative consistency of Peano arithmetic PA ( Falsity interpreted as empty set (| ⊥ | ≡ ∅) PA `⊥ ⇒ T ` ∃f(f ∈ ∅)

Modified realizability (Kreisel 1959) Independence results for Heyting arithmetic HA On Proof Interpretations and Linear Logic Proof Interpretations

Functional Interpretations

Dialectica (G¨odel1958) Relative consistency of Peano arithmetic PA ( Falsity interpreted as empty set (| ⊥ | ≡ ∅) PA `⊥ ⇒ T ` ∃f(f ∈ ∅)

Modified realizability (Kreisel 1959) Independence results for Heyting arithmetic HA ( |P | set of non-computable functionals HA ` P ⇒ HAω ` ∃f(f ∈ |P |) Conservation results S + P ` A ⇒ S ` A Proof mining

S + A ` B ⇒ S + Aw ` Bs Build models M |= S

On Proof Interpretations and Linear Logic Proof Interpretations

Functional Interpretations

Relative consistence S `⊥ ⇒ T `⊥ Independence results S 6` P Proof mining

S + A ` B ⇒ S + Aw ` Bs Build models M |= S

On Proof Interpretations and Linear Logic Proof Interpretations

Functional Interpretations

Relative consistence S `⊥ ⇒ T `⊥ Independence results S 6` P Conservation results S + P ` A ⇒ S ` A Build models M |= S

On Proof Interpretations and Linear Logic Proof Interpretations

Functional Interpretations

Relative consistence S `⊥ ⇒ T `⊥ Independence results S 6` P Conservation results S + P ` A ⇒ S ` A Proof mining

S + A ` B ⇒ S + Aw ` Bs On Proof Interpretations and Linear Logic Proof Interpretations

Functional Interpretations

Relative consistence S `⊥ ⇒ T `⊥ Independence results S 6` P Conservation results S + P ` A ⇒ S ` A Proof mining

S + A ` B ⇒ S + Aw ` Bs Build models M |= S q-realizability (Kleene 1969 / Troelstra 1971) t qr (A → B) ≡ ∀x((x qr A) ∧ A → tx qr B) Related to Kleene’s slash translation (1962) Realizability with truth (Smorynski / Troelstra 1998) t rt (A → B) ≡ ∀x(x rt A → tx rt B) ∧ (A → B) Related to Aczel’s slash translation (1968)

On Proof Interpretations and Linear Logic Proof Interpretations

Other Interpretations

Diller-Nahm (1974) Decidability of prime formulas not required Realizability with truth (Smorynski / Troelstra 1998) t rt (A → B) ≡ ∀x(x rt A → tx rt B) ∧ (A → B) Related to Aczel’s slash translation (1968)

On Proof Interpretations and Linear Logic Proof Interpretations

Other Interpretations

Diller-Nahm (1974) Decidability of prime formulas not required q-realizability (Kleene 1969 / Troelstra 1971) t qr (A → B) ≡ ∀x((x qr A) ∧ A → tx qr B) Related to Kleene’s slash translation (1962) On Proof Interpretations and Linear Logic Proof Interpretations

Other Interpretations

Diller-Nahm (1974) Decidability of prime formulas not required q-realizability (Kleene 1969 / Troelstra 1971) t qr (A → B) ≡ ∀x((x qr A) ∧ A → tx qr B) Related to Kleene’s slash translation (1962) Realizability with truth (Smorynski / Troelstra 1998) t rt (A → B) ≡ ∀x(x rt A → tx rt B) ∧ (A → B) Related to Aczel’s slash translation (1968) On Proof Interpretations and Linear Logic Proof Interpretations

Troelstra on Proof Interpretations

(1971) A. S. Troelstra. Notions of realizability for intuitionistic analysis 2nd Scandinavian Logic Symposium, pp. 369 – 405 (1973) A. S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis Lecture Notes in Mathematics 344 (1988) A. S. Troelstra and D. van Dalen. Constructivism in Mathematics North-Holland, Amsterdam. Two volumes (1998) A. S. Troelstra. Realizability Handbook of Proof Theory, pages 408–473 On Proof Interpretations and Linear Logic Linear Logic

Outline

1 Proof Interpretations

2 Linear Logic

3 Unified Interpretation of Linear Logic Refinement of intuitionistic implication A → B ≡ !A ( B Refinement of logical connectives conjunction disjunction

additive u t multiplicative ? +

On Proof Interpretations and Linear Logic Linear Logic

Linear Logic (Girard 1987) Explicit treatment of contraction Γ, A, A ` B Γ, !A, !A ` B ⇒ Γ,A ` B Γ, !A ` B Refinement of logical connectives conjunction disjunction

additive u t multiplicative ? +

On Proof Interpretations and Linear Logic Linear Logic

Linear Logic (Girard 1987) Explicit treatment of contraction Γ, A, A ` B Γ, !A, !A ` B ⇒ Γ,A ` B Γ, !A ` B

Refinement of intuitionistic implication A → B ≡ !A ( B On Proof Interpretations and Linear Logic Linear Logic

Linear Logic (Girard 1987) Explicit treatment of contraction Γ, A, A ` B Γ, !A, !A ` B ⇒ Γ,A ` B Γ, !A ` B

Refinement of intuitionistic implication A → B ≡ !A ( B Refinement of logical connectives conjunction disjunction

additive u t multiplicative ? + On Proof Interpretations and Linear Logic Linear Logic

Intuitionistic Linear Logic

Γ ` A Γ ` B Γ ` A Γ ` A u B Γ ` A t B

Γ ` A ∆ ` B Γ,A ` B Γ, ∆ ` A?B Γ ` A ( B Γ ` A Γ ` A[t/z] Γ ` ∀zA Γ ` ∃zA On Proof Interpretations and Linear Logic Linear Logic

Intuitionistic Linear Logic

Γ ` A Γ ` B Γ ` A Γ ` A u B Γ ` A t B

Γ ` A ∆ ` B Γ,A ` B Γ, ∆ ` A?B Γ ` A ( B Γ ` A Γ ` A[t/z] Γ ` ∀zA Γ ` ∃zA On Proof Interpretations and Linear Logic Linear Logic

Structural Rules

A ` A (id)

Γ ` A ∆,A ` B (cut) Γ, ∆ ` B

Γ ` A (per) π{Γ} ` A On Proof Interpretations and Linear Logic Linear Logic

Structural Rules

A ` A (id)

Γ ` A ∆,A ` B (cut) Γ, ∆ ` B

Γ ` A (per) π{Γ} ` A On Proof Interpretations and Linear Logic Linear Logic

Exponential !A

Γ, !A, !A ` B Γ ` B (con) (wkn) Γ, !A ` B Γ, !A ` B

!Γ ` A Γ ` !A (!I) (!E) !Γ ` !A Γ ` A Translation (·)◦ : IL → ILL (A ∧ B)◦ ≡ A◦ ?B◦ (∀xA)◦ ≡ !∀xA◦ (A ∨ B)◦ ≡ A◦ t B◦ (∃xA)◦ ≡ ∃xA◦ ◦ ◦ ◦ (A → B) ≡ !(A ( B ) Thm. IL ` A iff ILL ` A∗ iff ILL ` A◦

On Proof Interpretations and Linear Logic Linear Logic

Girard Translations

Translation (·)∗ : IL → ILL (A ∧ B)∗ ≡ A∗ u B∗ (∀xA)∗ ≡ ∀xA∗ (A ∨ B)∗ ≡ !A∗ t !B∗ (∃xA)∗ ≡ ∃x!A∗ ∗ ∗ ∗ (A → B) ≡ !A ( B Thm. IL ` A iff ILL ` A∗ iff ILL ` A◦

On Proof Interpretations and Linear Logic Linear Logic

Girard Translations

Translation (·)∗ : IL → ILL (A ∧ B)∗ ≡ A∗ u B∗ (∀xA)∗ ≡ ∀xA∗ (A ∨ B)∗ ≡ !A∗ t !B∗ (∃xA)∗ ≡ ∃x!A∗ ∗ ∗ ∗ (A → B) ≡ !A ( B Translation (·)◦ : IL → ILL (A ∧ B)◦ ≡ A◦ ?B◦ (∀xA)◦ ≡ !∀xA◦ (A ∨ B)◦ ≡ A◦ t B◦ (∃xA)◦ ≡ ∃xA◦ ◦ ◦ ◦ (A → B) ≡ !(A ( B ) On Proof Interpretations and Linear Logic Linear Logic

Girard Translations

Translation (·)∗ : IL → ILL (A ∧ B)∗ ≡ A∗ u B∗ (∀xA)∗ ≡ ∀xA∗ (A ∨ B)∗ ≡ !A∗ t !B∗ (∃xA)∗ ≡ ∃x!A∗ ∗ ∗ ∗ (A → B) ≡ !A ( B Translation (·)◦ : IL → ILL (A ∧ B)◦ ≡ A◦ ?B◦ (∀xA)◦ ≡ !∀xA◦ (A ∨ B)◦ ≡ A◦ t B◦ (∃xA)◦ ≡ ∃xA◦ ◦ ◦ ◦ (A → B) ≡ !(A ( B ) Thm. IL ` A iff ILL ` A∗ iff ILL ` A◦ On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Outline

1 Proof Interpretations

2 Linear Logic

3 Unified Interpretation of Linear Logic On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

One-Move Two-Player Games

Game G ≡ (D1,D2,R ⊆ D1 × D2) Two players Eloise and Abelard Two domains of moves

x ∈ D1 and y ∈ D2 Adjudication of Winner Relation R(x, y) between players’ moves x (usually |G|y ) x ∈ {0,..., 5} y ∈ {0,..., 5} x + y is even x ∈ N y ∈ N x ≥ y f ∈ N → N y ∈ N f(y) ≥ y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Examples

Domain 1 Domain 2 Adjudication

x ∈ {0, 1, 2} y ∈ {0, 1, 2} x + 1 = y mod 3 x ∈ N y ∈ N x ≥ y f ∈ N → N y ∈ N f(y) ≥ y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Examples

Domain 1 Domain 2 Adjudication

x ∈ {0, 1, 2} y ∈ {0, 1, 2} x + 1 = y mod 3 x ∈ {0,..., 5} y ∈ {0,..., 5} x + y is even f ∈ N → N y ∈ N f(y) ≥ y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Examples

Domain 1 Domain 2 Adjudication

x ∈ {0, 1, 2} y ∈ {0, 1, 2} x + 1 = y mod 3 x ∈ {0,..., 5} y ∈ {0,..., 5} x + y is even x ∈ N y ∈ N x ≥ y On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Examples

Domain 1 Domain 2 Adjudication

x ∈ {0, 1, 2} y ∈ {0, 1, 2} x + 1 = y mod 3 x ∈ {0,..., 5} y ∈ {0,..., 5} x + y is even x ∈ N y ∈ N x ≥ y f ∈ N → N y ∈ N f(y) ≥ y x A iff ∃x∀y|A|y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Goal

A is true (is provable) iff x Eloise has winning move in game |A|y On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Goal

A is true (is provable) iff x Eloise has winning move in game |A|y

x A iff ∃x∀y|A|y f,g x gx |A ( B|x,w :≡ |A|fxw ( |B|w

f fa |∀zA(z)|y,a :≡ |A(a)|y

x,a x |∃zA(z)|y :≡ |A(a)|y

x v Inductively: Assume |A|y and |B|w defined, then

x,v x v |A?B|y,w :≡ |A|y ? |B|w

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretation

x Formula A mapped to game |A|y f,g x gx |A ( B|x,w :≡ |A|fxw ( |B|w

f fa |∀zA(z)|y,a :≡ |A(a)|y

x,a x |∃zA(z)|y :≡ |A(a)|y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretation

x Formula A mapped to game |A|y x v Inductively: Assume |A|y and |B|w defined, then

x,v x v |A?B|y,w :≡ |A|y ? |B|w f fa |∀zA(z)|y,a :≡ |A(a)|y

x,a x |∃zA(z)|y :≡ |A(a)|y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretation

x Formula A mapped to game |A|y x v Inductively: Assume |A|y and |B|w defined, then

x,v x v |A?B|y,w :≡ |A|y ? |B|w

f,g x gx |A ( B|x,w :≡ |A|fxw ( |B|w x,a x |∃zA(z)|y :≡ |A(a)|y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretation

x Formula A mapped to game |A|y x v Inductively: Assume |A|y and |B|w defined, then

x,v x v |A?B|y,w :≡ |A|y ? |B|w

f,g x gx |A ( B|x,w :≡ |A|fxw ( |B|w

f fa |∀zA(z)|y,a :≡ |A(a)|y On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretation

x Formula A mapped to game |A|y x v Inductively: Assume |A|y and |B|w defined, then

x,v x v |A?B|y,w :≡ |A|y ? |B|w

f,g x gx |A ( B|x,w :≡ |A|fxw ( |B|w

f fa |∀zA(z)|y,a :≡ |A(a)|y

x,a x |∃zA(z)|y :≡ |A(a)|y On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Soundness

Theorem If π ILL ` A there is t (extracted from π) such that ω t ILL ` ∀y|A|y (1) Singleton x x |!A|{y} :≡ |A|y (2) Finite x x |!A|a :≡ ∀y ∈a |A|y (3) Arbitrary x x |!A| :≡ ∀y|A|y

What kind of sets?

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Exponential Game !A

Opponent can choose a “set” a of moves

x x |!A|a :≡ ∀y ∈a |A|y (1) Singleton x x |!A|{y} :≡ |A|y (2) Finite x x |!A|a :≡ ∀y ∈a |A|y (3) Arbitrary x x |!A| :≡ ∀y|A|y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Exponential Game !A

Opponent can choose a “set” a of moves

x x |!A|a :≡ ∀y ∈a |A|y What kind of sets? (2) Finite x x |!A|a :≡ ∀y ∈a |A|y (3) Arbitrary x x |!A| :≡ ∀y|A|y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Exponential Game !A

Opponent can choose a “set” a of moves

x x |!A|a :≡ ∀y ∈a |A|y What kind of sets? (1) Singleton x x |!A|{y} :≡ |A|y (3) Arbitrary x x |!A| :≡ ∀y|A|y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Exponential Game !A

Opponent can choose a “set” a of moves

x x |!A|a :≡ ∀y ∈a |A|y What kind of sets? (1) Singleton x x |!A|{y} :≡ |A|y (2) Finite x x |!A|a :≡ ∀y ∈a |A|y On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Exponential Game !A

Opponent can choose a “set” a of moves

x x |!A|a :≡ ∀y ∈a |A|y What kind of sets? (1) Singleton x x |!A|{y} :≡ |A|y (2) Finite x x |!A|a :≡ ∀y ∈a |A|y (3) Arbitrary x x |!A| :≡ ∀y|A|y (Diller-Nahm) (realizability) (q- or truth-real.)

(Dialectica)

x x |!A|a :≡ !∀y ∈a |A|y x x |!A| :≡ !∀y|A|y x x |!A| :≡ !∀y|A|y ? !A

, possible interpretations of !A

x x |!A|y :≡ !|A|y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretation

x Given A 7→ |A|y (Diller-Nahm) (realizability) (q- or truth-real.)

(Dialectica)

x x |!A|a :≡ !∀y ∈a |A|y x x |!A| :≡ !∀y|A|y x x |!A| :≡ !∀y|A|y ? !A

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretation

x Given A 7→ |A|y , possible interpretations of !A

x x |!A|y :≡ !|A|y (realizability) (q- or truth-real.)

(Dialectica) (Diller-Nahm)

x x |!A| :≡ !∀y|A|y x x |!A| :≡ !∀y|A|y ? !A

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretation

x Given A 7→ |A|y , possible interpretations of !A

x x |!A|y :≡ !|A|y x x |!A|a :≡ !∀y ∈a |A|y (q- or truth-real.)

(Dialectica) (Diller-Nahm) (realizability)

x x |!A| :≡ !∀y|A|y ? !A

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretation

x Given A 7→ |A|y , possible interpretations of !A

x x |!A|y :≡ !|A|y x x |!A|a :≡ !∀y ∈a |A|y x x |!A| :≡ !∀y|A|y (Dialectica) (Diller-Nahm) (realizability) (q- or truth-real.)

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretation

x Given A 7→ |A|y , possible interpretations of !A

x x |!A|y :≡ !|A|y x x |!A|a :≡ !∀y ∈a |A|y x x |!A| :≡ !∀y|A|y x x |!A| :≡ !∀y|A|y ? !A (Diller-Nahm) (realizability) (q- or truth-real.)

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretation

x Given A 7→ |A|y , possible interpretations of !A

x x |!A|y :≡ !|A|y (Dialectica) x x |!A|a :≡ !∀y ∈a |A|y x x |!A| :≡ !∀y|A|y x x |!A| :≡ !∀y|A|y ? !A (realizability) (q- or truth-real.)

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretation

x Given A 7→ |A|y , possible interpretations of !A

x x |!A|y :≡ !|A|y (Dialectica) x x |!A|a :≡ !∀y ∈a |A|y (Diller-Nahm) x x |!A| :≡ !∀y|A|y x x |!A| :≡ !∀y|A|y ? !A (q- or truth-real.)

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretation

x Given A 7→ |A|y , possible interpretations of !A

x x |!A|y :≡ !|A|y (Dialectica) x x |!A|a :≡ !∀y ∈a |A|y (Diller-Nahm) x x |!A| :≡ !∀y|A|y (realizability) x x |!A| :≡ !∀y|A|y ? !A On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretation

x Given A 7→ |A|y , possible interpretations of !A

x x |!A|y :≡ !|A|y (Dialectica) x x |!A|a :≡ !∀y ∈a |A|y (Diller-Nahm) x x |!A| :≡ !∀y|A|y (realizability) x x |!A| :≡ !∀y|A|y ? !A (q- or truth-real.) 6 (·)? forget

? ILL - ILLω x x |!A|y ≡ !|A|y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretations of IL

Dialectica IL - ILω 6 forget

- ILLω x x |!A|y ≡ !|A|y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretations of IL

Dialectica IL - ILω

(·)?

? ILL 6 forget

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretations of IL

Dialectica IL - ILω

(·)?

? ILL - ILLω x x |!A|y ≡ !|A|y On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretations of IL

Dialectica IL - ILω 6 (·)? forget

? ILL - ILLω x x |!A|y ≡ !|A|y 6 (·)∗ forget

? ILL - ILLω x x |!A|a ≡ !∀y ∈a |A|y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretations of IL

Diller-Nahm IL - ILω 6 forget

- ILLω x x |!A|a ≡ !∀y ∈a |A|y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretations of IL

Diller-Nahm IL - ILω

(·)∗

? ILL 6 forget

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretations of IL

Diller-Nahm IL - ILω

(·)∗

? ILL - ILLω x x |!A|a ≡ !∀y ∈a |A|y On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretations of IL

Diller-Nahm IL - ILω 6 (·)∗ forget

? ILL - ILLω x x |!A|a ≡ !∀y ∈a |A|y 6 (·)◦ forget

? ILL - ILLω x x |!A| ≡ !∀y|A|y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretations of IL

Realizability IL - ILω 6 forget

- ILLω x x |!A| ≡ !∀y|A|y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretations of IL

Realizability IL - ILω

(·)◦

? ILL 6 forget

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretations of IL

Realizability IL - ILω

(·)◦

? ILL - ILLω x x |!A| ≡ !∀y|A|y On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretations of IL

Realizability IL - ILω 6 (·)◦ forget

? ILL - ILLω x x |!A| ≡ !∀y|A|y On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretations of IL

Real. with truth IL - ILω 6 (·)◦ forget

? ILL - ILLω x x |!A| ≡ !∀y|A|y ? !A On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Interpretations of IL

q-realizability IL - ILω 6 (·)∗ forget

? ILL - ILLω x x |!A| ≡ !∀y|A|y ? !A New: Connection between A◦ ∼ !A∗ and

Γ|aA iff Γ|kA and Γ ` A

New: Diller-Nahm with truth (and q-variant)

x x |!A|a :≡ ∀y ∈ a |A|y ? !A

New: Hybrid functional interpretation (exploring the fact that !A not canonical in LL)

x x x x |!DA|y :≡ |A|y |!rA|y :≡ ∀y|A|y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Conclusions New: ‘Explanation’ of different interpretations New: Diller-Nahm with truth (and q-variant)

x x |!A|a :≡ ∀y ∈ a |A|y ? !A

New: Hybrid functional interpretation (exploring the fact that !A not canonical in LL)

x x x x |!DA|y :≡ |A|y |!rA|y :≡ ∀y|A|y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Conclusions New: ‘Explanation’ of different interpretations

New: Connection between A◦ ∼ !A∗ and

Γ|aA iff Γ|kA and Γ ` A New: Hybrid functional interpretation (exploring the fact that !A not canonical in LL)

x x x x |!DA|y :≡ |A|y |!rA|y :≡ ∀y|A|y

On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Conclusions New: ‘Explanation’ of different interpretations

New: Connection between A◦ ∼ !A∗ and

Γ|aA iff Γ|kA and Γ ` A

New: Diller-Nahm with truth (and q-variant)

x x |!A|a :≡ ∀y ∈ a |A|y ? !A On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

Conclusions New: ‘Explanation’ of different interpretations

New: Connection between A◦ ∼ !A∗ and

Γ|aA iff Γ|kA and Γ ` A

New: Diller-Nahm with truth (and q-variant)

x x |!A|a :≡ ∀y ∈ a |A|y ? !A

New: Hybrid functional interpretation (exploring the fact that !A not canonical in LL)

x x x x |!DA|y :≡ |A|y |!rA|y :≡ ∀y|A|y On Proof Interpretations and Linear Logic Unified Interpretation of Linear Logic

References

K. G¨odel. Uber¨ eine bisher noch nicht ben¨utzteErweiterung des finiten Standpunktes. Dialectica, 12:280–287, 1958 V. C. V. de Paiva. A Dialectica-like model of linear logic Category Theory and Computer Science, 341–356 (LNCS 389), 1989 A. Blass. A cat. arising in LL, comp. theory, and set theory Advances in Linear Logic, 222, 61–81. LMS Lecture Notes, 1995 J. M. E. Hyland. Proof theory in the abstract Annals of Pure and Applied Logic, 114:43–78, 2002 M. Shirahata. The Dialectica interpretation of first-order CLL Theory and Applications of Categories, 17(4):49–79, 2006 P. Oliva. Unifying functional interpretations Notre Dame Journal of Formal Logic, 47(2):263–290, 2006