Manual 3D Visualisation Design and Simulation of Photovoltaic Systems

Total Page:16

File Type:pdf, Size:1020Kb

Manual 3D Visualisation Design and Simulation of Photovoltaic Systems Manual 3D Visualisation Design and Simulation of Photovoltaic Systems The information contained in this manual is without warranty. No responsibility whatsoever is assumed by the programme developers. The software described in this manual is distributed in accordance with the terms of the licence agreement, which is accepted on opening the programme package. No claims in respect of liability can be based on the contents of this manual. The reproduction of any part of the programme package is prohibited. COPYRIGHT © 1998-2010: Dr.-Ing. Gerhard Valentin Dr. Valentin EnergieSoftware GmbH Stralauer Platz 34 10243 Berlin Table of Contents 1. The menu .................................................................................................................................................................. 1 Introduction to the menu ................................................................................................................................................ 1 2. Project administration ............................................................................................................................................. 3 Introduction to project administration ............................................................................................................................. 3 New system ................................................................................................................................................................... 5 3. Terrain view .............................................................................................................................................................. 7 Introduction to the terrain view ....................................................................................................................................... 7 Building (simple) ............................................................................................................................................................ 9 Building (complex) ....................................................................................................................................................... 12 Roof overhang ............................................................................................................................................................. 15 Tree ............................................................................................................................................................................. 16 Trees - degree of transmittance ................................................................................................................................... 18 Wall ............................................................................................................................................................................. 19 Bay .............................................................................................................................................................................. 22 Smokestack ................................................................................................................................................................. 23 4. Building view.......................................................................................................................................................... 25 Introduction to the building view ................................................................................................................................... 25 Chimney ...................................................................................................................................................................... 27 Vent ............................................................................................................................................................................. 30 Dormer ........................................................................................................................................................................ 32 Window ....................................................................................................................................................................... 37 Restricted area ............................................................................................................................................................ 38 Restricted distance ...................................................................................................................................................... 42 Shed Roofs .................................................................................................................................................................. 43 Fireproof Wall .............................................................................................................................................................. 47 Projecting Roof ............................................................................................................................................................ 49 Parabolic Antenna ....................................................................................................................................................... 51 Attic ............................................................................................................................................................................. 53 Maintenance Paths ...................................................................................................................................................... 55 5. Module coverage ................................................................................................................................................... 57 Introduction to module coverage .................................................................................................................................. 57 Reference modules...................................................................................................................................................... 60 Module formation ......................................................................................................................................................... 62 Shading frequency distribution ..................................................................................................................................... 65 Colours for frequency distribution ................................................................................................................................ 68 Display ........................................................................................................................................................................ 69 6. Module configuration ............................................................................................................................................ 71 Introduction to module configuration ............................................................................................................................ 71 Module configuration (side menu) ................................................................................................................................ 74 7. Toolbar.................................................................................................................................................................... 77 Introduction to the toolbar ............................................................................................................................................ 77 Irradiation generator .................................................................................................................................................... 79 Animation .................................................................................................................................................................... 80 Object administration ................................................................................................................................................... 82 Screenshot manager ................................................................................................................................................... 84 Standard view .............................................................................................................................................................. 86 iii Manual PV*SOL Expert 8. Program operation ................................................................................................................................................. 87 Coverable Objects ....................................................................................................................................................... 87 Mouse operation and keyboard shortcuts .................................................................................................................... 89 Drag and drop.............................................................................................................................................................. 93 The lower edit menu .................................................................................................................................................... 94 Status bar ...................................................................................................................................................................
Recommended publications
  • FRAMING GUIDELINES Cutting, Notching, and Boring Lumber Joists Joist Size Maximum Maximum Maximum Hole Notch Depth End Notch 2X4 None None None
    FRAMING GUIDELINES Cutting, Notching, and Boring Lumber Joists Joist Size Maximum Maximum Maximum Hole Notch Depth End Notch 2x4 None None None 2x6 11/2 7/8 13/8 2x8 23/8 11/4 17/8 2x10 3 11/2 23/8 2x12 33/4 17/8 27/8 In joists, never cut holes closer than 2 inches to joist edges, nor make them larger than 1/3 the depth of the joist. Also, don’t make notches in the middle third of a span, where the bending forces are greatest. They should also not be deeper than 1/6 the depth of the joist, or 1/4 the depth if the notch is at the end of the joist. Limit the length of notches to 1/3 of the joist’s depth. Use actual, not nominal, dimensions. (“Field Guide to Common Framing Errors,” 10/91) Hole-Cutting Rules for Wood I-Joists Min. Distance from Inside Face of Support to Near Edge of Hole Do not cut holes larger Distance between hole Depth TJI/Pro 2” 3” 4” 5” 6” edges must be 2x (min.) than 11/2" in cantilever length of largest hole; 91/2” 150 1’-0” 1’-6” 3’-0” 5’-0” 6’-6” applies also to 11/2" holes 250 1’-0” 2’-6” 4’-0” 5’-6” 7’-6” L 2 x L 117/8” 150 1’-0” 1’-0” 1’-0” 2’-0” 3’-0” 250 1’-0” 1’-0” 2’-0” 3’-0” 4’-6” 350 1’-0” 2’-0” 3’-0” 4’-6” 5’-6” 550 1’-0” 1’-6” 3’-0” 4’-6” 6’-0” 14” 250 1’-0” 1’-0” 1’-0” 1’-0” 1’-6” 350 1’-0” 1’-0” 1’-0” 1’-6” 3’-0” 550 1’-0” 1’-0” 1’-0” 2’-6” 4’-0” 11/2" holes can be cut 16” 250 1’-0” 1’-0” 1’-0” 1’-0” 1’-0” anywhere in the web (11/2" knockouts Leave 1/8" (min.) of 350 1’-0” 1’-0” 1’-0” 1’-0” 1’-0” provided 12" o.c.) web at top and Min.
    [Show full text]
  • Glossary of Architectural Terms Apex
    Glossary of Architectural Terms Apex: The highest point or peak in the gable Column: A vertical, cylindrical or square front. supporting member, usually with a classical Arcade: A range of spaces supported on piers capital. or columns, generally standing away from a wall Coping: The capping member of a wall or and often supporting a roof or upper story. parapet. Arch: A curved construction that spans an Construction: The act of adding to a structure opening and supports the weight above it. or the erection of a new principal or accessory Awning: Any roof like structure made of cloth, structure to a property or site. metal, or other material attached to a building Cornice: The horizontal projecting part crowning and erected over a window, doorway, etc., in the wall of a building. such a manner as to permit its being raised or Course: A horizontal layer or row of stones retracted to a position against the building, when or bricks in a wall. This can be projected or not in use. recessed. The orientation of bricks can vary. Bay: A compartment projecting from an exterior Cupola: A small structure on top of a roof or wall containing a window or set of windows. building. Bay Window: A window projecting from the Decorative Windows: Historic windows that body of a building. A “squared bay” has sides at possess special architectural value, or contribute right angles to the building; a “slanted bay” has to the building’s historic, cultural, or aesthetic slanted sides, also called an “octagonal” bay. If character. Decorative windows are those with segmental or semicircular in plan, it is a “bow” leaded glass, art glass, stained glass, beveled window.
    [Show full text]
  • 4.9 Roof Design Guidelines
    4.9 Roof Design Guidelines 4.9.1 INTRODUCTION shingles and shakes as well as the detailing of the shingle roof differed according to regional practices. Commonly in urban areas, wooden roofs were replaced with more fire resistant materials, but in rural areas this was not a major concern. On many Victorian A weather-tight roof is basic in the country houses, the practice of wood preservation of a structure, regardless of its shingling survived the technological age, size, or design. In the system that allows a advances of metal roofing in the 19th building to work as a shelter, the roof sheds century, and near the turn of the century the rain, shades from the harsh sun, and enjoyed a full revival in its namesake, the buffers the weather. Shingle Style. The Bungalow styles in the 20th century assured wood shingles a During some periods in the history of place as one of the most fashionable, architecture, the roof imparts much of the domestic roofing materials. architectural character. It defines the style and contributes to the building's aesthetics. The hipped roofs of Georgian architecture, the turrets of Queen Anne and the graceful slopes of the Bungalow designs are examples of the use of roofing as a major design feature. But no matter how decorative the patterning or how compelling the form, the roof is a highly vulnerable element of a shelter that will inevitably fail. A poor or unmaintained roof will permit the accelerated deterioration of WOOD SHINGLES historic interior building materials - masonry, wood, plaster, paint - and will cause general Metal roofing in America is principally a disintegration of the basic structure.
    [Show full text]
  • Reinforced Cement Concrete (RCC) Dome Design
    International Journal of Civil and Structural Engineering Research ISSN 2348-7607 (Online) Vol. 3, Issue 2, pp: (39-45), Month: October 2015 - March 2016, Available at: www.researchpublish.com Reinforced Cement Concrete (RCC) Dome Design SHAIK TAHASEEN II M.TECH, DEPARTMENT OF CIVIL ENGINEERING, VISVODAYA ENGINEERING COLLEGE, KAVALI ABSTRACT: A dome may be defined as a thin shell generated by the revolution of a regular curve about one of its axes. The shape of the dome depends up on the type of the curve and direction of the axis of revolution. The roof is curved and used to cover large storey buildings. The shell roof is useful when inside of the building is open and does not contain walls or pillars. Domes are used in variety of structures such as roof of circular areas, circular tanks, exhibition halls, auditoriums etc. Domes may be constructed of masonry, steel, timber and reinforced cement concrete. In this paper we design RCC dome roof structure by using manual methods which gives detail design of RCC domes. The procedure of designing RCC domes was clearly explained and from the Analysis and design we get the Meridional Reinforcement, hoop Reinforcement of a dome and ring beam Reinforcement Keywords: Dome, wind load, live load and dead load, Analysis, diameter of dome. 1. INTRODUCTION In the past and recent years, there have been an increasing number of structures using RCC domes as one of the most efficient shapes in the world. It covers the maximum volume with the minimum larger volumes with no interrupting columns in the middle with an efficient shapes would be more efficient and economic.
    [Show full text]
  • PV*SOL® Expert: 3D Visualization Version 6.0 3D-Visualized Coverage, Mounting and Configuration of Photovoltaic Modules User Manual
    PV*SOL® Expert: 3D Visualization Version 6.0 3D-Visualized Coverage, Mounting and Configuration of Photovoltaic Modules User Manual Disclaimer Great care has been taken in compiling the texts and images. Nevertheless, the possibility of errors cannot be completely eliminated. The handbook purely provides a product description and is not to be understood as being of warranted quality under law. The publisher and authors can accept neither legal responsibility nor any liability for incorrect information and its consequences. No responsibility is assumed for the information contained in this handbook. The software described in this handbook is supplied on the basis of the license agreement which you accept on installing the program. No liability claims may be derived from this. Making copies of the handbook is prohibited. Copyright und Warenzeichen PV*SOL® is a registered trademark of Dr. Gerhard Valentin. Windows Vista®, Windows XP®, and Windows 7® are registered trademarks of Microsoft Corp. All program names and designations used in this handbook may also be registered trademarks of their respective manufacturers and may not be used commercially or in any other way. Errors excepted. Berlin, 23. January 2013 COPYRIGHT © 1993-2013 Dr. Valentin EnergieSoftware GmbH Dr. Valentin EnergieSoftware GmbH Valentin Software, Inc. Stralauer Platz 34 31915 Rancho California Rd, #200-285 10243 Berlin Temecula, CA 92591 Germany USA Tel.: +49 (0)30 588 439 - 0 Tel.: +001 951.530.3322 Fax: +49 (0)30 588 439 - 11 Fax: +001 858.777.5526 fax [email protected] [email protected] www.valentin.de http://valentin-software.com/ Management: Dr. Gerhard Valentin DC Berlin-Charlottenburg, Germany HRB 84016 1 Introduction The PV*SOL Expert program from the Berlin-based company Dr.
    [Show full text]
  • Room in Roof ('Rir') Trussed Rafters
    PRODUCT DATA SHEET Sheet No.1 May 2007 ROOM IN ROOF (‘RIR’) TRUSSED RAFTERS The ‘Room-in-Roof’ (‘RiR’) or attic trussed Fig. 1 Typical 8 metre span conventional trussed rafter rafter is a simple means of providing the structural roof and floor in the same component. This offers considerable 35 x 97 rafter advantages over other forms of living roof construction: • There need be no restrictions on lower floor layouts since 40° the trusses can clear span on to external walls although greater spans and room widths can be achieved by Weight of truss approx 55kg 35 x 97 ceiling tie utilising internal loadbearing walls. • ‘RiR’ trussed rafters are computer designed and factory assembled units, resulting in better quality control. Fig. 2 Typical 8 metre span ‘Room in Roof’ trussed rafter • Complex, labour intensive site joints are not required. • ‘RiR’ trussed rafters can be erected quickly, offering cost savings and providing a weathertight shell earlier. 47 x 197 rafter • Freedom to plan the room layout within the roof space. • A complete structure is provided, ready to receive roof finishes, plaster board and floorboarding. 40° Weight of truss approx 125kg 47 x 197 ceiling joist Comparing an 8 metre span standard trussed rafter (see opposite) with an equivalent 8 metre span ‘RiR’ truss, the external members will increase in width and depth. There are two reasons for this: The ‘RiR’ truss supports approximately 60% more load than a standard truss of the same span and pitch. This difference in load is made up of plasterboard ceilings and wall construction, full superimposed floor loading and floor boarding.
    [Show full text]
  • The Onion Dome Crisis – Shaping Finnish Orthodox Church Architecture of the Interwar Period
    Hanna Kemppi THE ONION DOME CRISIS – SHAPING FINNISH ORTHODOX CHURCH ARCHITECTURE OF THE INTERWAR PERIOD Introduction Where cultural heritage is concerned, it is necessary to consider whose heritage is being addressed and by whom that heritage is defined, as noted by art historian Matthew Rampley, because heritage and local identity are connected in various ways. ‘Our’ heritage is the focus when the national cultural heritage is constructed, but at the same time the unwanted part of the ‘shared’ narrative is often ignored. Not only the cherished and the preserved are significant but also the effaced and the forgotten.1 Rampley applied the notion of unwanted heritage, which is related to the observa- tions of early researchers of nationalism – for a nation, both selective memory and forgetting are as important as remembering.2 According to him, the past will instigate forgetting, especially when a memory is connected to a traumatic experience.3 The aim of this article, which is based on my doctoral thesis on art history,4 is to consider the complex and sensitive issue of shaping a national ‘Karelian-Finn- ish’ style for the Finnish Orthodox church architecture in the interwar period 1918–1939. Finland declared its independence on the 6th of December in 1917. In 1809 Sweden ceded Finland to Russia as a result of the Swedish-Russian War of 1808–1809 after which Finland formed an autonomous Grand Duchy in the Rus- sian Empire. The process of gaining independence was linked with the First World War and the Russian February Revolution, which led to the abdication of Nicholas II.
    [Show full text]
  • Trussed Rafter Technical Guide
    TRUSSED RAFTERS have proved to be an efficient, safe and economical method for supporting roofs since their introduction into the UK in 1964. They are manufactured by specialised timber engineering companies, who supply to all sections of the construction industry. Developments have been extensive, and today complex roofscapes are easily formed with computer designed trussed rafters. With the continuing trend toward individualism in domestic house styling, let alone the reflection of this in new inner city estates, the facility to introduce variations to the standard designs is vital. The provision of many character differences by designing and then constructing L returns, doglegs and hips for example, satisfies the inherent need for individuality at affordable prices. Economical roofing solutions for many commercial, industrial and agricultural buildings; hospitals, army barracks and supermarket complexes, are achieved by the expeditious installation of trussed rafters. Experienced roof designers and trussed rafter manu- facturers are therefore in an ideal position to assist the architect or specifier in achieving affordable solutions throughout the building industry. Simply provide a brief sketch or description of that being considered, including alternatives, and we will do the rest. The whole roof is designed and specified using state-of-the-art computer aided technology supplied by Wolf Systems. We can also arrange for one of our specialists to visit and advise you. This technical manual highlights some of the basic structural arrangements and assembly information you may require. In addition, we can offer technical expertise and experience in a comprehensive advisory service to clients, from initial sketch to completed trussed rafters. 1 Technical Data Design Trusses are designed in accordance with the current Code of Practice, which is BS 5268: Part 3, and the relevant Building Regulations.
    [Show full text]
  • Download Article (PDF)
    Advances in Social Science, Education and Humanities Research, volume 471 Proceedings of the 2nd International Conference on Architecture: Heritage, Traditions and Innovations (AHTI 2020) The Monuments of Wooden Architecture of Shenkurskiy Uyezd of the XIX Century: From the Tradition to the Architecture Style Olga Zinina1,* 1Scientific Research Institute of the Theory and History of Architecture and Urban Planning, Branch of the Central Institute for Research and Design of the Ministry of Construction and Housing and Communal Services of the Russian Federation, Moscow, Russia *Corresponding author. E-mail: [email protected] ABSTRACT The article is devoted to the XIX century wooden church monuments of Shenkurskiy uyezd of Arkhangelsk province that have not been studied before. The method of work is based on the study of archival historical sources, conducting field surveys, historical and architectural analysis of forms, as well as attracting analogs. The purpose of the research is to identify the uniqueness of monuments’ architectural and structural design features by comparing them with their analogs and considering them in the context of the wooden architecture of the region. The identified architectural features of researched churches and chapels correspond to the character of the distribution of traditions of wooden architecture of the Povazhye region. A stylistic and typological assessment of the objects under study is given. Keywords: Monuments of wooden architecture, wooden churches, Povazhye region, Shenkurskiy uyezd, model projects by E.V. Khodakovsky, in which special attention is I. INTRODUCTION given to the history and architecture of particular The monuments of Russian wooden architecture of objects, are devoted to this topic [2], [3], [4].
    [Show full text]
  • Kwame Nkrumah University of Science and Technology, Kumasi College of Engineering Department of Materials Engineering Thermal Co
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI COLLEGE OF ENGINEERING DEPARTMENT OF MATERIALS ENGINEERING THERMAL CONDUCTIVITY AND ACOUSTIC PROPERTIES OF AN ALTERNATIVE ROOFING MATERIALS MADE OF POLYESTER-BAMBOO FIBRE COMPOSITE A THESIS SUBMITTED TO THE DEPARTMENT OF MATERIALS ENGINEERING, KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA IN PARTIAL FULFILLMENT FOR THE REQUIREMENTS FOR THE BSC. (HONS). DEGREE IN MATERIALS ENGINEERING By ASARE BAFFOUR FRANCIS Y. DARKO RICHARD WILSON PRINCE OBENG Supervisors: DR. EMMANUEL KWESI ARTHUR DR. EMMANUEL GIKUNOO MAY, 2018 DECLARATION We hereby declare that, apart from the references of other people’s work which has been appropriately acknowledge, the research work was done solely by us and also under the supervision of Dr. Emmanuel Kwesi Arthur and Dr. Emmanuel Gikunoo. This work has never been presented or published in whole or in parts for any other degree in the university or elsewhere. NAME SIGNATURE DATE Asare-Baffour Francis (2194614) .….……………. …………………. Student Darko Richard (2195814) ..……………….. …………………. Student Wilson Prince Obeng (2197514) ..……..………… …………………. Student Certified by: Dr. Emmanuel Kwesi Arthur ……………….. …………….......... Supervisor SIGNATURE DATE Dr. Emmanuel Gikunoo ………………… …………………… Supervisor SIGNATURE DATE ii DEDICATION This work is dedicated to the Almighty God, our families, friends and loved ones for the love and support that saw us through to the end of this research. iii ABSTRACT Bamboo has been one of the most used biodegradable natural plant fibre in the past decades due to its high bending strength, low cost, biodegradability, renewability (abundance in nature), and it low weight to strength as well. In view of the properties of bamboo, it has gained several use in different engineering field recently, as such, the use of its fibres as reinforcement in composite materials for high mechanical strength, good thermal insulation and low weight to strength ratio.
    [Show full text]
  • Appendix G Training Manual
    HOLMFIRTH CONSERVATION AREA APPRAISAL Appendix G Training manual 1 HOLMFIRTH CONSERVATION GROUP GUIDANCE FOR COMPLETION OF BUILDINGS SURVEY FORM (Amended 13 June 2016) CONTENTS Completion of Building Survey………………………………………………….. 2-4 Guidance for Authenticity Scoring……………………………………………… 5 Window Styles (as per Kirklees Conservation) Website)…………………………………........... 6 Door Styles (as per Kirklees Conservation Website) …………………………………………… 7 Building Extensions & Dormers (as per Kirklees Conservation Website) ……………………. 8-9 Glossary of Terms……………………………………………………………… 10 - 11 2 GUIDANCE FOR COMPLETION OF BUILDINGS SURVEY FORM 1. BUILDING INDENTIFICATION and How to use it when surveying BUILDING and PHOTO REF No Each property has been given a unique 3 letter reference, which is marked on the “Master Map”. This identifier will be used for all references to a specific building and its related photos Surveying will be allocated to volunteers in batches of between 15 and 35 buildings per volunteer. This may include garages and sheds. You will be provided with a map of the allocated properties to be surveyed, which will be an enlarged section of the conservation area map. The area to be surveyed will be outlined with a purple border. Use the map to identify the property being surveyed and enter its reference into the BUILDING and PHOTO REF No. box. NOTE: Buildings have been given their building ref. as if viewed from above. This means that in the case of “Over & Under” buildings eg some of properties in Norridge Bottom, the map will only show one identifier ref. In such cases you will need to complete surveys for both properties, entering the building ref. on the survey form but also adding a numerical ref.
    [Show full text]
  • Russian Architecture
    МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра иностранных языков RUSSIAN ARCHITECTURE Методические указания для студентов направлений подготовки 270100.62 «Архитектура», 270200.62 «Реставрация и реконструкция архитектурного наследия», 270300.62 «Дизайн архитектурной среды» Казань 2015 УДК 72.04:802 ББК 81.2 Англ. К64 К64 Russian architecture=Русская архитектура: Методические указания дляРусская архитектура:Методическиеуказаниядля студентов направлений подготовки 270100.62, 270200.62, 270300.62 («Архитектура», «Реставрация и реконструкция архитектурного наследия», «Дизайн архитектурной среды») / Сост. Е.Н.Коновалова- Казань:Изд-во Казанск. гос. архитект.-строит. ун-та, 2015.-22 с. Печатается по решению Редакционно-издательского совета Казанского государственного архитектурно-строительного университета Методические указания предназначены для студентов дневного отделения Института архитектуры и дизайна. Основная цель методических указаний - развить навыки самостоятельной работы над текстом по специальности. Рецензент кандидат архитектуры, доцент кафедры Проектирования зданий КГАСУ Ф.Д. Мубаракшина УДК 72.04:802 ББК 81.2 Англ. © Казанский государственный архитектурно-строительный университет © Коновалова Е.Н., 2015 2 Read the text and make the headline to each paragraph: KIEVAN’ RUS (988–1230) The medieval state of Kievan Rus'was the predecessor of Russia, Belarus and Ukraine and their respective cultures (including architecture). The great churches of Kievan Rus', built after the adoption of christianity in 988, were the first examples of monumental architecture in the East Slavic region. The architectural style of the Kievan state, which quickly established itself, was strongly influenced by Byzantine architecture. Early Eastern Orthodox churches were mainly built from wood, with their simplest form known as a cell church. Major cathedrals often featured many small domes, which has led some art historians to infer how the pagan Slavic temples may have appeared.
    [Show full text]