Automatic Post-Editing for Machine Translation Rajen Chatterjee

Total Page:16

File Type:pdf, Size:1020Kb

Automatic Post-Editing for Machine Translation Rajen Chatterjee DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE ICT International Doctoral School Automatic Post-Editing for Machine Translation Rajen Chatterjee Advisor Dr. Marco Turchi Fondazione Bruno Kessler Co-Advisor arXiv:1910.08592v1 [cs.CL] 18 Oct 2019 Matteo Negri Fondazione Bruno Kessler October 2019 Abstract Automatic Post-Editing (APE) aims to correct systematic errors in a ma- chine translated text. This is primarily useful when the machine translation (MT) system is not accessible for improvement, leaving APE as a viable op- tion to improve translation quality as a downstream task - which is the focus of this thesis. This field has received less attention compared to MT due to several reasons, which include: the limited availability of data to perform a sound research, contrasting views reported by different researchers about the effectiveness of APE, and limited attention from the industry to use APE in current production pipelines. In this thesis, we perform a thorough investigation of APE as a down- stream task in order to: i) understand its potential to improve translation quality; ii) advance the core technology - starting from classical methods to recent deep-learning based solutions; iii) cope with limited and sparse data; iv) better leverage multiple input sources; v) mitigate the task-specific problem of over-correction; vi) enhance neural decoding to leverage external knowledge; and vii) establish an online learning framework to handle data diversity in real-time. All the above contributions are discussed across several chapters, and most of them are evaluated in the APE shared task organized each year at the Conference on Machine Translation. Our efforts in improving the technology resulted in the best system at the 2017 APE shared task, and our work on online learning received a distinguished paper award at the Italian Conference on Computational Linguistics. Overall, outcomes and findings of our work have boost interest among researchers and attracted industries to examine this technology to solve real-word problems. Keywords Automatic Post-Editing, Machine Translation, Deep Learn- ing, Natural Language Processing, Neural Network Acknowledgement First and foremost, I want to thank my advisor Dr. Marco Turchi. It has been an honor to be his PhD student. I truly appreciate his guidance and moral support throughout my PhD pursuit. It has always been fun to discuss technical topics and brainstorm research ideas. He was always there to support my victory and share my failure. His guidance, suggestions, and feedback helped me to be a better person in my professional and personal life. Without his support this journey of PhD would have been incomplete. I also want to thank my co-advisor Matteo Negri to be my inspiration of creativity. His guidance helped me a lot to improve my skill in writing research papers, making presentation slides, and speaking in front of large audience about my work. He has always been the source of motivation to achieve my goals. I would like to thank all the members of the machine translation group at Fondazione Bruno Kessler for their valuable time to discuss research during meetings, presentations, and lunch break. Thanks to all the fellow Interns, Masters, and PhD students for making my journey joyful. A special thanks to all the people involved in providing infrastructure support and resolving any issue at their earliest. I also want to thank all the staff of the University of Trento and the Welcome Office to help me with all the bureaucratic work. Lastly, I want to thank my parents and all family members for their love, encouragement, and sacrifices. A special thanks to my sister Moushmi Baner- jee for guiding me through each step of my life and helping me to pursue the right career for which I was able to begin this exiting journey of PhD. Most of all thanks to my loving, caring, and encouraging wife Kaustri Bhattacharyya whose support and patient during the final stages of my Ph.D. is much ap- preciated. i ii Contents 1 Introduction 1 1.1 Motivation . .2 1.2 Problems . .3 1.2.1 Data . .3 1.2.2 Technology . .4 1.2.3 Application . .6 1.3 Outline . .7 1.4 Contribution . 10 2 MT Background 17 2.1 Translation Market . 17 2.2 Machine Translation . 19 2.2.1 Phrase-based Statistical MT (PBSMT) . 20 2.2.2 Neural Machine Translation (NMT) . 28 2.3 MT Evaluation . 32 2.3.1 Automatic Evaluation . 32 2.3.2 Human Evaluation . 35 2.4 Summary . 36 3 Automatic Post-Editing 37 3.1 Introduction . 37 3.2 Motivation . 39 iii 3.3 Literature Review . 40 3.3.1 APE Paradigm: Rule-based, Phrase-based, or Neural . 40 3.3.2 MT Engine Accessibility: Glass-box vs. Black-box . 42 3.3.3 Type of Post-Editing Data: Simulated vs. Real . 43 3.3.4 Domain of the Data: Generic vs. Specific . 44 3.3.5 Learning Mode: Offline vs. Online . 46 3.4 Findings from APE shared task at WMT . 47 3.4.1 The Pilot Round (2015) . 49 3.4.2 The Second Round (2016) . 52 3.4.3 The Third Round (2017) . 54 3.5 Summary . 56 4 Phrase-based APE 59 4.1 Introduction . 59 4.2 Monolingual APE . 60 4.3 Context-aware APE . 61 4.4 Effectiveness of APE for Domain-specific Data . 63 4.4.1 Reimplementing the two APE variants . 64 4.4.2 Experimental Setting . 64 4.4.3 Results . 66 4.5 Effectiveness of APE for Generic Data . 68 4.5.1 Experimental Settings . 68 4.5.2 APE Pipeline . 69 4.5.3 Full-Fledged Systems . 74 4.6 Summary . 75 5 Hybrid APE 77 5.1 Introduction . 77 5.2 Factored Phrase-based MT . 78 5.3 Factored Phrase-based APE . 79 iv 5.3.1 Factor Creation . 80 5.3.2 Neural Language Model . 80 5.4 Experimental Setting . 82 5.5 Results . 83 5.6 Summary . 87 6 End-to-End Neural APE 89 6.1 Introduction . 89 6.2 Multi-source Neural APE . 90 6.2.1 Experiments . 91 6.2.2 Results on Test Data . 97 6.3 Summary . 98 7 Combining APE and QE for MT 101 7.1 Introduction . 102 7.2 Quality Estimation . 103 7.3 Integrating External Knowledge in NMT Decoding . 104 7.3.1 Related Work . 105 7.3.2 Guided NMT decoding . 106 7.3.3 Experimental Settings . 112 7.3.4 Results . 113 7.4 QE and APE Integration Strategies . 116 7.4.1 QE as APE activator . 117 7.4.2 QE as APE guidance . 118 7.4.3 QE as MT/APE selector . 119 7.4.4 Experimental Settings . 120 7.4.5 Results and Discussion . 122 7.5 Summary . 128 v 8 Online Phrase-based APE 129 8.1 Introduction . 129 8.2 Related work . 131 8.3 Online APE system . 132 8.3.1 Instance selection . 133 8.3.2 Dynamic knowledge base . 135 8.3.3 Negative feedback in-the-loop . 136 8.4 Experimental Setting . 138 8.5 Results . 139 8.6 Analysis . 141 8.7 Summary . 145 9 Conclusion 147 9.1 Data . 147 9.2 Technology . 148 9.3 Applications . 150 9.4 Open Problems . 151 Bibliography 153 vi List of Tables 1.1 Examples illustrating the problem of over-correction in APE task. .6 3.1 Official results for the WMT15 Automatic Post-editing task. 49 3.2 Official results for the WMT16 Automatic Post-editing task. 52 3.3 Results for the WMT17 APE EN-DE task. 55 3.4 Results for the WMT17 APE DE-EN task. 57 4.1 An example of joint representation used in context-aware trans- lation. 62 4.2 Data statistics for each language. 65 4.3 Performance of the MT baseline and the APE methods for each language pair. Results for APE-2 marked with the “∗” symbol are statistically significant compared to APE-1. 66 4.4 Performance (TER score) of the APE systems using various LMs on dev set . 70 4.5 Performance (TER score) of the APE-1-LM1 after pruning at various threshold values on dev set . 72 4.6 Performance (TER score) of the APE-2-LM1 after pruning at various threshold values on dev set . 72 4.7 Performance (TER score) of the APE-1-LM1-Prun0.4 for dif- ferent features . 74 vii 4.8 Performance (TER score) of the APE-2-LM1-Prun0.2 for dif- ferent features on dev set . 74 4.9 APE shared task evaluation score (TER) . 75 5.1 Example of parallel corpus with factored representation. 79 5.2 Performance of the APE systems on development set (“y” in- dicates statistically significant differences wrt. Baseline with p<0.05). 83 5.3 Performance of the Factored APE-2 for various LMs (statisti- cal word-based LM is present in all the experiments by default). 85 5.4 Performance of the combined factored model for various tuning configurations. 85 5.5 Performance of the APE system with quality estimation for various thresholds. 86 5.6 Results of our submission to the 2016 WMT APE shared task (“y” indicates statistically significant differences wrt. Baseline (MT) with p<0.05). 87 6.1 Performance of the APE systems on dev. 2016 (EN-DE) (“y” indicates statistically significant differences wrt. MT_Baseline with p<0.05). 94 6.2 Performance of the APE systems on dev. 2017 (DE-EN ) (“y” indicates statistically significant differences wrt. MT_Baseline with p<0.05). 95 6.3 Performance of the APE systems on the 2016 WMT test set (EN-DE) (“y” indicates statistically significant differences wrt. MT_Baseline with p<0.05).
Recommended publications
  • Can You Give Me Another Word for Hyperbaric?: Improving Speech
    “CAN YOU GIVE ME ANOTHER WORD FOR HYPERBARIC?”: IMPROVING SPEECH TRANSLATION USING TARGETED CLARIFICATION QUESTIONS Necip Fazil Ayan1, Arindam Mandal1, Michael Frandsen1, Jing Zheng1, Peter Blasco1, Andreas Kathol1 Fred´ eric´ Bechet´ 2, Benoit Favre2, Alex Marin3, Tom Kwiatkowski3, Mari Ostendorf3 Luke Zettlemoyer3, Philipp Salletmayr5∗, Julia Hirschberg4, Svetlana Stoyanchev4 1 SRI International, Menlo Park, USA 2 Aix-Marseille Universite,´ Marseille, France 3 University of Washington, Seattle, USA 4 Columbia University, New York, USA 5 Graz Institute of Technology, Austria ABSTRACT Our previous work on speech-to-speech translation systems has We present a novel approach for improving communication success shown that there are seven primary sources of errors in translation: between users of speech-to-speech translation systems by automat- • ASR named entity OOVs: Hi, my name is Colonel Zigman. ically detecting errors in the output of automatic speech recogni- • ASR non-named entity OOVs: I want some pristine plates. tion (ASR) and statistical machine translation (SMT) systems. Our approach initiates system-driven targeted clarification about errorful • Mispronunciations: I want to collect some +de-MOG-raf-ees regions in user input and repairs them given user responses. Our about your family? (demographics) system has been evaluated by unbiased subjects in live mode, and • Homophones: Do you have any patients to try this medica- results show improved success of communication between users of tion? (patients vs. patience) the system. • MT OOVs: Where is your father-in-law? Index Terms— Speech translation, error detection, error correc- • Word sense ambiguity: How many men are in your com- tion, spoken dialog systems. pany? (organization vs.
    [Show full text]
  • A Survey of Voice Translation Methodologies - Acoustic Dialect Decoder
    International Conference On Information Communication & Embedded Systems (ICICES-2016) A SURVEY OF VOICE TRANSLATION METHODOLOGIES - ACOUSTIC DIALECT DECODER Hans Krupakar Keerthika Rajvel Dept. of Computer Science and Engineering Dept. of Computer Science and Engineering SSN College Of Engineering SSN College of Engineering E-mail: [email protected] E-mail: [email protected] Bharathi B Angel Deborah S Vallidevi Krishnamurthy Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science and Engineering and Engineering and Engineering SSN College Of Engineering SSN College Of Engineering SSN College Of Engineering E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] Abstract— Speech Translation has always been about giving in order to make the process of communication amongst source text/audio input and waiting for system to give humans better, easier and efficient. However, the existing translated output in desired form. In this paper, we present the methods, including Google voice translators, typically Acoustic Dialect Decoder (ADD) – a voice to voice ear-piece handle the process of translation in a non-automated manner. translation device. We introduce and survey the recent advances made in the field of Speech Engineering, to employ in This makes the process of translation of word(s) and/or the ADD, particularly focusing on the three major processing sentences from one language to another, slower and more steps of Recognition, Translation and Synthesis. We tackle the tedious. We wish to make that process automatic – have a problem of machine understanding of natural language by device do what a human translator does, inside our ears.
    [Show full text]
  • Learning Speech Translation from Interpretation
    Learning Speech Translation from Interpretation zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften von der Fakult¨atf¨urInformatik Karlsruher Institut f¨urTechnologie (KIT) genehmigte Dissertation von Matthias Paulik aus Karlsruhe Tag der m¨undlichen Pr¨ufung: 21. Mai 2010 Erster Gutachter: Prof. Dr. Alexander Waibel Zweiter Gutachter: Prof. Dr. Tanja Schultz Ich erkl¨arehiermit, dass ich die vorliegende Arbeit selbst¨andig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe sowie dass ich die w¨ortlich oder inhaltlich ¨ubernommenen Stellen als solche kenntlich gemacht habe und die Satzung des KIT, ehem. Universit¨atKarlsruhe (TH), zur Sicherung guter wissenschaftlicher Praxis in der jeweils g¨ultigenFassung beachtet habe. Karlsruhe, den 21. Mai 2010 Matthias Paulik Abstract The basic objective of this thesis is to examine the extent to which automatic speech translation can benefit from an often available but ignored resource, namely human interpreter speech. The main con- tribution of this thesis is a novel approach to speech translation development, which makes use of that resource. The performance of the statistical models employed in modern speech translation systems depends heavily on the availability of vast amounts of training data. State-of-the-art systems are typically trained on: (1) hundreds, sometimes thousands of hours of manually transcribed speech audio; (2) bi-lingual, sentence-aligned text corpora of man- ual translations, often comprising tens of millions of words; and (3) monolingual text corpora, often comprising hundreds of millions of words. The acquisition of such enormous data resources is highly time-consuming and expensive, rendering the development of deploy- able speech translation systems prohibitive to all but a handful of eco- nomically or politically viable languages.
    [Show full text]
  • Is 42 the Answer to Everything in Subtitling-Oriented Speech Translation?
    Is 42 the Answer to Everything in Subtitling-oriented Speech Translation? Alina Karakanta Matteo Negri Marco Turchi Fondazione Bruno Kessler Fondazione Bruno Kessler Fondazione Bruno Kessler University of Trento Trento - Italy Trento - Italy Trento - Italy [email protected] [email protected] [email protected] Abstract content, still rely heavily on human effort. In a typi- cal multilingual subtitling workflow, a subtitler first Subtitling is becoming increasingly important creates a subtitle template (Georgakopoulou, 2019) for disseminating information, given the enor- by transcribing the source language audio, timing mous amounts of audiovisual content becom- and adapting the text to create proper subtitles in ing available daily. Although Neural Machine Translation (NMT) can speed up the process the source language. These source language subti- of translating audiovisual content, large man- tles (also called captions) are already compressed ual effort is still required for transcribing the and segmented to respect the subtitling constraints source language, and for spotting and seg- of length, reading speed and proper segmentation menting the text into proper subtitles. Cre- (Cintas and Remael, 2007; Karakanta et al., 2019). ating proper subtitles in terms of timing and In this way, the work of an NMT system is already segmentation highly depends on information simplified, since it only needs to translate match- present in the audio (utterance duration, natu- ing the length of the source text (Matusov et al., ral pauses). In this work, we explore two meth- ods for applying Speech Translation (ST) to 2019; Lakew et al., 2019). However, the essence subtitling: a) a direct end-to-end and b) a clas- of a good subtitle goes beyond matching a prede- sical cascade approach.
    [Show full text]
  • Speech Translation Into Pakistan Sign Language
    Master Thesis Computer Science Thesis No: MCS-2010-24 2012 Speech Translation into Pakistan Sign Language Speech Translation into Pakistan Sign AhmedLanguage Abdul Haseeb Asim Illyas Speech Translation into Pakistan Sign LanguageAsim Ilyas School of Computing Blekinge Institute of Technology SE – 371 79 Karlskrona Sweden This thesis is submitted to the School of Computing at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Computer Science. The thesis is equivalent to 20 weeks of full time studies. Contact Information: Authors: Ahmed Abdul Haseeb E-mail: [email protected] Asim Ilyas E-mail: [email protected] University advisor: Prof. Sara Eriksén School of Computing, Blekinge Institute of Technology Internet : www.bth.se/com SE – 371 79 Karlskrona Phone : +46 457 38 50 00 Sweden Fax : + 46 457 271 25 ABSTRACT Context: Communication is a primary human need and language is the medium for this. Most people have the ability to listen and speak and they use different languages like Swedish, Urdu and English etc. to communicate. Hearing impaired people use signs to communicate. Pakistan Sign Language (PSL) is the preferred language of the deaf in Pakistan. Currently, human PSL interpreters are required to facilitate communication between the deaf and hearing; they are not always available, which means that communication among the deaf and other people may be impaired or nonexistent. In this situation, a system with voice recognition as an input and PSL as an output will be highly helpful. Objectives: As part of this thesis, we explore challenges faced by deaf people in everyday life while interacting with unimpaired.
    [Show full text]
  • Between Flexibility and Consistency: Joint Generation of Captions And
    Between Flexibility and Consistency: Joint Generation of Captions and Subtitles Alina Karakanta1,2, Marco Gaido1,2, Matteo Negri1, Marco Turchi1 1 Fondazione Bruno Kessler, Via Sommarive 18, Povo, Trento - Italy 2 University of Trento, Italy {akarakanta,mgaido,negri,turchi}@fbk.eu Abstract material but also between each other, for example in the number of blocks (pieces of time-aligned Speech translation (ST) has lately received text) they occupy, their length and segmentation. growing interest for the generation of subtitles Consistency is vital for user experience, for ex- without the need for an intermediate source language transcription and timing (i.e. cap- ample in order to elicit the same reaction among tions). However, the joint generation of source multilingual audiences, or to facilitate the quality captions and target subtitles does not only assurance process in the localisation industry. bring potential output quality advantageswhen Previous work in ST for subtitling has focused the two decoding processes inform each other, on generating interlingual subtitles (Matusov et al., but it is also often required in multilingual sce- 2019; Karakanta et al., 2020a), a) without consid- narios. In this work, we focus on ST models ering the necessity of obtaining captions consis- which generate consistent captions-subtitles in tent with the target subtitles, and b) without ex- terms of structure and lexical content. We further introduce new metrics for evaluating amining whether the joint generation leads to im- subtitling consistency. Our findings show that provements in quality. We hypothesise that knowl- joint decoding leads to increased performance edge sharing between the tasks of transcription and consistency between the generated cap- and translation could lead to such improvements.
    [Show full text]
  • Implementing Machine Translation and Post-Editing to the Translation of Wildlife Documentaries Through Voice-Over and Off-Screen Dubbing
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Universitat Autònoma de Barcelona Departament de Traducció i d’Interpretació i d’Estudis de l’Asia Oriental Doctorat en Traducció i Estudis Interculturals Implementing Machine Translation and Post-Editing to the Translation of Wildlife Documentaries through Voice-over and Off-screen Dubbing A Research on Effort and Quality PhD dissertation presented by: Carla Ortiz Boix Supervised and tutorized by: Dr. Anna Matamala 2016 A la meva família: als que hi són, als que no, i als que només hi són a mitges. Acknowledgments The road to finishing this PhD has not been easy and it would not have been accomplished without the priceless support of many: First of all, I want to thank my supervisor, Dr. Anna Matamala, for all her hard work. It has not been an easy road and sometimes I would have lost the right path if she had not been there to support, encourage, and challenge me. The PhD would not have come out the way it has without you. On a professional level, I also want to thank Dr.
    [Show full text]
  • Breeding Gender-Aware Direct Speech Translation Systems
    Breeding Gender-aware Direct Speech Translation Systems Marco Gaido1,2 y, Beatrice Savoldi2 y, Luisa Bentivogli1, Matteo Negri1, Marco Turchi1 1Fondazione Bruno Kessler, Trento, Italy 2University of Trento, Italy fmgaido,bentivo,negri,[email protected],[email protected] Abstract In automatic speech translation (ST), traditional cascade approaches involving separate transcrip- tion and translation steps are giving ground to increasingly competitive and more robust direct solutions. In particular, by translating speech audio data without intermediate transcription, di- rect ST models are able to leverage and preserve essential information present in the input (e.g. speaker’s vocal characteristics) that is otherwise lost in the cascade framework. Although such ability proved to be useful for gender translation, direct ST is nonetheless affected by gender bias just like its cascade counterpart, as well as machine translation and numerous other natural language processing applications. Moreover, direct ST systems that exclusively rely on vocal biometric features as a gender cue can be unsuitable and potentially harmful for certain users. Going beyond speech signals, in this paper we compare different approaches to inform direct ST models about the speaker’s gender and test their ability to handle gender translation from English into Italian and French. To this aim, we manually annotated large datasets with speakers’ gen- der information and used them for experiments reflecting different possible real-world scenarios. Our results show that gender-aware direct ST solutions can significantly outperform strong – but gender-unaware – direct ST models. In particular, the translation of gender-marked words can increase up to 30 points in accuracy while preserving overall translation quality.
    [Show full text]
  • TAUS Speech-To-Speech Translation Technology Report March 2017
    TAUS Speech-to-Speech Translation Technology Report March 2017 1 Authors: Mark Seligman, Alex Waibel, and Andrew Joscelyne Contributor: Anne Stoker COPYRIGHT © TAUS 2017 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system of any nature, or transmit- ted or made available in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of TAUS. TAUS will pursue copyright infringements. In spite of careful preparation and editing, this publication may contain errors and imperfections. Au- thors, editors, and TAUS do not accept responsibility for the consequences that may result thereof. Design: Anne-Maj van der Meer Published by TAUS BV, De Rijp, The Netherlands For further information, please email [email protected] 2 Table of Contents Introduction 4 A Note on Terminology 5 Past 6 Orientation: Speech Translation Issues 6 Present 17 Interviews 19 Future 42 Development of Current Trends 43 New Technology: The Neural Paradigm 48 References 51 Appendix: Survey Results 55 About the Authors 56 3 Introduction The dream of automatic speech-to-speech devices enabling on-the-spot exchanges using translation (S2ST), like that of automated trans- voice or text via smartphones – has helped lation in general, goes back to the origins of promote the vision of natural communication computing in the 1950s. Portable speech trans- on a globally connected planet: the ability to lation devices have been variously imagined speak to someone (or to a robot/chatbot) in as Star Trek’s “universal translator” to negoti- your language and be immediately understood ate extraterrestrial tongues, Douglas Adams’ in a foreign language.
    [Show full text]
  • Arxiv:2006.01080V1 [Cs.CL] 1 Jun 2020
    Is 42 the Answer to Everything in Subtitling-oriented Speech Translation? Alina Karakanta Matteo Negri Marco Turchi Fondazione Bruno Kessler Fondazione Bruno Kessler Fondazione Bruno Kessler University of Trento Trento - Italy Trento - Italy Trento - Italy [email protected] [email protected] [email protected] Abstract content, still rely heavily on human effort. In a typi- cal multilingual subtitling workflow, a subtitler first Subtitling is becoming increasingly important creates a subtitle template (Georgakopoulou, 2019) for disseminating information, given the enor- by transcribing the source language audio, timing mous amounts of audiovisual content becom- and adapting the text to create proper subtitles in ing available daily. Although Neural Machine Translation (NMT) can speed up the process the source language. These source language subti- of translating audiovisual content, large man- tles (also called captions) are already compressed ual effort is still required for transcribing the and segmented to respect the subtitling constraints source language, and for spotting and seg- of length, reading speed and proper segmentation menting the text into proper subtitles. Cre- (Cintas and Remael, 2007; Karakanta et al., 2019). ating proper subtitles in terms of timing and In this way, the work of an NMT system is already segmentation highly depends on information simplified, since it only needs to translate match- present in the audio (utterance duration, natu- ing the length of the source text (Matusov et al., ral pauses). In this work, we explore two meth- ods for applying Speech Translation (ST) to 2019; Lakew et al., 2019). However, the essence subtitling: a) a direct end-to-end and b) a clas- of a good subtitle goes beyond matching a prede- sical cascade approach.
    [Show full text]
  • Multilingual Named Entity Extraction and Translation from Text and Speech
    MULTILINGUAL NAMED ENTITY EXTRACTION AND TRANSLATION FROM TEXT AND SPEECH Fei Huang December 2005 CMU-LTI-06-001 Language Technologies Institute School of Computer Science Carnegie Mellon University 5000 Forbes Ave., Pittsburgh, PA 15213 www.lti.cs.cmu.edu THESIS COMMITTEE Alexander Waibel (Chair) Stephan Vogel Alon Lavie Tanja Schultz Kevin Knight (USC/ISI) Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy °c 2005 Fei Huang 1 Acknowledgements I want to thank this age, the age of globalization, especially its posi- tive effect on China. When I was 10 years old, I could not imagine I would visit another country tens of thousands of miles away, living there for more than six years for my doctoral study, and having the opportunity of appreciating different cultures. I hope the globaliza- tion will continue to shape everyone’s life in a positive manner. I owe a lot to my thesis committee members. I greatly benefited from the scientific vision of my advisor, Alex Waibel. He often pointed out new directions in my research, helped me develop in- dependent research ability and challenged my over-prudence. ”Be BOLD!” Yes I will keep this as my lifelong reminder. I also appre- ciate the constant support from my direct supervisor, mentor and friend, Stephan Vogel. He has always been available for both scien- tific and causal discussions. I gained a lot from his rich experience in machine translation. Working with him has been fun, especially during the DARPA machine translation evaluations! Alon Lavie and Kevin Knight helped me both scientifically and professionally.
    [Show full text]
  • Integration of Speech Recognition and Machine Translation in Computer-Assisted Translation Shahram Khadivi and Hermann Ney, Senior Member, IEEE
    IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 16, NO. 8, NOVEMBER 2008 1551 Integration of Speech Recognition and Machine Translation in Computer-Assisted Translation Shahram Khadivi and Hermann Ney, Senior Member, IEEE Abstract—Parallel integration of automatic speech recognition (ASR) models and statistical machine translation (MT) models is an unexplored research area in comparison to the large amount of works done on integrating them in series, i.e., speech-to-speech translation. Parallel integration of these models is possible when we have access to the speech of a target language text and to its corre- sponding source language text, like a computer-assisted translation system. To our knowledge, only a few methods for integrating ASR models with MT models in parallel have been studied. In this paper, we systematically study a number of different translation models in the context of the -best list rescoring. As an alternative to the -best list rescoring, we use ASR word graphs in order to arrive at a tighter integration of ASR and MT models. The experiments are carried out on two tasks: English-to-German with an ASR vo- cabulary size of 17 K words, and Spanish-to-English with an ASR Fig. 1. Schematic of automatic text dictation in computer-assisted translation. vocabulary of 58 K words. For the best method, the MT models re- duce the ASR word error rate by a relative of 18% and 29% on the 17 K and the 58 K tasks, respectively. language speech is a human-produced translation of the source Index Terms—Computer-assisted translation (CAT), speech language text.
    [Show full text]