Subverting the Classical Picture: (Co)Algebra, Constructivity and Modalities∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Proof Interpretations and Linear Logic
On Proof Interpretations and Linear Logic On Proof Interpretations and Linear Logic Paulo Oliva Queen Mary, University of London, UK ([email protected]) Heyting Day Utrecht, 27 February 2015 To Anne Troelstra and Dick de Jongh 6 ?? - !A ::: - !A - ! ILLp ILLp ILLp = Intuit. predicate linear logic (!-free) On Proof Interpretations and Linear Logic Overview - ! IL ::: - IL interpretations IL = Intuitionistic predicate logic 6 ?? - !A ::: - !A On Proof Interpretations and Linear Logic Overview - ! IL ::: - IL interpretations - ! ILLp ILLp IL = Intuitionistic predicate logic ILLp = Intuit. predicate linear logic (!-free) ?? - !A ::: - !A On Proof Interpretations and Linear Logic Overview - ! IL ::: - IL interpretations 6 - ! ILLp ILLp IL = Intuitionistic predicate logic ILLp = Intuit. predicate linear logic (!-free) - !A ::: - !A On Proof Interpretations and Linear Logic Overview - ! IL ::: - IL interpretations 6 ?? - ! ILLp ILLp IL = Intuitionistic predicate logic ILLp = Intuit. predicate linear logic (!-free) On Proof Interpretations and Linear Logic Overview - ! IL ::: - IL interpretations 6 ?? - ! ILLp ILLp - !A ::: - !A IL = Intuitionistic predicate logic ILLp = Intuit. predicate linear logic (!-free) On Proof Interpretations and Linear Logic Outline 1 Proof Interpretations 2 Linear Logic 3 Unified Interpretation of Linear Logic On Proof Interpretations and Linear Logic Proof Interpretations Outline 1 Proof Interpretations 2 Linear Logic 3 Unified Interpretation of Linear Logic E.g. the set of prime numbers is infinite The book \Proofs from THE BOOK" contains six beautiful proofs of this Non-theorems map to the empty set E.g. the set of even numbers is finite Need to fix the formal system On Proof Interpretations and Linear Logic Proof Interpretations Formulas as Sets of Proofs Formulas as set of proofs A 7! fπ : π ` Ag The book \Proofs from THE BOOK" contains six beautiful proofs of this Non-theorems map to the empty set E.g. -
The Logic of Brouwer and Heyting
THE LOGIC OF BROUWER AND HEYTING Joan Rand Moschovakis Intuitionistic logic consists of the principles of reasoning which were used in- formally by L. E. J. Brouwer, formalized by A. Heyting (also partially by V. Glivenko), interpreted by A. Kolmogorov, and studied by G. Gentzen and K. G¨odel during the first third of the twentieth century. Formally, intuitionistic first- order predicate logic is a proper subsystem of classical logic, obtained by replacing the law of excluded middle A ∨¬A by ¬A ⊃ (A ⊃ B); it has infinitely many dis- tinct consistent axiomatic extensions, each necessarily contained in classical logic (which is axiomatically complete). However, intuitionistic second-order logic is inconsistent with classical second-order logic. In terms of expressibility, the intu- itionistic logic and language are richer than the classical; as G¨odel and Gentzen showed, classical first-order arithmetic can be faithfully translated into the nega- tive fragment of intuitionistic arithmetic, establishing proof-theoretical equivalence and clarifying the distinction between the classical and constructive consequences of mathematical axioms. The logic of Brouwer and Heyting is effective. The conclusion of an intuitionistic derivation holds with the same degree of constructivity as the premises. Any proof of a disjunction of two statements can be effectively transformed into a proof of one of the disjuncts, while any proof of an existential statement contains an effec- tive prescription for finding a witness. The negation of a statement is interpreted as asserting that the statement is not merely false but absurd, i.e., leads to a contradiction. Brouwer objected to the general law of excluded middle as claim- ing a priori that every mathematical problem has a solution, and to the general law ¬¬A ⊃ A of double negation as asserting that every consistent mathematical statement holds. -
Finite Type Arithmetic
Finite Type Arithmetic Computable Existence Analysed by Modified Realisability and Functional Interpretation H Klaus Frovin Jørgensen Master’s Thesis, March 19, 2001 Supervisors: Ulrich Kohlenbach and Stig Andur Pedersen Departments of Mathematics and Philosohy University of Roskilde Abstract in English and Danish Motivated by David Hilbert’s program and philosophy of mathematics we give in the context of natural deduction an introduction to the Dialectica interpretation and compare the interpre- tation with modified realisability. We show how the interpretations represent two structurally different methods for unwinding computable information from proofs which may use certain prima facie non-constructive (ideal) elements of mathematics. Consequently, the two inter- pretations also represent different views on what is to be regarded as constructive relative to arithmetic. The differences show up in the interpretations of extensionality, Markov’s prin- ciple and restricted forms of independence-of-premise. We show that it is computationally a subtle issue to combine these ideal elements and prove that Markov’s principle is computa- tionally incompatible with independence-of-premise for negated purely universal formulas. In the context of extracting computational content from proofs in typed classical arith- metic we also compare in an extensional context (i) the method provided by negative trans- lation + Dialectica interpretation with (ii) the method provided by negative translation + ω A-translation + modified realisability. None of these methods can be applied fully to E-PA , since E-HAω is not closed under Markov’s rule, whereas the method based on the Dialectica interpretation can be used if only weak extensionality is required. Finally, we present a new variant of the Dialectica interpretation in order to obtain (the well-known) existence property, disjunction property and other closure results for typed in- tuitionistic arithmetic and extensions hereof. -
Epistemic Modality, Mind, and Mathematics
Epistemic Modality, Mind, and Mathematics Hasen Khudairi June 20, 2017 c Hasen Khudairi 2017, 2020 All rights reserved. 1 Abstract This book concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as con- cerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality relates to the compu- tational theory of mind; metaphysical modality; deontic modality; the types of mathematical modality; to the epistemic status of undecidable proposi- tions and abstraction principles in the philosophy of mathematics; to the apriori-aposteriori distinction; to the modal profile of rational propositional intuition; and to the types of intention, when the latter is interpreted as a modal mental state. Each essay is informed by either epistemic logic, modal and cylindric algebra or coalgebra, intensional semantics or hyperin- tensional semantics. The book’s original contributions include theories of: (i) epistemic modal algebras and coalgebras; (ii) cognitivism about epistemic modality; (iii) two-dimensional truthmaker semantics, and interpretations thereof; (iv) the ground-theoretic ontology of consciousness; (v) fixed-points in vagueness; (vi) the modal foundations of mathematical platonism; (vii) a solution to the Julius Caesar problem based on metaphysical definitions availing of notions of ground and essence; (viii) the application of epistemic two-dimensional semantics to the epistemology of mathematics; and (ix) a modal logic for rational intuition. I develop, further, a novel approach to conditions of self-knowledge in the setting of the modal µ-calculus, as well as novel epistemicist solutions to Curry’s and the liar paradoxes. -
The Consistency of Arithmetic
The Consistency of Arithmetic Timothy Y. Chow July 11, 2018 In 2010, Vladimir Voevodsky, a Fields Medalist and a professor at the Insti- tute for Advanced Study, gave a lecture entitled, “What If Current Foundations of Mathematics Are Inconsistent?” Voevodsky invited the audience to consider seriously the possibility that first-order Peano arithmetic (or PA for short) was inconsistent. He briefly discussed two of the standard proofs of the consistency of PA (about which we will say more later), and explained why he did not find either of them convincing. He then said that he was seriously suspicious that an inconsistency in PA might someday be found. About one year later, Voevodsky might have felt vindicated when Edward Nelson, a professor of mathematics at Princeton University, announced that he had a proof not only that PA was inconsistent, but that a small fragment of primitive recursive arithmetic (PRA)—a system that is widely regarded as implementing a very modest and “safe” subset of mathematical reasoning—was inconsistent [11]. However, a fatal error in his proof was soon detected by Daniel Tausk and (independently) Terence Tao. Nelson withdrew his claim, remarking that the consistency of PA remained “an open problem.” For mathematicians without much training in formal logic, these claims by Voevodsky and Nelson may seem bewildering. While the consistency of some axioms of infinite set theory might be debatable, is the consistency of PA really “an open problem,” as Nelson claimed? Are the existing proofs of the con- sistency of PA suspect, as Voevodsky claimed? If so, does this mean that we cannot be sure that even basic mathematical reasoning is consistent? This article is an expanded version of an answer that I posted on the Math- Overflow website in response to the question, “Is PA consistent? do we know arXiv:1807.05641v1 [math.LO] 16 Jul 2018 it?” Since the question of the consistency of PA seems to come up repeat- edly, and continues to generate confusion, a more extended discussion seems worthwhile. -
The Unintended Interpretations of Intuitionistic Logic
THE UNINTENDED INTERPRETATIONS OF INTUITIONISTIC LOGIC Wim Ruitenburg Department of Mathematics, Statistics and Computer Science Marquette University Milwaukee, WI 53233 Abstract. We present an overview of the unintended interpretations of intuitionis- tic logic that arose after Heyting formalized the “observed regularities” in the use of formal parts of language, in particular, first-order logic and Heyting Arithmetic. We include unintended interpretations of some mild variations on “official” intuitionism, such as intuitionistic type theories with full comprehension and higher order logic without choice principles or not satisfying the right choice sequence properties. We conclude with remarks on the quest for a correct interpretation of intuitionistic logic. §1. The Origins of Intuitionistic Logic Intuitionism was more than twenty years old before A. Heyting produced the first complete axiomatizations for intuitionistic propositional and predicate logic: according to L. E. J. Brouwer, the founder of intuitionism, logic is secondary to mathematics. Some of Brouwer’s papers even suggest that formalization cannot be useful to intuitionism. One may wonder, then, whether intuitionistic logic should itself be regarded as an unintended interpretation of intuitionistic mathematics. I will not discuss Brouwer’s ideas in detail (on this, see [Brouwer 1975], [Hey- ting 1934, 1956]), but some aspects of his philosophy need to be highlighted here. According to Brouwer mathematics is an activity of the human mind, a product of languageless thought. One cannot be certain that language is a perfect reflection of this mental activity. This makes language an uncertain medium (see [van Stigt 1982] for more details on Brouwer’s ideas about language). In “De onbetrouwbaarheid der logische principes” ([Brouwer 1981], pp. -
Intuitionistic Logic
Intuitionistic Logic Nick Bezhanishvili and Dick de Jongh Institute for Logic, Language and Computation Universiteit van Amsterdam Contents 1 Introduction 2 2 Intuitionism 3 3 Kripke models, Proof systems and Metatheorems 8 3.1 Other proof systems . 8 3.2 Arithmetic and analysis . 10 3.3 Kripke models . 15 3.4 The Disjunction Property, Admissible Rules . 20 3.5 Translations . 22 3.6 The Rieger-Nishimura Lattice and Ladder . 24 3.7 Complexity of IPC . 25 3.8 Mezhirov's game for IPC . 28 4 Heyting algebras 30 4.1 Lattices, distributive lattices and Heyting algebras . 30 4.2 The connection of Heyting algebras with Kripke frames and topologies . 33 4.3 Algebraic completeness of IPC and its extensions . 38 4.4 The connection of Heyting and closure algebras . 40 5 Jankov formulas and intermediate logics 42 5.1 n-universal models . 42 5.2 Formulas characterizing point generated subsets . 44 5.3 The Jankov formulas . 46 5.4 Applications of Jankov formulas . 47 5.5 The logic of the Rieger-Nishimura ladder . 52 1 1 Introduction In this course we give an introduction to intuitionistic logic. We concentrate on the propositional calculus mostly, make some minor excursions to the predicate calculus and to the use of intuitionistic logic in intuitionistic formal systems, in particular Heyting Arithmetic. We have chosen a selection of topics that show various sides of intuitionistic logic. In no way we strive for a complete overview in this short course. Even though we approach the subject for the most part only formally, it is good to have a general introduction to intuitionism. -
Constructive Set Theory July, 2008, Mathlogaps Workshop, Manchester
Constructive Set Theory July, 2008, Mathlogaps workshop, Manchester . Peter Aczel [email protected] Manchester University Constructive Set Theory – p.1/88 Plan of lectures Lecture 1 1: Background to CST 2: The axiom system CZF Lecture 2 3: The number systems in CZF 4: The constructive notion of set Lectures 3,4 ? 5: Inductive definitions 6: Locales and/or 7: Coinductive definitions Constructive Set Theory – p.2/88 1: Background to CST Constructive Set Theory – p.3/88 Some brands of constructive mathematics B1: Intuitionism (Brouwer, Heyting, ..., Veldman) B2: ‘Russian’ constructivism (Markov,...) B3: ‘American’ constructivism (Bishop, Bridges,...) B4: ‘European’ constructivism (Martin-Löf, Sambin,...) B1,B2 contradict classical mathematics; e.g. B1 : All functions R → R are continuous, B2 : All functions N → N are recursive (i.e. CT). B3 is compatible with each of classical maths, B1,B2 and forms their common core. B4 is a more philosophical foundational approach to B3. All B1-B4 accept RDC and so DC and CC. Constructive Set Theory – p.4/88 Some liberal brands of mathematics using intuitionistic logic B5: Topos mathematics (Lawvere, Johnstone,...) B6: Liberal Intuitionism (Mayberry,...) B5 does not use any choice principles. B6 accepts Restricted EM. B7: A minimalist, non-ideological approach: The aim is to do as much mainstream constructive mathematics as possible in a weak framework that is common to all brands, and explore the variety of possible extensions. Constructive Set Theory – p.5/88 Some settings for constructive mathematics type theoretical category theoretical set theoretical Constructive Set Theory – p.6/88 Some contrasts classical logic versus intuitionistic logic impredicative versus predicative some choice versus no choice intensional versus extensional consistent with EM versus inconsistent with EM Constructive Set Theory – p.7/88 Mathematical Taboos A mathematical taboo is a statement that we may not want to assume false, but we definately do not want to be able to prove. -
Constructive Logic for All
Constructive Logic for All Greg Restall∗ Philosophy Department Macquarie University June 14, 2000 Abstract It is a commonplace in recent metaphysics that one's logical commit- ments go hand in hand with one's metaphysics. Brouwer, Heyting and Dummett have each championed the move to constructive (intuitionistic) reasoning on the grounds of anti-realism. I hope to break this close connec- tion, to explain why a realist ought to reason constructively. 1 Introduction Let me start by explaining the terms of the discussion. In this area of philo- sophical logic there seems to be some confusion in the use of terms such as “intuitionistic” and “constructive.” It will help to get the use of these terms somewhat fixed before I start to argue my case. 1.1 Logic First, logic. The subject Logic is the study of logical consequence. Logical con- sequence is a matter of the validity and invalidity of arguments. An argument is valid just when in any case in which the premises of the argument are true, so is the conclusion. It is often helpful, in discussing logical consequence, to have a formal language in which to express the premises and conclusions of ar- guments. One such language is the language of first-order logic, with primitive expressions for the connectives and quantifiers ^ conjunction _ disjunction conditional ⊃ ∼ negation x universal quantifier 8 (with x a variable) x existential quantifier 9 (with x a variable) For some, logic is at heart the study of the behaviour of these connectives. For others, the singling out of particular parts of the language is an incidental mat- ter. -
Informal Proceedings of the 30Th International Workshop on Unification (UNIF 2016)
Silvio Ghilardi and Manfred Schmidt-Schauß (Eds.) Informal Proceedings of the 30th International Workshop on Unification (UNIF 2016) June 26, 2016 Porto, Portugal 1 Preface This volume contains the papers presented at UNIF 2016: The 30th International Workshop on Unification (UNIF 2016) held on June 26, 2016 in Porto. There were 10 submissions. Each submission was reviewed by at least 3, and on the average 3.3, program committee members. The committee decided to accept 8 papers for publication in these Proceedings. The program also includes 2 invited talks. The International Workshop on Unification was initiated in 1987 as a yearly forum for researchers in unification theory and related fields to meet old and new colleagues, to present recent (even unfinished) work, and to discuss new ideas and trends. It is also a good opportunity for young researchers and researchers working in related areas to get an overview of the current state of the art in unification theory. The list of previous meetings can be found at the UNIF web page: http://www.pps.univ-paris-diderot.fr/~treinen/unif/. Typically, the topics of interest include (but are not restricted to): Unification algorithms, calculi and implementations • Equational unification and unification modulo theories • Unification in modal, temporal and description logics • Admissibility of Inference Rules • Narrowing • Matching algorithms • Constraint solving • Combination problems • Disunification • Higher-Order Unification • Type checking and reconstruction • Typed unification • Complexity issues • Query answering • Implementation techniques • Applications of unification • Antiunification/Generalization • This years UNIF is a satellite event of the first International Conference on Formal Structures for Computation and Deduction (FSCD). -
Admissibility of Inference Rules’ by V
‘Admissibility of Inference Rules’ by V. V. Rybakov MARCUS KRACHT A rule is admissible in a logic L if it can be added without increasing the set of tautologies of L. For example, the rule ϕ/∀x.ϕ is admissible in predicate logic, since if ϕ is a theorem, so is ∀x.ϕ. The notion of an admissible rule is quite central to logic, but it hardly attracts any attention outside a small group of people. Modern textbooks do not teach a student about consequence relations let alone admissible rules, and it is hard to find other books on logic that do. It is one of the aims of this book to fill this lacuna. It deals specifically with the question of admissibility of inference rules, and here mainly in the context of intermediate and modal logic. 1 Nevertheless, the reader will also learn a good deal about algebraic logic, deductive systems and modal and intuitionistic logic in general. The book contains six chapters, of which the first two present the general theory of algebraic, modal and intuitionistic logic, while the remaining four chapters deal with the problem of admissibility of rules in modal and intermediate logic. We shall summarize the first two chapters before entering a review of the book in a more chronological fashion. Even though the results are more general, we shall often take ad- vantage of the fact that we are dealing with extensions of K4 and su- perintuitionistic logics. This will eliminate certain complications, into which we will not go, since they are not relevant for the main results. -
Mathematical Modal Logic: a View of Its Evolution
MATHEMATICAL MODAL LOGIC: A VIEW OF ITS EVOLUTION Robert Goldblatt . there is no one fundamental logical no- tion of necessity, nor consequently of possi- bility. If this conclusion is valid, the subject of modality ought to be banished from logic, since propositions are simply true or false . [Russell, 1905] 1 INTRODUCTION Modal logic was originally conceived as the logic of necessary and possible truths. It is now viewed more broadly as the study of many linguistic constructions that qualify the truth conditions of statements, including statements concerning knowl- edge, belief, temporal discourse, and ethics. Most recently, modal symbolism and model theory have been put to use in computer science, to formalise reasoning about the way programs behave and to express dynamical properties of transi- tions between states. Over a period of three decades or so from the early 1930’s there evolved two kinds of mathematical semantics for modal logic. Algebraic semantics interprets modal connectives as operators on Boolean algebras. Relational semantics uses relational structures, often called Kripke models, whose elements are thought of variously as being possible worlds, moments of time, evidential situations, or states of a computer. The two approaches are intimately related: the subsets of a re- lational structure form a modal algebra (Boolean algebra with operators), while conversely any modal algebra can be embedded into an algebra of subsets of a relational structure via extensions of Stone’s Boolean representation theory. Tech- niques from both kinds of semantics have been used to explore the nature of modal logic and to clarify its relationship to other formalisms, particularly first and sec- ond order monadic predicate logic.