The Acadian Orogeny: Recent Studies in New England, Maritime Canada, and the Autochthonous Foreland

Total Page:16

File Type:pdf, Size:1020Kb

The Acadian Orogeny: Recent Studies in New England, Maritime Canada, and the Autochthonous Foreland Index [Italic page numbers indicate major references] Benner Hill belt, 8,9, 17 accretion, 20, 28, 67, 68, 69, 85 Assemetquagan River area, 111 bentonite beds, 111 Cambrian, 72 Atlantic Realm, 45 Berwick Formation, 11, 52 Caradocian, 72 Atrypa reticularis, 48 Berwick quadrangle, 60 timing, 33 Avalon, 35 Bethlehem pluton, 15 Ackley batholith, 129 Avalon belt, 8, 11,77 Big Berry Mountains syncline, 116 alcids, 42 Avalon block, 19, 78, 80, 126, 130 Bigelow Brook fault complex, 10 Alleghenian Plateau province, 154 Avalon Composite Terrane, 44 Billings Fold, 56 Allegheny County, Maryland, 160 Avalon crust, 11 biogeography allochthons, 136, 148 Avalon island arc, 17 analysis, 43 Allsbury Formation, 75 Avalon superterrane, 9, 11, 12, 13, 14 Cambrian, 41, 44, 47 Alto allochthon, 14 Avalon terrane, 20, 28 Carboniferous, 41, 44, 47 Alton quadrangle, 56, 58, 60 Avalon Zone, 15, 102, 126, 128, 129, bioherms, 109 American Cordillera, 67 130, 148 biostromes, 109 Amity quadrangle, 75 Awantjish Formation, 110 biotite, 58, 129, 139, 146, 148 amphibolites, 9, 106, 129 Aylmer Pluton, 95 Black-Cape Volcanics, 109 andalusites, 63,64, 129 blocks, 20, 35,67, 78, 130, 131 Angers-Dugal Outcrop Belt, 110 backfolds, 64 basement, 78 Angola member, 157 Badger Bay area, 32 continental, 32 Annapolis Valley region, 48 Baie Verte, 130 Blue Hills Nappe, 60 Annieopsquotch Complex, 36 Baie Verte-Brompton Line, 28, 86, 87, Blue Ridge, 14 Anse Cascon Formation, 109 106,117,136 Ansea Pierre-Loiselle Formation, 109 Baie Verte Flexure, 128 Bonaventure Formation, 109 anticlines, 141 Baie Verte Peninsula, 128, 129, 139, Bonnie Bay region, 144 anticlinoria, 8, 51 146 Boston area, 44 Antigonish County, 44, 45 Bailiella, 44 Boston Avalon block, 11 Appalachian basin, 154 Balmoral Group, 118 Boston Basin, 28 autochthonous, 153 Baltic Realm, 44, 47 Boston terrane, 19 Appalachian-Caledonian orogen, 28, faunas, 45 Botwood Group, 32, 34. 35, 37, 128 135 Baltica, 17 boudins, 58 Appalachian Mountains basalt, 31, 71, 80 Boundary Mountain anticlinorium, 6 central, 2 pillow, 31, 69,71 Boundary Mountain antiform, 75 northern. 2, 5, 12, 15, 16, 17, 27,43, basement Boundary Mountain block, 78, 80 47, 56,67,78, 80. 102 Cambro-Ordovician, 106 Boundary Mountain terrane, 6 south-central, 13 crystalline, 136 Bowers Mountain Formation, 69, 74 southern, 2, 19 basins brachiopods, 107, 109 Appalachian orogen, 13 back-arc, 31, 37, 96 Bras d'Or terrane, 130 Appledore Diorite, 10 depositional, 80 breccia, 31,76, 87, 114 arches, 154 filling, 112 Brevard fault zone, 14 arcs forearc, 86, 106 British Caledonides, 12 British Isles, 13, 17 island, 31, 68 foreland, 136, 153, 154,156,159, 161 Brompton-Cameron Terrane, 52 volcanic, 35, 96 intraplate, 77 Bronson Hill anticlinorium, 6, 52, 60 Armorica, 17 marine, 113 Bronson Hill belt, 6, 8, 10 Armorican massif, 19 ocean, 35, 37, 68, 77, 80 Bronson Hill island arc, 6 Armorican-Nova Scotian Acadian- sedimentary, 72 Burgeo pluton, 129 Ligerian orogenic belt, 19 See also specific basins Burgeo type, 130 Armorican Peninsula, 13, 18 Baskahegan Lake Formation, 69, 74 Aroostook-Matapedia basin, 80 Bassin Nord-Ouest fault, 115 Burnt Jam Brook Formation, 110, 111 Aroostook-Matapedia belt, 8, 75, 77 batholiths, 129 Byrne Cove Mélange, 33 southern lobe, 73 Battery Point Formation, 111 Aroostook-Perce anticlinorium, 102, Bay du Nord Group, 129 Cabot Fault System, 136 106, 110, 111, 114. 115, 116, 118 Bay of Islands complex, 141, 144 Calais Formation, 69, 71 Arsenault area, 118 Bay St. George basin, 136 calcarenites, 75, 109. 111, 112 Arsenault Formation, 106, 107 Bear Pond Rhyolite, 138 calcilutites, 107, 109, 110 Ascot Complex, 85, 87, 89, 94, 97 Beauce area, 85, 88, 93, 95, 96, 97 calc-mylonite, 94 Ascot volcanic belt, 89 Beauceville Formation, 89, 91, 95 calc-silicate, 58 Ascot volcanics, 96 bedding, 58 calderas, 129 ash deposits, 109 Belchertown pluton, 64 Caldwell Group, 87,96 ash layers, volcanic, 156 Belle Isle fault, 8 Caledonian, late, 2 ashflows, 76 Belleoram Granite, 124 Caledonian Belt, 56 Ashgillian, 73 belts, 7, 17, 20, 68 Caledonian orogeny, 13 Aspy terrane, 130 supracrustal, 69 defined, 2, 17 165 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/957755/spe275-bm.pdf by guest on 28 September 2021 166 Index Cambrian, 41, 44, 69, 72 Climacograptus spiniferus Zone, 108, Cambro-Ordovician, 106 deformation, 8, 10, 11, 52, 72, 116, 119, 118 124, 125, 127, 130, 141, 143, 148 Campbell Hill-Nonesuch River fault climatic gradients, global, 46, 48 zone, 52, 60 Acadian, 51, 85, 95 Clinton-Newbury fault, 11 Alleghanian, 136 Canadian Appalachians, 16, 17, 102 Cloridorme Formation, 118 Canterbury Basin, 47 episodes, 87 coal swamps, 47 Late Ordo vician, 114 Cape Breton Island. 11, 44 Coastal Acadia, 43, 46, 47 Cape Elizabeth Formation, 9 mechanisms, 56 Coastal Maine zone, 11 mid-Devonian, 114 Cape George area, 45 Coastal Volcanic belt, 76, 80, 81 Cape Ray, 124, 128, 129 periods, 60, 64 Cobequid-Chedabucto fault system regional, 28, 85 Cape St. John Group, 128, 129 117 Caradocian, 69, 72 Taconian, 136 collision, 13, 17, 18, 19, 20, 118. 119 timing, 63, 101 carbonates, 56, 136, 138, 141, 144 156 continent-continent, 20, 28 Delmar deformation, 19 160 continent-volcanic arc, 96 detritus, 73,75,81, 130, 138, 160 platform, 145 island arc, 85 Devils Room granite, 129, 138 sedimentation, 48 Concord, New Hampshire quadrangle Devonian, 46 Carboniferous, 41, 46 56,60 Early, 56, 73 Cardigan Pluton, 63 Concord plutonic suite, 14 mid-. 101, 114 Carolina block. 19 early, 63 Dicoelosia sp., 48 Carolina Slate Belt, 44 Concord Tectonic Zone, 56 Digdeguash Formation, 76 Carolina terrane, 19 Coney Head, 144 disconformity, 47 Carrabassett Formation, 75 conglomerate, 34, 58, 69, 73, 74, 75, 76 discontinuities, 60, 78 Carys Mills Formation, 75 93, 107, 109, 110, 111, 113, 130 Dog River fault zone, 6 Casco Bay area, 9 assemblage, 111 domains Casco Bay belt, 8, 9 Connecticut Valley-Gaspé belt, 5, 6 Casco Bay Group, 9 external nappe, 106 75, 80 Cashaqua Member, 157 internal nappe, 106 Connecticut Valley-Gaspé-Notre Castine Formation, 76 parautochthon, 106 Dame belt, 6 Castor River, 143 tectonic, 106 Connecticut Valley-Gaspé Catamaran fault, 117 tectonostratigraphic, 110 Synclinorium. 5, 86, 102, 106,110 Catskill Delta, 48, 156, 159, 160 Dome-Crescent-Mushroom pattern, 63 Celtic unit, 45 113, 114, 115, 116 Dover Fault, 28, 36, 128 Connecticut Valley belt, 6 Central block, 78, 80, 126, 129, 130 Dunn Point Formation, 33 Connecticut Valley trough. 5 Dunnage belt, 11 Central Maine basin, 80 conodonts, 107, 109 Central Maine Boundary Fault, 75 Dunnage Zone, 5, 17, 85, 87, 96, 97 continental crust, 119 102,106, 109, 117, 118, 126, 128, Central Maine Terrane, 52, 56, 60, 62 continental drift, 13 Central Mobile Belt, 11, 15, 17, 28 35 129, 130, 136, 147 continental margin, 76, 130, 136, 161 dykes, felsic, 114 37 convergence, 80, 118, 162 Central New Hampshire anticlinorium Cookson Group, 69, 71 East Pond suite, 139, 148 52, 56, 60, 62, 63 Cookson Island, 76 Chain Lakes Massif, 6, 72. 78, 80. 96 Eastern Americas Realm, 46, 47 corals, 34, 46, 74 Eastern Townships, 106 Chalceurs Group package, 108 Cornish nappe sequence, 60 Chaleur Bay, 8. 119 Eastport, Maine, 76 Costislrophonella punctulifera, 48 Eastport Formation, 47, 48 Chaleur Bay succession, 8 Cottrell's Cove Group. 31 Chaleurs Bay synclinorium. 102, 108 elements, light rare earth (LREE), 80 cover, subaerial, 32, 35 Eliot Formation, 52 111, 113, 114, 116, 117, 118 Cranbourne Formation, 96 Ellen Wood Ridge Formation, 73 74 Chaleurs Group, 102, 107, 108, 109 crust 75 111, 113, 118 continental, 119 Ellsworth belt, 8 Chanceport Group, 31, 32, 33 lower, 11 Change Islands, 33, 34, 35 Emsian, 56 oceanic, 19, 31, 36, 67, 78, 80, 86 erosion, 13, 111, 160 Charlotte belt. 14 136 Chase Brook Formation, 69 Escuminac Formation, 48, 102, 108 rupture, 154 110, 113 Chaudière River area. 93 thickening, 145 cherts, 71 Esopus shale, 156 upper, 78 European Province, 46 Chinese Realm, 44 Cumberland fault, 89, 91, 95 European Realm, 44. 45 chlorite, 75 currents, turbidity, 8 Eustis domain, 87 Cincinnati arch system, 153 Cushing Formation, 9 evaporites, 47 Cinq Isles Formation, 124, 130 evolution Clam Bank Group, 123, 128, 130 138 Daggett Ridge Formation, 74, 75 Ordovician, 27 144, 148 Dalejina sp., 48 Silurian, 27 clastics. 56, 85 DalHousie Formation, 109 tectonic, 68 clasts, 58, 73, 74, 75. 107, 110 Danforth quadrangle, 75 Exploits-Meelpaeg subzone boundary claystone, 107, 110 Dashwoods subzone, 126. 129 128 cleavage, 2, 5, 8, 10, 12, 16, 33, 62, 85 Deblois granite pluton, 8 87. 89.90,91,95,96, 110, 116, Exploits Subzone, 35, 126, 128, 130 debris, 81 extension, 80 119, 141, 143 décollement, 60 Clemville Formation, 109 Deer Lake, 145 facies Cleveland Shale, 160 Deer Lake Basin, 138 amphibolite, 128, 138, 141, 146 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/957755/spe275-bm.pdf by guest on 28 September 2021 Index 167 carbonate, 102 Gaspé Peninsuladian orogeny, 101 Hermitage Flexure, 128 greenschist, 128, 138, 139, 146 Gaspé Sandstones, 111 Hirnantia, 47 siliciclastic, 102, 110 Gaspé Sandstones Group, 102, 108, history, accretionary, 27 subgreenschist, 146 112, 113 Honorat Formation, 5 Famine Formation, 93, 94 Gaspé segment, 102 Honorat Group, 102,107. 112, 116, 118 faults, 114 Gaspésie, 96 Honorat-Matapédia Group package, bedding-parallel, 33 Gastonguay anticline, 110, 116 108 extensional, 144, 145 Gastonguay fault. 115 Hope Valley block, 19 normal, 73, 114. 119 Gedinnian, 56 hornblende, 139, 146, 148 oblique-slip, 115 Genesee Formation, 157, 159 Horton Group, 48 premetamorphic, 8 Genesee shale, 154, 161 hot spots, 15, 56, 63 reverse, 87, 88,97, 114, 115, 127 geology, structural, 58 Houlton area, 75 sinistral, 18, 19, 20 geometry, 63 Humber Arm Allochthon, 28, 36, 128, strike-slip, 11, 73, 93, 95, 97, 114, Gilmanton quadrangle, 63 136,141, 143 117, 119 glaciation, 160 Humber Arm region, 138 thrust, 52, 60, 73,75,89,93, 115, gneiss, 10, 15, 19, 129, 139 Humber Zone, 15, 28, 85, 96, 102,106.
Recommended publications
  • The La Coulee Formation, a New Post-Acadian Continental Clastic Unit Bearing Groundwater Calcretes, Gaspe Peninsula, Quebec
    Document generated on 09/23/2021 3:19 p.m. Atlantic Geology The La Coulee Formation, a new post-Acadian continental clastic unit bearing groundwater calcretes, Gaspe Peninsula, Quebec Pierre Jutras, Gilbert Prichonnet and Peter H. von Bitter Volume 35, Number 2, 1999 Article abstract A I km2 erosional remnant of the La Coulee Formation, a previously URI: https://id.erudit.org/iderudit/ageo35_2art03 unrecognized stratigraphic unit, has been studied in the Perce area of the Gaspd Peninsula. It unconformably overlies folded Cambrian to Devonian See table of contents rocks and is unconformably overlain by the mid-Carboniferous Bonaventure Fonnation. The erosional remnant includes the lowest 60 m of this newly identified formation of unknown thickness. Original sedimentary fades are Publisher(s) limited to 50 m of breccia debris flows passing stratigraphically upward into 10m of conglomeratic debris flows. Groundwater calcrete formation has Atlantic Geoscience Society partially or completely transformed the lowest 30 m of the sequence. The depositional environment is interpreted as being related to a proximal ISSN continental alluvial fan. The nearby presence of a saline body of water is inferred to account for thick and massive groundwater calcrete formation and 0843-5561 (print) water-saturated debris flows in a relatively arid climatic context Most of the 1718-7885 (digital) formation was eroded prior to deposition of the Bonaventure Formation. However, the basal groundwater calcretes were more widely preserved. They Explore this journal underlie the Bonaventure Formation in most of the Perce1 area and in the Saint-Elzear area, close to a hundred kilometres to the southwest. Post-sedimentary faulting has affected both the La Coulee and Bonaventure Cite this article formations.
    [Show full text]
  • Fossil Crinoids from the Basal West Point Formation (Silurian), Southeastern Gaspé Peninsula, Québec, Eastern Canada Stephen K
    Document généré le 1 oct. 2021 14:43 Atlantic Geology Fossil crinoids from the basal West Point Formation (Silurian), southeastern Gaspé Peninsula, Québec, eastern Canada Stephen K. Donovan et David G. Keighley Volume 52, 2016 Résumé de l'article Les strates du Silurien au Canada atlantique et dans le sud du Québec URI : https://id.erudit.org/iderudit/ageo52art08 renferment à divers endroits des fossiles de crinoïdes communs, bien qu’il s’agisse de vestiges morcelés. Parmi les nouveaux crinoïdes de la formation de Aller au sommaire du numéro West Point du groupe de Chaleurs (du Ludlow au Pridoli?; Silurien supérieur) de la péninsule de Gaspé, on compte Iocrinus? maennili (Yeltysheva) [observé par ailleurs dans l’étage Katien de l’Estonie], Bystrowicrinus (col.) depressus sp. Éditeur(s) nov. et Cyclocyclicus (col.) sp. aff. C. (col.) echinus Donovan. D’après sa morphologie générale et sa position stratigraphique, il est peu probable Atlantic Geoscience Society qu’Iocrinus? maennili fasse partie de la famille Iocrinidae (ordre Disparida), une famille disparue à la fin de l’Ordovicien. Son nom commun a été jusqu’à ISSN présent épelé incorrectement männili, mannili ou mjannili. La plupart des spécimens de Bystrowicrinus (col.) depressus commun ont un aspect 0843-5561 (imprimé) cyclocyclique, car le lumen pentaétoilé se trouve dans un claustrum très 1718-7885 (numérique) profond généralement obstrué par des sédiments; les spécimens libres de sédiments ont un aspect très distinctif. Cyclocyclicus (col.) sp. aff. C. (col.) Découvrir la revue echinus est semblable à une espèce présente dans l’étage Katien du Pays de Galles nordique. Dans son ensemble, cet assemblage fait davantage penser à l’étage Katien (Ordovicien supérieur).
    [Show full text]
  • Fossil Crinoids from the Basal West Point Formation (Silurian), Southeastern Gaspé Peninsula, Québec, Eastern Canada Stephen K
    Document generated on 09/28/2021 2:45 a.m. Atlantic Geology Fossil crinoids from the basal West Point Formation (Silurian), southeastern Gaspé Peninsula, Québec, eastern Canada Stephen K. Donovan and David G. Keighley Volume 52, 2016 Article abstract Silurian strata of Atlantic Canada and southern Québec locally preserve URI: https://id.erudit.org/iderudit/ageo52art08 common fossil crinoids, albeit mostly as disarticulated remains. New crinoids from the Chaleurs Group, West Point Formation (Ludlow to Pridoli?; Upper See table of contents Silurian) of the Gaspé Peninsula include Iocrinus? maennili (Yeltysheva) (otherwise known from the Katian of Estonia), Bystrowicrinus (col.) depressus sp. nov. and Cyclocyclicus (col.) sp. aff. C. (col.) echinus Donovan. On the basis of Publisher(s) both its gross morphology and stratigraphic position, Iocrinus? maennili is unlikely to be an iocrinid disparid, a family that became extinct at the end of Atlantic Geoscience Society the Ordovician. The trivial name has hitherto been erroneously spelled as männili, mannili and mjannili. Most specimens of the common Bystrowicrinus ISSN (col.) depressus appear cyclocyclic because the pentastellate lumen occurs in a deeply sunken claustrum that is commonly occluded by sediment; clean 0843-5561 (print) specimens are highly distinctive. Cyclocyclicus (col.) sp. aff. C. (col.) echinus is 1718-7885 (digital) similar to a species known from the Katian of North Wales. Taken together, this assemblage is more reminiscent of Katian strata (Upper Ordovician). This is Explore this journal problematic given the current mapping of the outcrop as West Point Formation (Upper Silurian), suggesting further stratigraphic studies in the area are required. Cite this article Donovan, S.
    [Show full text]
  • U.S. GEOLOGICAL SURVEY BULLETIN 2085-A R^C I V"*, *>*S*->^R*>*:^
    Stratigraphy, Sedimentology, and Provenance of the Raging River Formation (Early? and Middle Eocene), King County, Washington U.S. GEOLOGICAL SURVEY BULLETIN 2085-A r^c i V"*, *>*s*->^r*>*:^ l1^ w >*': -^- ^^1^^"g- -'*^t» *v- »- -^* <^*\ ^fl' y tf^. T^^ ?iM *fjf.-^ Cover. Steeply dipping beds (fluvial channel deposits) of the Eocene Puget Group in the upper part of the Green River Gorge near Kanaskat, southeastern King County, Washington. Photograph by Samuel Y. Johnson, July 1992. Stratigraphy, Sedimentology, and Provenance of the Raging River Formation (Early? and Middle Eocene), King County, Washington By Samuel Y. Johnson and Joseph T. O'Connor EVOLUTION OF SEDIMENTARY BASINS CENOZOIC SEDIMENTARY BASINS IN SOUTHWEST WASHINGTON AND NORTHWEST OREGON Samuel Y. Johnson, Project Coordinator U.S. GEOLOGICAL SURVEY BULLETIN 2085-A A multidisciplinary approach to research studies of sedimentary rocks and their constituents and the evolution of sedimentary basins, both ancient and modern UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Johnson, Samuel Y. Stratigraphy, sedimentology, and provenance of the Raging River Formation (Early? and Middle Eocene), King County, Washington/by Samuel Y. Johnson and Joseph T. O'Connor. p. cm. (U.S. Geological Survey bulletin; 2085) (Evolution of sedimentary basins Cenozoic sedimentary basins in southwest Washington and northwest Oregon; A) Includes bibliographical references.
    *S*->^R*>*:^" class="panel-rg color-a">[Show full text]
  • Chlorophyta, Dasycladales) from the Pridolian to Middle Lochkovian Indian Point Formation, New Brunswick, Canada Steve T
    Document generated on 09/25/2021 8:42 a.m. Atlantic Geology Journal of the Atlantic Geoscience Society Revue de la Société Géoscientifique de l'Atlantique Medusaegraptus (Chlorophyta, Dasycladales) from the Pridolian to middle Lochkovian Indian Point Formation, New Brunswick, Canada Steve T. LoDuca, Randall F. Miller and Reginald A. Wilson Volume 49, 2013 Article abstract Carbonaceous compressions from the Pridolian to middle Lochkovian Indian URI: https://id.erudit.org/iderudit/1062310ar Point Formation in the Flatlands area of New Brunswick comprising a central DOI: https://doi.org/10.4138/atlgeol.2013.005 axis with irregularly arranged unbranched appendages are assigned to Medusaegraptusmirabilis. This is the first report of intact thalli of this See table of contents noncalcified macroalgal taxon from a locality outside of western New York. The biotic composition, stratigraphic context, and sedimentology of this occurrence suggest a shallow-marine depositional setting roughly comparable Publisher(s) to that for the type material of Medusaegraptus mirabilis from Gasport, New York.RÉSUMÉRÉSUMÉLes fossiles carbonés comprimés de la formation Atlantic Geoscience Society d’Indian Point, située dans la région de Flatlands du Nouveau-Brunswick et qui date du Pridolien au Lochkovien moyen, sont attribués àMedusaegraptus ISSN mirabilis; ils présentent un axe central avec des appendices non ramifiés et disposés de façon irrégulière. C’est la première fois qu’on signale la présence 0843-5561 (print) de thalles intacts de ce taxon de macroalgues non calcifiées dans une localité 1718-7885 (digital) ailleurs que dans l’ouest de l’État de New York. La composition biotique, le contexte stratigraphique et les données sédimentologiques permettent de Explore this journal penser à un dépôt marin peu profond à peu près comparable à ce qu’on trouve dans le cas de Medusaegraptus mirabilis de Gasport, dans l’État de New York.[Traduit par la redaction] Cite this article LoDuca, S., Miller, R.
    [Show full text]
  • Restigouche County, New Brunswick
    GAC-MAC-CSPG-CSSS Pre-conference Field Trips A1 Contamination in the South Mountain Batholith and Port Mouton Pluton, southern Nova Scotia HALIFAX Building Bridges—across science, through time, around2005 the world D. Barrie Clarke and Saskia Erdmann A2 Salt tectonics and sedimentation in western Cape Breton Island, Nova Scotia Ian Davison and Chris Jauer A3 Glaciation and landscapes of the Halifax region, Nova Scotia Ralph Stea and John Gosse A4 Structural geology and vein arrays of lode gold deposits, Meguma terrane, Nova Scotia Rick Horne A5 Facies heterogeneity in lacustrine basins: the transtensional Moncton Basin (Mississippian) and extensional Fundy Basin (Triassic-Jurassic), New Brunswick and Nova Scotia David Keighley and David E. Brown A6 Geological setting of intrusion-related gold mineralization in southwestern New Brunswick Kathleen Thorne, Malcolm McLeod, Les Fyffe, and David Lentz A7 The Triassic-Jurassic faunal and floral transition in the Fundy Basin, Nova Scotia Paul Olsen, Jessica Whiteside, and Tim Fedak Post-conference Field Trips B1 Accretion of peri-Gondwanan terranes, northern mainland Nova Scotia Field Trip B8 and southern New Brunswick Sandra Barr, Susan Johnson, Brendan Murphy, Georgia Pe-Piper, David Piper, and Chris White New Brunswick Appalachian transect: B2 The Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H. Calder, M.R. Gibling, and M.C. Rygel bedrock and Quaternary geology of the B3 Geology and volcanology of the Jurassic North Mountain Basalt, southern Nova Scotia Dan Kontak, Jarda Dostal, and John Greenough Mount Carleton – Restigouche River area B4 Stratigraphic setting of base-metal deposits in the Bathurst Mining Camp, New Brunswick Steve McCutcheon, Jim Walker, Pierre Bernard, David Lentz, Warna Downey, and Sean McClenaghan Reginald A.
    [Show full text]
  • The Green Mountain Anticlinorium in the Vicinity of Wilmington and Woodford Vermont
    THE GREEN MOUNTAIN ANTICLINORIUM IN THE VICINITY OF WILMINGTON AND WOODFORD VERMONT By JAMES WILLIAM SKEHAN, S. J. VERMONT GEOLOGICAL SURVEY CHARLES G. DOLL, Stale Geologist Published by VERMONT DEVELOPMENT DEPARTMENT MONTPELIER, VERMONT BULLETIN NO. 17 1961 = 0 0. Looking northwest from centra' \Vhitingham, from a point near C in WHITINCHAM IPlate 1 Looking across Sadawga Pond Dome to Haystack Mountain-Searsburg Ridge in the background; Stratton and Glastenburv Mountains in the far distance. Davidson Cemetery in center foreground on Route 8 serves as point of reference. TABLE OF CONTENTS PAGE ABSTRACT 9 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . 10 Location ........................ 10 Regional Geologic Setting . . . . . . . . . . . . . . . 13 Previous Geologic Work ................. 15 The Problem ...................... 16 Present Investigation ................... 18 Acknowledgments .................... 19 Topography . . . . . . . . . . . . . . . . . . . . . 19 Rock Exposure ..................... 20 Culture and Accessibility ................. 20 STRATIGRAPHY AND LITHOLOGY ............... 23 General Statement . . . . . . . . . . . . . . . . . . 23 Stratigraphic Nomenclature . . . . . . . . . . . . . . 25 Lithologic Nomenclature ................. 26 Pre-Cambrian Rocks . . . . . . . . . . . . . . . . . 27 General Statement . . . . . . . . . . . . . . . . . 27 Mount Holly Complex ................. 28 Stamford
    [Show full text]
  • The Camerate Crinoid Scyphocrinites Zenker in the Upper Silurian Or Lower Devonian of New Brunswick, Canada Stephen K
    Document généré le 27 sept. 2021 12:26 Atlantic Geology Journal of the Atlantic Geoscience Society Revue de la Société Géoscientifique de l'Atlantique The camerate crinoid Scyphocrinites Zenker in the Upper Silurian or Lower Devonian of New Brunswick, Canada Stephen K. Donovan et Randall F. Miller Volume 50, 2014 Résumé de l'article The mid-Paleozoic Scyphocrinites Zenker has a distal attachment modified into URI : https://id.erudit.org/iderudit/1062330ar a globular flotation structure and, uniquely for a crinoid, joined the obligate DOI : https://doi.org/10.4138/atlgeol.2014.014 plankton. Such a flotation structure has been found in the Indian Point Formation (Pridolian to Lochkovian) of Flatlands, northern New Brunswick. It Aller au sommaire du numéro is most likely Pridolian (Upper Silurian) based on the primitive morphology. This identification is confirmed by the globular gross morphology, multi-plated calcite structure, age and similarity to coeval fossils from Cornwall, Éditeur(s) southwestern England. Atlantic Geoscience Society ISSN 0843-5561 (imprimé) 1718-7885 (numérique) Découvrir la revue Citer cet article Donovan, S. & Miller, R. (2014). The camerate crinoid Scyphocrinites Zenker in the Upper Silurian or Lower Devonian of New Brunswick, Canada. Atlantic Geology, 50, 290–296. https://doi.org/10.4138/atlgeol.2014.014 All Rights Reserved ©, 2014 Atlantic Geology Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des services d’Érudit (y compris la reproduction) est assujettie à sa politique d’utilisation que vous pouvez consulter en ligne. https://apropos.erudit.org/fr/usagers/politique-dutilisation/ Cet article est diffusé et préservé par Érudit.
    [Show full text]
  • Bedrock Geology of the Lake Tapps Quadrangle Pierce County Washington
    Bedrock Geology of the Lake Tapps Quadrangle Pierce County Washington GEOLOGICAL SURVEY PROFESSIONAL PAPER 388-B Bedrock Geology of the Lake Tapps Quadrangle Pierce County Washington By LEONARD M. CARD, JR. GEOLOGIC STUDIES IN THE PUGET SOUND LOWLAND, WASHINGTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 388-B A study of Tertiary sedimentary, volcanic, and intrusive rocks in the western foothills of the Cascade Range UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract-___________________________ Bl Oligocene Series Continued Introduction. _______________________ 1 Intrusive rocks Continued Location, culture, and accessibility- 1 Latite___________________________________ B21 Purpose ________________________ 2 Miocene deposits.____________-___----__-_--__------ 22 Fieldwork and acknowledgments. __ 2 Description_ __________________________________ 22 Previous work.__________________ 3 Fossils and age________________-___-_-__---_---_ 23 General setting-_____________________ 3 Origin.______________________________________ 23 Drainage and relief. _____________ 3 Source__________---------------__-_--_---_---_- 24 Climate and vegetation._________. 4 Structure ______________________.._--__-.-----_------ 25 Regional geologic setting________ 4 Major folds________________----_-_____-_--_---_ 25 Stratigraphy ________________________ 4 Minor folds------------------------------------ 26 Eocene Series-_________-_-_-_-__--__ 5 Faults-,-_--_----_------------___-__----__ 26 Puget Group,___________________ 5 Origin of intense deformation in the Carbon River Carbonado Formation. _______ anticline. ____________________________________ 27 Northcraft Formation. _______ Age of deformation-___-________________-_-----_ 27 Spiketon Formation.________ 11 Economic geology________-___-_--________--__------ 29 Origin of the Puget Group.___ 12 Coal.
    [Show full text]
  • W. John Nelson
    TUR R W. John Nelson Department of Natural Resources ILLINOIS STATE GEOLOGICAL SURVEY BULLETIN 100 1995 BULLETIN 100 1995 ILLINOIS STATE GEOLOGICAL SURVEY illiam W. Shilts, Chief Natural Resources Building 615 East Peabody Drive Champaign, Illinois 61820-6964 Cover Photo Steeply tilted lower Pennsylvanian sandstone on the southeast side of the L,usk Creek Fault Zone near Manson Ford, about 5 miles northeast of Dixon Springs, Pope County. Photo by W. John Nelson. Graphic Artist - Sandra Stecyk Plates - Michael Knapp Printed by authority of the State of Illinois/l995/3000 @ printed with soybean ink on recycled paper Acknowledgments STRUCTURAL FEATURES IN ILLINOIS Abstract Introduction Guidelines for Naming Structures Removal of Names New Names Major Structural Features Basins, Arches, and Domes Folds and Faults Northern Illinois Western Illinois Eastern Illinois Southern Illinois Structural History Precambrian Cambrian Period Ordovician Period Silurian Period Devonian Period Mississippian Period Pennsylvanian Period Late Paleozoic (?) Compressional Events Mesozoic (?) Extensional Events Cretaceous to Recent Events STRUCTURAL FEATURES - CATALOG BIBLIOGRAPHY TABLES 1 Wells that reach Precambrian rocks in Illinois 2 167 structures recommended for removal from stratigraphic records 3 33 renamed structures shown as follows: (new name) 4 33 newly named structural features shown as follows: (new) 5 In situ stress measurements in Illinois 6 Silurian reefs in Illinois FIGURES 1 Regional structural setting of Illinois 2 Major structural features in Illinois and neighboring states 3 Oil fields and structure of the Beech Creek ("Barlow") Limestone in part of Clinton County 4 Wells that reach Precambrian rocks in Illinois 5 Generalized Precambrian geology of eastern and central United States 6 An interpretive cross section of Rough Creek Graben 7 Stratigraphiccolumn showing the units mentioned in the text 8 Paleogeography of Illinois during deposition of Mt.
    [Show full text]
  • Program and Abstracts
    Atlantic Geoscience Society ABSTRACTS 2004 Colloquium & Annual General Meeting Moncton, New Brunswick The 2004 Colloquium & Annual General Meeting was held at the Delta Beausejour Hotel, Moncton, New Brunswick, on January 30 and 31, 2004. On behalf of the society, we thank Colloquium Chairperson Susan Johnson and her organizing committee (Alan Anderson, Cameron Bartsch, Robin Black, Lori Cook, Russell Hiebert, Ken Howells, Dave Keighley, Maurice Mazerolle, Tansy O'Connor-Parsons, Michael Parkhill, Brian Roulston, Erin Smith, Ian Spooner, Peter Wallace, and Reg Wilson) for providing an excellent meeting. We also wish to acknowledge support of the corporate sponsors: PCS-Potash, New Brunswick Division; McGregor GeoScience Limited; Mineralogical Association of Canada; Corridor Resources Inc.; and the Dean of Science, St. Francis Xavier University. In the following pages, we are pleased to publish the abstracts of oral presentations and posters from the Colloquium, which focused on The First J. Ewart Blanchard Special Session on Geophysics; Environmental Geology; Hydrocarbon Geology; Current Research in the Atlantic Provinces; an Ion Microprobe Workshop; and a tour of the PCS Potash Mine. THE EDITORS Trial This PDF was created using the Free RoboPDF Trial (for evaluation purposes only!) Version Get RoboPDF: An Easy, Affordable Alternative for Creating PDFs - www.robopdf.com Buy RoboPDF Contrasting behaviour of acid-generating rock of the Meguma Supergroup in fresh and salt water Jennifer Arnold, Stephen Armstrong, and Anne Marie O’Beirne-Ryan Department of Earth Sciences, Dalhousie University, Halifax, NS B3H 3J5, Canada Acid rock drainage is a well known problem associated with the Meguma Supergroup in the Halifax region of Nova Scotia, Canada.
    [Show full text]
  • Understanding Himalayan Denudation at the Catchment and Orogen Scale
    Understanding Himalayan Denudation at the Catchment and Orogen Scale Dissertation von Stephanie M. Olen Kumulative Dissertation zur Erlangung der Würde des akademischen Grades Doktor Rerum Naturalium (Dr. rer. Nat) in der Wissenschaftdisziplin Geologie Eingereicht an der Mathematisch-Naturwissenschaftichen Fakultät der Universität Potsdam Potsdam, Oktober 2015 Published online at the Institutional Repository of the University of Potsdam: URN urn:nbn:de:kobv:517-opus4-91423 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91423 This work has not been submitted to any other institution of higher education, and that it was prepared independently and exclusively with the specified funds, the graduate school GRK1364 “Shaping Earth's Surface in a Variable Environment: Interactions between tectonics, climate and biosphere in the African-Asian monsoonal region” of the German Science Foundation (DFG, Deutsche Forschungsgemeinschaft; Project GRK 1364/2) and by the HIMPAC research project (Himalayas: Modern and Past Climates), funded by DFG (STR 373/27-1 and 28-1). ii Abstract Understanding the rates and processes of denudation is key to unraveling the dynamic processes that shape active orogens. This includes decoding the roles of tectonic and climate-driven processes in the long-term evolution of high- mountain landscapes in regions with pronounced tectonic activity and steep climatic and surface-process gradients. Well-constrained denudation rates can be used to address a wide range of geologic problems. In steady-state landscapes, denudation rates are argued to be proportional to tectonic or isostatic uplift rates and provide valuable insight into the tectonic regimes underlying surface denudation. The use of denudation rates based on terrestrial cosmogenic nuclide (TCN) such as 10Beryllium has become a widely-used method to quantify catchment-mean denudation rates.
    [Show full text]