On Proof Interpretations and Linear Logic

On Proof Interpretations and Linear Logic

<p>On Proof Interpretations and Linear Logic </p><p>On Proof Interpretations and Linear Logic </p><p>Paulo Oliva </p><p>Queen Mary, University of London, UK <br>([email protected]) </p><p>Heyting Day <br>Utrecht, 27 February 2015 </p><p>To Anne Troelstra and Dick de Jongh </p><p>On Proof Interpretations and Linear Logic </p><p>Overview </p><p>-- IL<sup style="top: -0.5097em;">ω </sup></p><p>. . . </p><p>interpretations </p><p>IL <br>IL = Intuitionistic predicate logic </p><p>On Proof Interpretations and Linear Logic </p><p>Overview </p><p>-- IL<sup style="top: -0.5097em;">ω </sup></p><p>. . . </p><p>interpretations </p><p>IL <br>ILL<sup style="top: -0.5097em;">ω</sup><sub style="top: 0.2956em;">p </sub></p><p>-</p><p>ILL<sub style="top: 0.1793em;">p </sub><br>IL = Intuitionistic predicate logic <br>ILL<sub style="top: 0.1793em;">p </sub>= Intuit. predicate linear logic (!-free) </p><p>On Proof Interpretations and Linear Logic </p><p>Overview </p><p>-</p><p>. . . </p><p>interpretations </p><p>IL </p><p>- IL<sup style="top: -0.5097em;">ω </sup><br>6</p><p>ILL<sup style="top: -0.5097em;">ω</sup><sub style="top: 0.2956em;">p </sub></p><p>-</p><p>ILL<sub style="top: 0.1793em;">p </sub><br>IL = Intuitionistic predicate logic <br>ILL<sub style="top: 0.1793em;">p </sub>= Intuit. predicate linear logic (!-free) </p><p>On Proof Interpretations and Linear Logic </p><p>Overview </p><p>-</p><p>. . . </p><p>interpretations </p><p>IL </p><p>- IL<sup style="top: -0.5097em;">ω </sup><br>6</p><p>?? </p><p>ILL<sup style="top: -0.5097em;">ω</sup><sub style="top: 0.2956em;">p </sub></p><p>-</p><p>ILL<sub style="top: 0.1793em;">p </sub><br>IL = Intuitionistic predicate logic <br>ILL<sub style="top: 0.1793em;">p </sub>= Intuit. predicate linear logic (!-free) </p><p>On Proof Interpretations and Linear Logic </p><p>Overview </p><p>-</p><p>. . . </p><p>interpretations </p><p>IL </p><p>- IL<sup style="top: -0.5097em;">ω </sup><br>6</p><p>?? </p><p>ILL<sup style="top: -0.5097em;">ω</sup><sub style="top: 0.2956em;">p </sub></p><p>-</p><p>ILL<sub style="top: 0.1793em;">p </sub></p><p>-- !A </p><p>. . . <br>!A </p><p>IL = Intuitionistic predicate logic <br>ILL<sub style="top: 0.1793em;">p </sub>= Intuit. predicate linear logic (!-free) </p><p>On Proof Interpretations and Linear Logic </p><p>Outline </p><p>1</p><p>Proof Interpretations </p><p>23</p><p>Linear Logic Unified Interpretation of Linear Logic </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Outline </p><p>1</p><p>Proof Interpretations </p><p>23</p><p>Linear Logic Unified Interpretation of Linear Logic </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Proofs </p><p>Formulas as set of proofs </p><p>A</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">{π : π ` A} </li></ul><p></p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Proofs </p><p>Formulas as set of proofs </p><p>A</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">{π : π ` A} </li></ul><p></p><p>E.g. the set of prime numbers is infinite </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Proofs </p><p>Formulas as set of proofs </p><p>A</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">{π : π ` A} </li></ul><p></p><p>E.g. the set of prime numbers is infinite The book “Proofs from THE BOOK” contains six beautiful proofs of this </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Proofs </p><p>Formulas as set of proofs </p><p>A</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">{π : π ` A} </li></ul><p></p><p>E.g. the set of prime numbers is infinite The book “Proofs from THE BOOK” contains six beautiful proofs of this </p><p>Non-theorems map to the empty set E.g. the set of even numbers is finite </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Proofs </p><p>Formulas as set of proofs </p><p>A</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">{π : π ` A} </li></ul><p></p><p>E.g. the set of prime numbers is infinite The book “Proofs from THE BOOK” contains six beautiful proofs of this </p><p>Non-theorems map to the empty set E.g. the set of even numbers is finite </p><p>Need to fix the formal system </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Programs </p><p>Brouwer-Heyting-Kolmogorov Interpretation </p><p>Formulas as specifications (set of programs) </p><p>A</p><p>→</p><p>{p : p satisfies A} </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Programs </p><p>Brouwer-Heyting-Kolmogorov Interpretation </p><p>Formulas as specifications (set of programs) </p><p>A</p><p>→</p><p>{p : p satisfies A} <br>E.g. the set of prime numbers is infinite Specifies a program that on input n: N outputs a prime number p ≥ n and a certificate that p is prime </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Programs </p><p>Brouwer-Heyting-Kolmogorov Interpretation </p><p>Formulas as specifications (set of programs) </p><p>A</p><p>→</p><p>{p : p satisfies A} <br>E.g. the set of prime numbers is infinite Specifies a program that on input n: N outputs a prime number p ≥ n and a certificate that p is prime </p><p>If A is provable then the set should be non-empty </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Programs </p><p>Brouwer-Heyting-Kolmogorov Interpretation </p><p>Formulas as specifications (set of programs) </p><p>A</p><p>→</p><p>{p : p satisfies A} <br>E.g. the set of prime numbers is infinite Specifies a program that on input n: N outputs a prime number p ≥ n and a certificate that p is prime </p><p>If A is provable then the set should be non-empty Non-theorems map to un-implementable specifications </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Programs </p><p>Brouwer-Heyting-Kolmogorov Interpretation </p><p>Formulas as specifications (set of programs) </p><p>A</p><p>→</p><p>{p : p satisfies A} <br>E.g. the set of prime numbers is infinite Specifies a program that on input n: N outputs a prime number p ≥ n and a certificate that p is prime </p><p>If A is provable then the set should be non-empty Non-theorems map to un-implementable specifications </p><p>Need to fix formal system and programming language </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Types </p><p>Curry-Howard Correspondence Minimal Logic + Simply-typed λ-calculus </p><p></p><ul style="display: flex;"><li style="flex:1">π `<sub style="top: 0.1495em;">ML </sub>t<sub style="top: 0.1495em;">π </sub>: A </li><li style="flex:1">A</li></ul><p></p><p>⇔</p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Types </p><p>Curry-Howard Correspondence Minimal Logic + Simply-typed λ-calculus </p><p></p><ul style="display: flex;"><li style="flex:1">π `<sub style="top: 0.1495em;">ML </sub>t<sub style="top: 0.1495em;">π </sub>: A </li><li style="flex:1">A</li></ul><p></p><p>⇔</p><p>Extension 1: Heyting arith. + G¨odel primitive rec. </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Types </p><p>Curry-Howard Correspondence Minimal Logic + Simply-typed λ-calculus </p><p></p><ul style="display: flex;"><li style="flex:1">π `<sub style="top: 0.1495em;">ML </sub>t<sub style="top: 0.1495em;">π </sub>: A </li><li style="flex:1">A</li></ul><p></p><p>⇔</p><p>Extension 1: Heyting arith. + G¨odel primitive rec. Extension 2: Classical logic + Continuation operator </p><p></p><ul style="display: flex;"><li style="flex:1">¬A </li><li style="flex:1">A</li></ul><p></p><p>·</p><p>B<br>¬A </p><p>···<br>···<br>··</p><p>⊥</p><p>B</p><ul style="display: flex;"><li style="flex:1">A</li><li style="flex:1">B</li></ul><p></p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p></p><ul style="display: flex;"><li style="flex:1">Formula A </li><li style="flex:1">⇒ Set of functionals |A| </li></ul><p></p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p></p><ul style="display: flex;"><li style="flex:1">Formula A </li><li style="flex:1">⇒ Set of functionals |A| </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Proof π </li><li style="flex:1">⇒ Functional f<sub style="top: 0.1494em;">π </sub>∈ |A| </li></ul><p></p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p>Formula A Proof π <br>⇒ Set of functionals |A| ⇒ Functional f<sub style="top: 0.1494em;">π </sub>∈ |A| </p><p>S<sub style="top: 0.1495em;">1 </sub>`<sub style="top: 0.1495em;">π </sub>A </p><p>⇒ S<sub style="top: 0.1495em;">2 </sub>` f<sub style="top: 0.1495em;">π </sub>∈ |A| </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p>Formula A </p><p>∀x∃y(y &gt; x) </p><p>Proof π <br>⇒ Set of functionals |A| </p><p>{f : fx &gt; x} </p><p>⇒ Functional f<sub style="top: 0.1494em;">π </sub>∈ |A| </p><p>S<sub style="top: 0.1495em;">1 </sub>`<sub style="top: 0.1495em;">π </sub>A </p><p>⇒ S<sub style="top: 0.1495em;">2 </sub>` f<sub style="top: 0.1495em;">π </sub>∈ |A| </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p>Formula A </p><p>∀x∃y(y &gt; x) </p><p>Proof π </p><p>. . . </p><p>⇒ Set of functionals |A| </p><p>{f : fx &gt; x} </p><p>⇒ Functional f<sub style="top: 0.1494em;">π </sub>∈ |A| </p><p>λx.x + 1 </p><p>S<sub style="top: 0.1495em;">1 </sub>`<sub style="top: 0.1495em;">π </sub>A </p><p>⇒ S<sub style="top: 0.1495em;">2 </sub>` f<sub style="top: 0.1495em;">π </sub>∈ |A| </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p>Dialectica (Go¨del 1958) <br>Relative consistency of Peano arithmetic PA </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p>Dialectica (Go¨del 1958) <br>Relative consistency of Peano arithmetic PA </p><p>(</p><p>Falsity interpreted as empty set (| ⊥ | ≡ ∅) </p><p>PA `⊥ ⇒&nbsp;T ` ∃f(f ∈ ∅) </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p>Dialectica (Go¨del 1958) <br>Relative consistency of Peano arithmetic PA </p><p>(</p><p>Falsity interpreted as empty set (| ⊥ | ≡ ∅) </p><p>PA `⊥ ⇒&nbsp;T ` ∃f(f ∈ ∅) </p><p>Modified realizability (Kreisel 1959) </p><p>Independence results for Heyting arithmetic HA </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p>Dialectica (Go¨del 1958) <br>Relative consistency of Peano arithmetic PA </p><p>(</p><p>Falsity interpreted as empty set (| ⊥ | ≡ ∅) </p><p>PA `⊥ ⇒&nbsp;T ` ∃f(f ∈ ∅) </p><p>Modified realizability (Kreisel 1959) </p><p>Independence results for Heyting arithmetic HA </p><p>(</p><p>|P| set of non-computable functionals </p><p>HA ` P </p><p></p><ul style="display: flex;"><li style="flex:1">⇒</li><li style="flex:1">HA<sup style="top: -0.4289em;">ω </sup>` ∃f(f ∈ |P|) </li></ul><p></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    97 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us