The Role of HIF-1Α in Sarcoma Metastasis and Response to Radiation Therapy

Total Page:16

File Type:pdf, Size:1020Kb

The Role of HIF-1Α in Sarcoma Metastasis and Response to Radiation Therapy The Role of HIF-1α in Sarcoma Metastasis and Response to Radiation Therapy by Minsi Zhang Department of Pharmacology and Cancer Biology Duke University Date:_______________________ Approved: ___________________________ David Kirsch, Supervisor ___________________________ Mark Dewhirst ___________________________ Christopher Kontos ___________________________ Kenneth Poss ___________________________ Jeffrey Rathmell Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Pharmacology and Cancer Biology in the Graduate School of Duke University 2015 ABSTRACT The Role of HIF-1α in Sarcoma Metastasis and Response to Radiation Therapy by Minsi Zhang Department of Pharmacology and Cancer Biology Duke University Date:_______________________ Approved: ___________________________ David Kirsch, Supervisor ___________________________ Mark Dewhirst ___________________________ Christopher Kontos ___________________________ Kenneth Poss ___________________________ Jeffrey Rathmell An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Pharmacology and Cancer Biology in the Graduate School of Duke University 2015 Copyright by Minsi Zhang 2015 Abstract The degree of intratumoral hypoxia is clinically correlated to poor response to therapy and increased incidence of distal spread in various cancer subtypes. Specifically, the transcription factor Hypoxia Inducible Factor-1α (HIF- 1α), which is accumulated in cells in response to a hypoxic microenvironment, is implicated in poor disease outcome associated with intratumoral hypoxia. Using novel genetically engineered mouse models of primary soft tissue sarcoma, I show that in vivo genetic deletion of HIF-1α specifically in tumor cells 1) decreases the incidence of lung metastases by limiting sarcoma collagen deposition, and 2) improves sarcoma response to radiation therapy by limiting the inflammatory response and metabolic adaptations. These results define HIF- 1α as a potential target for cancer therapy. iv Dedication This thesis is dedicated to my parents, Xianping and Weiwei, and my husband Ben for their enduring support. v Contents Abstract ................................................................................................................iv Dedication ............................................................................................................ v List of Tables ........................................................................................................ x List of Figures .......................................................................................................xi Acknowledgements ............................................................................................ xiii 1. Introduction ....................................................................................................... 1 1.1 Intratumoral Hypoxia and Hypoxia Inducible Factor-1 ............................... 1 1.2 Hypoxia, HIF-1α, and Metastasis .............................................................. 3 1.3 Hypoxia, HIF-1α, and Radiation Resistance ............................................. 4 1.4 Glucose Metabolism, Hypoxia, and the Warburg Effect ............................ 6 1.5 Inflammation, Hypoxia, and Cancer Treatment Resistance .................... 10 1.5.1 NF-κB and IRFs .................................................................................. 10 1.5.2 Tumor Inflammation and Its Association with Hypoxia and Cancer Treatment Resistance ................................................................................. 13 1.6 Primary Mouse Models of Soft Tissue Sarcoma ..................................... 14 1.6.1 Soft Tissue Sarcoma: Rhabdomyosarcoma and Undifferentiated Pleomorphic Sarcoma ................................................................................. 14 1.6.2 Site-Specific Recombination with the Cre-loxP and the Flp-FRT Systems ....................................................................................................... 15 1.6.3 Primary Mouse Models of RMS and UPS ........................................... 19 vi 1.7 Study Objectives ..................................................................................... 20 2. Materials and Methods ................................................................................... 21 2.1 in vivo Experiments ................................................................................. 21 2.1.1 Generation of Novel Mouse Models ................................................... 21 2.1.1.1 Adeno-Cre mediated sarcomagenesis ......................................... 22 2.1.1.2 4-hydroxytamoxifen mediated sarcomagenesis ........................... 23 2.1.1.3 Tamoxifen mediated Cre-ERT2 recombination of loxP sites ......... 23 2.1.2 Limb Amputation Survival Surgery ..................................................... 23 2.1.3 Image-Guided Fractionated Radiation Therapy .................................. 24 2.1.4 Injection of EF5 and Hoechst 33342 ................................................... 25 2.2 in vitro and Molecular Experiments ......................................................... 25 2.2.1 Tumor Cell Isolation and Culture ........................................................ 25 2.2.2 PCR, qRT-PCR .................................................................................. 26 2.2.3 Western Blot, Immunofluorescence, Immunohistochemistry, Fluorescence-Activated Cell Sorting ............................................................ 29 2.2.4 Tissue Microarrays ............................................................................. 31 2.2.5 RNA-Sequencing ................................................................................ 32 2.2.6 Targeted Metabolite Analysis ............................................................. 32 2.2.7 Seahorse Analysis .............................................................................. 33 2.2.8 DNA End-Joining Repair Assay .......................................................... 33 vii 3. HIF-1α Promotes Undifferentiated Pleomorphic Sarcoma Metastasis through Transcriptional Upregulation of Lysyl Hydroxylase 2 (PLOD2) ........................... 35 3.1 Introduction ............................................................................................. 35 3.2 Results .................................................................................................... 36 3.2.1 Characterization of primary mouse UPS with tumor-specific HIF-1α deletion ........................................................................................................ 36 3.2.2 Tumor-specific HIF-1α deletion in primary mouse UPS decreases metastasis in vivo ........................................................................................ 43 3.2.3 HIF-1α mediates metastasis in UPS by PLOD2 ................................. 46 3.3 Discussion ............................................................................................... 53 4. The Generation of Novel Mouse Models ........................................................ 57 4.1 Introduction ............................................................................................. 57 4.2 Results .................................................................................................... 60 4.2.1 The generation of Flp-frt regulated Cre-ERT2 alleles .......................... 60 4.2.2 The generation of a novel mouse model of soft tissue sarcoma ......... 70 4.3 Discussion ............................................................................................... 75 5. HIF-1α Promotes Soft Tissue Sarcoma Resistance to Radiation Therapy via Activation of the Glycolytic and Pro-Inflammatory Pathways .............................. 78 5.1 Introduction ............................................................................................. 78 5.2 Results .................................................................................................... 80 5.2.1 Human soft tissue sarcoma upregulates HIF-1α after chemo-radiation therapy ........................................................................................................ 80 viii 5.2.2 Deletion of HIF-1α sensitizes sarcoma cells to radiation in a cell- autonomous manner .................................................................................... 81 5.2.3 Deletion of HIF-1α does not affect DNA damage repair, cellular ROS response or autophagy following irradiation ................................................ 88 5.2.4 Deletion of HIF-1α leads to changes in mitochondrial homeostasis following irradiation ...................................................................................... 93 5.2.5 HIF-1α regulates distinct transcriptional targets after hypoxia and radiation ....................................................................................................... 97 5.3 Discussion ............................................................................................. 100 6. Conclusion .................................................................................................... 105 Appendix A: Genes differentially expressed between P7NP and P7NPH1 cells under normoxia without irradiation .................................................................... 116 Appendix B: Genes differentially expressed between P7NP and P7NPH1 cells 24 hours after 6 Gy irradiation
Recommended publications
  • Tyler Jacks, Phd President, Break Through Cancer; Founding Director, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
    Tyler Jacks, PhD President, Break Through Cancer; Founding Director, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology www.breakthroughcancer.org Dr. Tyler Jacks, the President of Break Through Can- Dr. Jacks is an elected member of the National Acad- cer, has dedicated his life to cancer research. He emy of Sciences, the National Academy of Medicine, is the Founding Director of the Koch Institute for the American Academy of Arts and Sciences, and Integrative Cancer Research at the Massachusetts was a member of the inaugural class of Fellows of Institute of Technology, the David H. Koch Profes- the AACR Academy. In 2015, Dr. Jacks received the sor of Biology, and Co-director of the Ludwig Cen- Killian Faculty Achievement Award, the highest honor ter for Molecular Oncology. From 2001 – 2007, he the MIT faculty can bestow upon one of its members. served as director of the Koch Institute’s predeces- In 2016, Dr. Jacks co-chaired the Blue-Ribbon Panel sor, the MIT Center for Cancer Research, and was for (then) Vice President Joe Biden’s Cancer Moon- a long-standing Investigator of the Howard Hughes shot Initiative. He was also chair of the National Medical Institute (1994-2021). Dr. Jacks received his Cancer Advisory Board of the National Cancer Insti- bachelor’s degree in Biology from Harvard College, tute during the Obama administration. and his doctorate from the University of California, Dr. Jacks serves on the Board of San Francisco, where he trained with Nobel Laure- Directors of Amgen and Thermo ate Harold Varmus. He was a postdoctoral fellow Fisher Scientific.
    [Show full text]
  • Francisco J. Sánchez-Rivera
    Francisco J. Sánchez-Rivera Memorial Sloan Kettering Cancer Center Sloan Kettering Institute Zuckerman Research Building 417 East 68th Street - Z-1119 New York, NY 10065 Tel: 939-292-5555 E-mail: [email protected] Education Fall 2008 - Winter 2016 Massachusetts Institute of Technology Department of Biology Ph.D. in Biology Fall 2003 - Spring 2008 University of Puerto Rico, Mayagüez, PR Department of Biology B.S. in Microbiology Research January 2016 - Present Memorial Sloan Kettering Cancer Center - Sloan Kettering Institute Postdoctoral fellow in the laboratory of Dr. Scott W. Lowe Main Project: Dissecting the biological impact of mutational heterogeneity using mouse models and genome engineering June 2009 - January 2016 Department of Biology at MIT and David H. Koch Institute for Integrative Cancer Research Graduate student in the laboratory of Dr. Tyler Jacks Thesis title: Constructing and deconstructing cancer using CRISPR-Cas9 Main projects: 1) Modeling cancer in vivo using the CRISPR-Cas9 system. 2) CRISPR screens for uncovering genotype-specific cancer drug targets. 3) Molecular mechanisms dictating tumor-specific responses to p53 restoration. June 2008 - August 2008 Whitehead Institute for Biomedical Research Summer student researcher in the laboratory of Dr. Harvey F. Lodish Project: The role of histone deacetylases in enucleation of cultured mouse fetal erythroblasts. June 2007 - August 2007 Department of Biology at MIT Summer student researcher in the laboratory of Dr. Stephen P. Bell Project: Identification of dominant negative helicase mutants by insertional mutagenesis of the yeast replicative helicase Mcm2-7. January 2006 - May 2008 University of Puerto Rico, Mayagüez Campus Department of Biology Undergraduate researcher in the laboratory of Dr.
    [Show full text]
  • Profiling Data
    Compound Name DiscoveRx Gene Symbol Entrez Gene Percent Compound Symbol Control Concentration (nM) JNK-IN-8 AAK1 AAK1 69 1000 JNK-IN-8 ABL1(E255K)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317I)-nonphosphorylated ABL1 87 1000 JNK-IN-8 ABL1(F317I)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317L)-nonphosphorylated ABL1 65 1000 JNK-IN-8 ABL1(F317L)-phosphorylated ABL1 61 1000 JNK-IN-8 ABL1(H396P)-nonphosphorylated ABL1 42 1000 JNK-IN-8 ABL1(H396P)-phosphorylated ABL1 60 1000 JNK-IN-8 ABL1(M351T)-phosphorylated ABL1 81 1000 JNK-IN-8 ABL1(Q252H)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(Q252H)-phosphorylated ABL1 56 1000 JNK-IN-8 ABL1(T315I)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(T315I)-phosphorylated ABL1 92 1000 JNK-IN-8 ABL1(Y253F)-phosphorylated ABL1 71 1000 JNK-IN-8 ABL1-nonphosphorylated ABL1 97 1000 JNK-IN-8 ABL1-phosphorylated ABL1 100 1000 JNK-IN-8 ABL2 ABL2 97 1000 JNK-IN-8 ACVR1 ACVR1 100 1000 JNK-IN-8 ACVR1B ACVR1B 88 1000 JNK-IN-8 ACVR2A ACVR2A 100 1000 JNK-IN-8 ACVR2B ACVR2B 100 1000 JNK-IN-8 ACVRL1 ACVRL1 96 1000 JNK-IN-8 ADCK3 CABC1 100 1000 JNK-IN-8 ADCK4 ADCK4 93 1000 JNK-IN-8 AKT1 AKT1 100 1000 JNK-IN-8 AKT2 AKT2 100 1000 JNK-IN-8 AKT3 AKT3 100 1000 JNK-IN-8 ALK ALK 85 1000 JNK-IN-8 AMPK-alpha1 PRKAA1 100 1000 JNK-IN-8 AMPK-alpha2 PRKAA2 84 1000 JNK-IN-8 ANKK1 ANKK1 75 1000 JNK-IN-8 ARK5 NUAK1 100 1000 JNK-IN-8 ASK1 MAP3K5 100 1000 JNK-IN-8 ASK2 MAP3K6 93 1000 JNK-IN-8 AURKA AURKA 100 1000 JNK-IN-8 AURKA AURKA 84 1000 JNK-IN-8 AURKB AURKB 83 1000 JNK-IN-8 AURKB AURKB 96 1000 JNK-IN-8 AURKC AURKC 95 1000 JNK-IN-8
    [Show full text]
  • And Rasopathies-Associated SHP2 and BRAF Mutations
    Functional Characterization of Cancer- and RASopathies-associated SHP2 and BRAF Mutations Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie/ Molekularbiologie eingereicht an der Lebenswissenschaftlichen Fakult¨at der Humboldt–Universit¨at zu Berlin von M. Sc. Paula Andrea Medina-P´erez Pr¨asident der Humboldt–Universit¨at zu Berlin Prof. Dr. Jan–Hendrik Olbertz Dekan der Lebenswissenschaftlichen Fakult¨at Prof. Dr. Richard Lucius Gutachter: 1. Prof. Dr. Reinhold Sch¨afer 2. Prof. Dr. Hanspeter Herzel 3. Prof. Dr. Holger S¨ultmann Tag der m¨undlichen Pr¨ufung: 12.03.2015 Abstract Deregulation of the Ras/MAPK signaling is implicated in a wide variety of human diseases, including developmental disorders and cancer. In the last years, a group of developmental disorders, characterized by an overlapping phenotype in patients, was clustered under the term RASopathies. These disorders result from germline mutations in genes encoding key components of the Ras/MAPK signaling cascade. Although the incidence of solid tumors in patients suffering from these disorders is rather low, reports on different forms of leukemia have considerably increased. In this work, a group of mutations in the genes SHP2/PTPN11 and BRAF, both key regulators of the MAPK signaling pathway and implicated in RASopathies and cancer, were selected for expression in well-established cell systems for a comprehensive molecular and phenotypic characterization using high-throughput approaches and functional assays. Synthetic cDNA sequences carrying the SHP2 mutations T42A, E76D, I282V (Noonan syndrome-associated), E76G, E76K, E139D (Noonan- and leukemia-associated), T468M (LEOPARD syndrome -associated) and the BRAF mutations Q257R, S467A, L485F and K499E (cardio-facio-cutaneous syndrome-associated) were shuttled into the modified lentivi- ral vector pCDH-EF1-IRES-GFP.
    [Show full text]
  • Susceptibility to Astrocytoma in Mice Mutant for Nf1 and Trp53 Is Linked to Chromosome 11 and Subject to Epigenetic Effects
    Susceptibility to astrocytoma in mice mutant for Nf1 and Trp53 is linked to chromosome 11 and subject to epigenetic effects Karlyne M. Reilly*†, Robert G. Tuskan*, Emily Christy‡§, Dagan A. Loisel‡§, Jeremy Ledger‡, Roderick T. Bronson¶, C. Dahlem Smithʈ, Shirley Tsang**, David J. Munroe**, and Tyler Jacks‡§ *Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD 21702; ‡Department of Biology and Center for Cancer Research and §Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02169; ¶Department of Pathology, Harvard Medical School, Boston, MA 02115; and Laboratories of ʈAnimal Sciences Program and **Molecular Technology, Science Applications International Corporation, Frederick, MD 21702 Edited by Bert Vogelstein, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, and approved July 9, 2004 (received for review February 21, 2004) Astrocytoma is the most common malignant brain tumor in hu- tumors such as astrocytoma (8, 9), although this observation is mans. Loss of the p53 signaling pathway and up-regulation of the as likely due to the particular mutant allele of NF1 (10) as to ras signaling pathway are common during tumor progression. We genetic or environmental risk factors. Astrocytomas are also have shown previously that mice mutant for Trp53 and Nf1 frequently associated with mutations in Tp53 in sporadic cases develop astrocytoma, progressing to glioblastoma, on a C57BL͞6J (11, 12) or in LFS patients carrying germline mutations in the strain background. In contrast, here we present data that mice Tp53 gene (5) (Trp53 in the mouse). Although there are no clear mutant for Trp53 and Nf1 on a 129S4͞SvJae background are highly data in patients that genetic background affects the risk of resistant to developing astrocytoma.
    [Show full text]
  • Transcriptomic Uniqueness and Commonality of the Ion Channels and Transporters in the Four Heart Chambers Sanda Iacobas1, Bogdan Amuzescu2 & Dumitru A
    www.nature.com/scientificreports OPEN Transcriptomic uniqueness and commonality of the ion channels and transporters in the four heart chambers Sanda Iacobas1, Bogdan Amuzescu2 & Dumitru A. Iacobas3,4* Myocardium transcriptomes of left and right atria and ventricles from four adult male C57Bl/6j mice were profled with Agilent microarrays to identify the diferences responsible for the distinct functional roles of the four heart chambers. Female mice were not investigated owing to their transcriptome dependence on the estrous cycle phase. Out of the quantifed 16,886 unigenes, 15.76% on the left side and 16.5% on the right side exhibited diferential expression between the atrium and the ventricle, while 5.8% of genes were diferently expressed between the two atria and only 1.2% between the two ventricles. The study revealed also chamber diferences in gene expression control and coordination. We analyzed ion channels and transporters, and genes within the cardiac muscle contraction, oxidative phosphorylation, glycolysis/gluconeogenesis, calcium and adrenergic signaling pathways. Interestingly, while expression of Ank2 oscillates in phase with all 27 quantifed binding partners in the left ventricle, the percentage of in-phase oscillating partners of Ank2 is 15% and 37% in the left and right atria and 74% in the right ventricle. The analysis indicated high interventricular synchrony of the ion channels expressions and the substantially lower synchrony between the two atria and between the atrium and the ventricle from the same side. Starting with crocodilians, the heart pumps the blood through the pulmonary circulation and the systemic cir- culation by the coordinated rhythmic contractions of its upper lef and right atria (LA, RA) and lower lef and right ventricles (LV, RV).
    [Show full text]
  • The David H. Koch Institute for Integrative Cancer Research at MIT
    The David H. Koch Institute for Integrative Cancer Research at MIT The David H. Koch Institute for Integrative Cancer Research was announced on October 9, 2007. By combining the faculty of the (now former) MIT Center for Cancer Research (CCR) with an equivalent number of distinguished engineers drawn from various MIT departments, the Koch Institute will continue CCR’s tradition of scientific excellence while also seeking to directly promote innovative ways to diagnose, monitor, and treat cancer through advanced technology. Among the engineering faculty there will be remarkable diversity, as the Electrical Engineering and Computer Science, Materials Science and Engineering, Biological Engineering, Chemical Engineering, and Mechanical Engineering departments will be represented in the Koch Institute. For three decades, CCR has been a mainstay of MIT’s—and the nation’s—efforts to conquer cancer. Its faculty has included five Nobel Prize winners, and the wealth of fundamental discoveries that have emerged under its aegis have helped shape the face of molecular biology. Under the banner of the Koch Institute, the future promises to hold even more astounding advances. Within the Koch Institute we will not directly provide clinical care for cancer patients but discoveries made by Koch Institute scientists and engineers will have a broad impact on how the disease is detected and managed. Applying our great strengths in science and technology, and working closely with our clinical collaborators, Koch Institute researchers will be tireless in unraveling the complexities of this disease and bringing new discoveries—and new hope—to patients. The Koch Institute includes more than 40 laboratories and more than 500 researchers located at our headquarters and across the MIT campus.
    [Show full text]
  • MYLK4, Active Recombinant Full-Length Human Protein Expressed in Sf9 Cells
    Catalog # Aliquot Size M74-10G-05 5 µg M74-10G-10 10 µg MYLK4, Active Recombinant full-length human protein expressed in Sf9 cells Catalog # M74-10G Lot # Z1 313 -3 Product Description Specific Activity Recombinant full-length human MYLK4 was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. 16,000 The MYLK4 gene accession number is BC132833 . 12,000 Gene Aliases 8,000 SGK085 4,000 (cpm) Activity Formulation 0 0 50 100 150 200 Recombinant protein stored in 50mM Tris-HCl, pH 7.5, Protein (ng) 150mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM The specific activity of MYLK4 was determined to be 5 nmol DTT, 0.1mM PMSF, 25% glycerol. /min/mg as per activity assay protocol. Storage and Stability Purity Store product at –70 oC. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. The purity of MYLK4 was determined to be >95% by Scientific Background densitometry. Approx. MW 70kDa . MYLK4 or myosin light chain kinase family, member 4 is Serine/Threonine protein kinases in which MYLK4 is one of four myosin light chain kinases in a comprehensive analysis of protein kinases encoded by the human genome. References MYLK4, Active Recombinant full-length human protein expressed in Sf9 cells 1. Manning G. et.al : The protein kinase ment of the human genome. Science. 2002 Dec 6;298(5600):1912-34. Catalog # M74-10G Specific Activity 5 nmol/min/mg Lot # Z1313-3 Purity >95% Concentration 0.1 µg/ µl Stability 1yr at –70 oC from date of shipment Storage & Shipping Store product at –70 oC.
    [Show full text]
  • Conference Program and Schedule
    02_BCR_front.qxd:Layout 1 9/15/09 2:23 PM Page 11 Conference Program and Schedule Thursday, October 8, 2009 1:30 p.m.-3:45 p.m. Session 2: Mouse Models of Cancer Imperial Ballroom 8:00 a.m.-9:00 a.m. Continental Breakfast Chairperson: Guillermina Lozano, UT M. D. Anderson Stanbro Room Cancer Center, Houston, TX The regulation of p53 tumor suppressing activities* Guillermina Lozano 9:00 a.m.-12:00 p.m. Session 1: Genes and Pathways in Cancer Studying tumor evolution in mouse models of cancer* Imperial Ballroom Tyler Jacks, David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA Chairperson: Robert A. Weinberg, Whitehead Institute for Biomedical Research, Cambridge, MA Dissecting tumor suppressor gene networks in vivo* Scott W. Lowe, Cold Spring Harbor Laboratory, Molecular characterization of circulating tumor cells Cold Spring Harbor, NY Daniel A. Haber, Massachusetts General Hospital, Charlestown, MA From chromosome engineering to chromatin remodeler: 3:45 p.m.-4:30 p.m. Special Lecture: CHD5 is a tumor suppressor mapping to human 1p36* Host-Germline Genetics Alea A. Mills, Cold Spring Harbor Laboratory, Imperial Ballroom Cold Spring Harbor, NY Single nucleotide polymorphisms in the p53 pathway* New cancer targets emerging from studies of the VHL tumor Arnold J. Levine, Institute for Advanced Study, Princeton, NJ suppressor gene William G. Kaelin, Jr., Dana-Farber Cancer Institute, Boston, MA 4:30 p.m.-4:45 p.m. Coffee Break PI3-Kinase and cancer metabolism* Stanbro Room Lewis C. Cantley, Beth Israel Deaconess Medical Center, Boston, MA 4:45 p.m.-5:30 p.m.
    [Show full text]
  • Development and Characterization of Immunogenic Genetically Engineered Mouse Models of Pancreatic Cancer
    Development and characterization of immunogenic genetically engineered mouse models of pancreatic cancer By Laurens J. Lambert MSc, Medical Biology Radboud University, 2014 Submitted to the Department of Biology in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2020 © 2020 Massachusetts Institute of Technology. All rights reserved. Signature of Author………………………………………………………………………………. Laurens J. Lambert Department of Biology June 16, 2020 Certified by………..………………………………………………………………………………. Tyler Jacks David H. Koch Professor of Biology Investigator, Howard Hughes Medical Institute Thesis Supervisor Accepted by………………………………………………………………………………………. Stephen Bell Uncas and Helen Whitaker Professor of Biology Investigator, Howard Hughes Medical Institute Co-Director, Biology Graduate Committee 2 Development and characterization of immunogenic genetically engineered mouse models of pancreatic cancer By Laurens J. Lambert Submitted to the Department of Biology on June 16, 2020 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology Abstract Insights into mechanisms of immune escape have fueled the clinical success of immunotherapy in many cancers. However, pancreatic cancer has remained largely refractory to checkpoint immunotherapy. To uncover mechanisms of immune escape, we have characterized two preclinical models of immunogenic pancreatic ductal adenocarcinoma (PDAC). In order to dissect the endogenous antigen-specific T cell response in PDAC, lentivirus encoding the Cre recombinase and a tumor specific antigen LSL-G12D/+; flox/flox (SIINFEKL, OVA257-264) was delivered to Kras Trp53 (KP) mice. We demonstrate that KP tumors show distinct antigenic outcomes: a subset of PDAC tumors undergoes clearance or editing by a robust antigen-specific CD8+ T cell response, while a fraction undergo immune escape.
    [Show full text]
  • Ras Activation in Astrocytomas and Neurofibromas
    REVIEW ARTICLE Ras Activation in Astrocytomas and Neurofibromas Abhijit Guha ABSTRACT: Oncogenic mutations resulting in activated Ras Guanosine Triphosphate (GTP) are preva­ lent in 30% of all human cancers, but not primary nervous system tumors. Several growth factors/recep­ tors are implicated in the pathogenesis of malignant astrocytomas including epidermal growth factor (EGFR) and platelet derived growth factor (PDGF-R) receptors, plus the highly potent and specific angio­ genic vascular endothelial growth factor (VEGF). A significant proportion of these tumors also express a truncated EGFR, which is constitutively activated. Our work demonstrates that the mitogenic signals from both the normal PDGF-R and EGFR and the truncated EGFR activate Ras. Inhibition of Ras by genetic or pharmacological strategies leads to decreased astrocytoma tumorgenic growth in vitro and decreased expression of VEGF. This suggests that these agents may be potentially important as novel anti-proliferative and anti-angiogenic therapies for human malignant astrocytomas. In contrast to astrocytomas, where increased levels of activated Ras GTP results from transmitted sig­ nals from activated growth factor receptors, the loss of neurofibromin is postulated to lead to functional up-regulation of the Ras pathway in neurofibromatosis-l(NF-l). We have demonstrated that NF-1 neu­ rofibromas and neurogenic sarcomas, compared to non-NF-1 Schwannomas, have markedly elevated lev­ els of activated Ras GTP. Increased Ras GTP was associated with increased tumor vascularity in the NF-1 neurogenic sarcomas, perhaps related to increased VEGF secretion. The role of Ras inhibitors as potential therapy in this tumor is also under study. RESUME: Activation de Ras dans les astrocytomes et les neurofibromes (medaille du College Royal en Chirurgie, 1997).
    [Show full text]
  • 3Rd Joint Meeting of BSA and NCAB
    DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE NATIONAL INSTITUTES OF HEALTH NATIONAL CANCER INSTITUTE 3RD JOINT MEETING OF THE BOARD OF SCIENTIFIC ADVISORS AND THE NATIONAL CANCER ADVISORY BOARD Summary of Meeting June 23–24, 2014 Building 31C, Conference Room 10 National Institutes of Health Bethesda, Maryland 3rd Joint Meeting of the Board of Scientific Advisors and the National Cancer Advisory Board NATIONAL CANCER ADVISORY BOARD BETHESDA, MARYLAND Summary of Meeting June 23–24, 2014 The Board of Scientific Advisors (BSA) and the National Cancer Advisory Board (NCAB) convened for the 3rd Joint Meeting on 23–24 June 2014, in Conference Room 10, C Wing, Building 31, National Institutes of Health (NIH), Bethesda, MD. The meeting was open to the public on Monday, 23 June 2014, from 8:30 a.m. to 6:00 p.m., and Tuesday, 24 June 2014, from 8:30 a.m. to 10:45 a.m. and closed to the public on Tuesday, 24 June 2014, from 10:45 a.m. to 11:10 a.m. The BSA Chair, Todd R. Golub, Chief Scientific Officer, The Broad Institute of Harvard University and Massachusetts Institute of Technology, and the NCAB Chair, Tyler Jacks, Director, Koch Institute for Integrative Cancer Research, David H. Koch Professor of Biology, Massachusetts Institute of Technology, presided during the open session. Dr. Jacks presided during the closed session. BSA Members Dr. Cheryl L. Walker Dr. Todd R. Golub (Chair) Dr. Irving L. Weissman Dr. Kenneth C. Anderson (absent) Dr. Francis Ali-Osman NCAB Members Dr. Dafna Bar-Sagi Dr. Tyler E.
    [Show full text]