
<p>On Proof Interpretations and Linear Logic </p><p>On Proof Interpretations and Linear Logic </p><p>Paulo Oliva </p><p>Queen Mary, University of London, UK <br>([email protected]) </p><p>Heyting Day <br>Utrecht, 27 February 2015 </p><p>To Anne Troelstra and Dick de Jongh </p><p>On Proof Interpretations and Linear Logic </p><p>Overview </p><p>-- IL<sup style="top: -0.5097em;">ω </sup></p><p>. . . </p><p>interpretations </p><p>IL <br>IL = Intuitionistic predicate logic </p><p>On Proof Interpretations and Linear Logic </p><p>Overview </p><p>-- IL<sup style="top: -0.5097em;">ω </sup></p><p>. . . </p><p>interpretations </p><p>IL <br>ILL<sup style="top: -0.5097em;">ω</sup><sub style="top: 0.2956em;">p </sub></p><p>-</p><p>ILL<sub style="top: 0.1793em;">p </sub><br>IL = Intuitionistic predicate logic <br>ILL<sub style="top: 0.1793em;">p </sub>= Intuit. predicate linear logic (!-free) </p><p>On Proof Interpretations and Linear Logic </p><p>Overview </p><p>-</p><p>. . . </p><p>interpretations </p><p>IL </p><p>- IL<sup style="top: -0.5097em;">ω </sup><br>6</p><p>ILL<sup style="top: -0.5097em;">ω</sup><sub style="top: 0.2956em;">p </sub></p><p>-</p><p>ILL<sub style="top: 0.1793em;">p </sub><br>IL = Intuitionistic predicate logic <br>ILL<sub style="top: 0.1793em;">p </sub>= Intuit. predicate linear logic (!-free) </p><p>On Proof Interpretations and Linear Logic </p><p>Overview </p><p>-</p><p>. . . </p><p>interpretations </p><p>IL </p><p>- IL<sup style="top: -0.5097em;">ω </sup><br>6</p><p>?? </p><p>ILL<sup style="top: -0.5097em;">ω</sup><sub style="top: 0.2956em;">p </sub></p><p>-</p><p>ILL<sub style="top: 0.1793em;">p </sub><br>IL = Intuitionistic predicate logic <br>ILL<sub style="top: 0.1793em;">p </sub>= Intuit. predicate linear logic (!-free) </p><p>On Proof Interpretations and Linear Logic </p><p>Overview </p><p>-</p><p>. . . </p><p>interpretations </p><p>IL </p><p>- IL<sup style="top: -0.5097em;">ω </sup><br>6</p><p>?? </p><p>ILL<sup style="top: -0.5097em;">ω</sup><sub style="top: 0.2956em;">p </sub></p><p>-</p><p>ILL<sub style="top: 0.1793em;">p </sub></p><p>-- !A </p><p>. . . <br>!A </p><p>IL = Intuitionistic predicate logic <br>ILL<sub style="top: 0.1793em;">p </sub>= Intuit. predicate linear logic (!-free) </p><p>On Proof Interpretations and Linear Logic </p><p>Outline </p><p>1</p><p>Proof Interpretations </p><p>23</p><p>Linear Logic Unified Interpretation of Linear Logic </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Outline </p><p>1</p><p>Proof Interpretations </p><p>23</p><p>Linear Logic Unified Interpretation of Linear Logic </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Proofs </p><p>Formulas as set of proofs </p><p>A</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">{π : π ` A} </li></ul><p></p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Proofs </p><p>Formulas as set of proofs </p><p>A</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">{π : π ` A} </li></ul><p></p><p>E.g. the set of prime numbers is infinite </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Proofs </p><p>Formulas as set of proofs </p><p>A</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">{π : π ` A} </li></ul><p></p><p>E.g. the set of prime numbers is infinite The book “Proofs from THE BOOK” contains six beautiful proofs of this </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Proofs </p><p>Formulas as set of proofs </p><p>A</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">{π : π ` A} </li></ul><p></p><p>E.g. the set of prime numbers is infinite The book “Proofs from THE BOOK” contains six beautiful proofs of this </p><p>Non-theorems map to the empty set E.g. the set of even numbers is finite </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Proofs </p><p>Formulas as set of proofs </p><p>A</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">{π : π ` A} </li></ul><p></p><p>E.g. the set of prime numbers is infinite The book “Proofs from THE BOOK” contains six beautiful proofs of this </p><p>Non-theorems map to the empty set E.g. the set of even numbers is finite </p><p>Need to fix the formal system </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Programs </p><p>Brouwer-Heyting-Kolmogorov Interpretation </p><p>Formulas as specifications (set of programs) </p><p>A</p><p>→</p><p>{p : p satisfies A} </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Programs </p><p>Brouwer-Heyting-Kolmogorov Interpretation </p><p>Formulas as specifications (set of programs) </p><p>A</p><p>→</p><p>{p : p satisfies A} <br>E.g. the set of prime numbers is infinite Specifies a program that on input n: N outputs a prime number p ≥ n and a certificate that p is prime </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Programs </p><p>Brouwer-Heyting-Kolmogorov Interpretation </p><p>Formulas as specifications (set of programs) </p><p>A</p><p>→</p><p>{p : p satisfies A} <br>E.g. the set of prime numbers is infinite Specifies a program that on input n: N outputs a prime number p ≥ n and a certificate that p is prime </p><p>If A is provable then the set should be non-empty </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Programs </p><p>Brouwer-Heyting-Kolmogorov Interpretation </p><p>Formulas as specifications (set of programs) </p><p>A</p><p>→</p><p>{p : p satisfies A} <br>E.g. the set of prime numbers is infinite Specifies a program that on input n: N outputs a prime number p ≥ n and a certificate that p is prime </p><p>If A is provable then the set should be non-empty Non-theorems map to un-implementable specifications </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Sets of Programs </p><p>Brouwer-Heyting-Kolmogorov Interpretation </p><p>Formulas as specifications (set of programs) </p><p>A</p><p>→</p><p>{p : p satisfies A} <br>E.g. the set of prime numbers is infinite Specifies a program that on input n: N outputs a prime number p ≥ n and a certificate that p is prime </p><p>If A is provable then the set should be non-empty Non-theorems map to un-implementable specifications </p><p>Need to fix formal system and programming language </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Types </p><p>Curry-Howard Correspondence Minimal Logic + Simply-typed λ-calculus </p><p></p><ul style="display: flex;"><li style="flex:1">π `<sub style="top: 0.1495em;">ML </sub>t<sub style="top: 0.1495em;">π </sub>: A </li><li style="flex:1">A</li></ul><p></p><p>⇔</p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Types </p><p>Curry-Howard Correspondence Minimal Logic + Simply-typed λ-calculus </p><p></p><ul style="display: flex;"><li style="flex:1">π `<sub style="top: 0.1495em;">ML </sub>t<sub style="top: 0.1495em;">π </sub>: A </li><li style="flex:1">A</li></ul><p></p><p>⇔</p><p>Extension 1: Heyting arith. + G¨odel primitive rec. </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Formulas as Types </p><p>Curry-Howard Correspondence Minimal Logic + Simply-typed λ-calculus </p><p></p><ul style="display: flex;"><li style="flex:1">π `<sub style="top: 0.1495em;">ML </sub>t<sub style="top: 0.1495em;">π </sub>: A </li><li style="flex:1">A</li></ul><p></p><p>⇔</p><p>Extension 1: Heyting arith. + G¨odel primitive rec. Extension 2: Classical logic + Continuation operator </p><p></p><ul style="display: flex;"><li style="flex:1">¬A </li><li style="flex:1">A</li></ul><p></p><p>·</p><p>B<br>¬A </p><p>···<br>···<br>··</p><p>⊥</p><p>B</p><ul style="display: flex;"><li style="flex:1">A</li><li style="flex:1">B</li></ul><p></p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p></p><ul style="display: flex;"><li style="flex:1">Formula A </li><li style="flex:1">⇒ Set of functionals |A| </li></ul><p></p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p></p><ul style="display: flex;"><li style="flex:1">Formula A </li><li style="flex:1">⇒ Set of functionals |A| </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Proof π </li><li style="flex:1">⇒ Functional f<sub style="top: 0.1494em;">π </sub>∈ |A| </li></ul><p></p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p>Formula A Proof π <br>⇒ Set of functionals |A| ⇒ Functional f<sub style="top: 0.1494em;">π </sub>∈ |A| </p><p>S<sub style="top: 0.1495em;">1 </sub>`<sub style="top: 0.1495em;">π </sub>A </p><p>⇒ S<sub style="top: 0.1495em;">2 </sub>` f<sub style="top: 0.1495em;">π </sub>∈ |A| </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p>Formula A </p><p>∀x∃y(y > x) </p><p>Proof π <br>⇒ Set of functionals |A| </p><p>{f : fx > x} </p><p>⇒ Functional f<sub style="top: 0.1494em;">π </sub>∈ |A| </p><p>S<sub style="top: 0.1495em;">1 </sub>`<sub style="top: 0.1495em;">π </sub>A </p><p>⇒ S<sub style="top: 0.1495em;">2 </sub>` f<sub style="top: 0.1495em;">π </sub>∈ |A| </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p>Formula A </p><p>∀x∃y(y > x) </p><p>Proof π </p><p>. . . </p><p>⇒ Set of functionals |A| </p><p>{f : fx > x} </p><p>⇒ Functional f<sub style="top: 0.1494em;">π </sub>∈ |A| </p><p>λx.x + 1 </p><p>S<sub style="top: 0.1495em;">1 </sub>`<sub style="top: 0.1495em;">π </sub>A </p><p>⇒ S<sub style="top: 0.1495em;">2 </sub>` f<sub style="top: 0.1495em;">π </sub>∈ |A| </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p>Dialectica (Go¨del 1958) <br>Relative consistency of Peano arithmetic PA </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p>Dialectica (Go¨del 1958) <br>Relative consistency of Peano arithmetic PA </p><p>(</p><p>Falsity interpreted as empty set (| ⊥ | ≡ ∅) </p><p>PA `⊥ ⇒ T ` ∃f(f ∈ ∅) </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p>Dialectica (Go¨del 1958) <br>Relative consistency of Peano arithmetic PA </p><p>(</p><p>Falsity interpreted as empty set (| ⊥ | ≡ ∅) </p><p>PA `⊥ ⇒ T ` ∃f(f ∈ ∅) </p><p>Modified realizability (Kreisel 1959) </p><p>Independence results for Heyting arithmetic HA </p><p>On Proof Interpretations and Linear Logic Proof Interpretations </p><p>Functional Interpretations </p><p>Dialectica (Go¨del 1958) <br>Relative consistency of Peano arithmetic PA </p><p>(</p><p>Falsity interpreted as empty set (| ⊥ | ≡ ∅) </p><p>PA `⊥ ⇒ T ` ∃f(f ∈ ∅) </p><p>Modified realizability (Kreisel 1959) </p><p>Independence results for Heyting arithmetic HA </p><p>(</p><p>|P| set of non-computable functionals </p><p>HA ` P </p><p></p><ul style="display: flex;"><li style="flex:1">⇒</li><li style="flex:1">HA<sup style="top: -0.4289em;">ω </sup>` ∃f(f ∈ |P|) </li></ul><p></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages97 Page
-
File Size-